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A NOTE

ON DIRECTLY ORDERED SUBSPACES OF R
n

Jennifer Del Valle — Piotr J. Wojciechowski

ABSTRACT. A comprehensive method of determining if a subspace of usually
ordered space R

n is directly-ordered is presented here. Also, it is proven in an
elementary way that if a directly-ordered vector space has a positive cone gener-
ated by its extreme vectors then the Riesz Decomposition Property implies the
lattice conditions. In particular, every directly-ordered subspace of Rn is a lat-

tice-subspace if and only if it satisfies the Riesz Decomposition Property.

1. Introduction

In this note we deal with the ordered vector spaces overR. Our major reference
for all necessary definitions and facts in this area is [2]. Let us recall that V
is called an ordered vector space if the real vector space V is equipped with
a compatible partial order ≤, i.e., if for any vectors u, v and w from V, if u ≤ v,
then u + w ≤ v + w and for any positive α ∈ R, αu ≤ αv. In case the partial
order is a lattice, V is called a vector lattice or a Riesz space. The set

V += {u ∈ V : u ≥ 0}
is called a positive cone of V. It satisfies the three axioms of a cone:

(i) K +K ⊆ K,

(ii) R
+K ⊆ K,

(iii) K ∩ −K = {0}.
Moreover, any subset of V satisfying the three above conditions is a positive
cone of a partial order on V.

An ordered vector space is said to be directly ordered if for every two vectors
u, v ∈ V there exist p, q ∈ V such that p ≤ u, v ≤ q. This condition is equivalent
to saying that V = K −K, i.e., the positive cone K is generating. Every vector
lattice is directly ordered.
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Throughout the paper, by R
nwe will understand the coordinate-wise ordered

vector lattice
⊕n

i=1R. By a subspace V of R
n we understand any subspace

ordered by the order of Rn.

A vector subspace X of a vector lattice V is called a lattice-subspace if X
equipped with the ordering from V is a vector lattice on its own, i.e., if the least
upper bound of any two elements from X exists in X (and automatically does
the greatest lower bound of the elements). In their paper [1] the authors studied
the lattice-subspaces of Rn and gave equivalent conditions for a subspace to be
a lattice-subspace. Moreover, their method allows one to quickly determine if X
is a lattice-subspace based on the vectors generating X. In Section 1 we adopt
the spirit of their approach to supply a comprehensive and fast way to determine
if a given subspace of Rn is directly ordered.

Another property enjoyed by the class of vector lattices is the following Riesz
Decomposition Property. If 0 ≤ u, v, w ∈ V and w ≤ u + v, then there exist
vectors u′, v′ ∈ V such that 0 ≤ u′≤ u, 0 ≤ v′≤ v and w = u′+ v′. This property
is of fundamental importance in ordered vector spaces, partially ordered groups
and related areas. Not all ordered vector spaces enjoy the property and not all
those that enjoy it are necessarily vector-lattices. For a number of important
examples on this topic, see [2, Chapter 1.8]. It is known, however, that every
directly ordered finite-dimensional space with a closed cone and satisfying the
Riesz Decomposition Property is a vector-lattice. The proof of this fact, even in
the finite-dimensional case, requires certain applications of the duality theorems
and the Riesz-Kantorowich theorem. In Section 3 we will give a very elementary
and short proof that in the case the positive cone of an ordered vector space (not
necessarily finite-dimensional) is generated by a set of its extreme vectors then
satisfying the Riesz Decomposition Property is equivalent to being a vector lat-
tice. In particular it will immediately follow that every directly ordered subspace
of Rn satisfying the Riesz Decomposition Property is a lattice-subspace.

2. Directly ordered subspaces of Rm

In this section we adopt the motivation similar to that of the algorithm de-
veloped in [1] in order to determine whether the subspace V generated by an ar-
bitrary collection of linearly independent vectors has a generating cone. Recall
that for the subspace V, V += V ∩(Rm)+. The subspace V is contained in a min-
imal coordinate subspace, i.e., a subspace determined by the zero coordinates
from a specific set (perhaps empty). It is clear then that v ∈ V + is an interior
point of V + (in the relative topology of V ) if and only if v has all the remaining
coordinates positive. Below the term strictly positive vector v ∈ V is understood
in this sense.
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We need the following well-known facts that can be found, e.g., in [2, Lem-
ma 3.2], and [3, Corollary 1 to Theorem 2.9], respectively.

������� 2.1� A cone in R
m is generating if and only if it has an interior

point.

������� 2.2� For a subspace V of a finite dimensional vector space, exactly
one of the following mutually exclusive possibilities holds:

(1) V contains a strictly positive vector,

(2) V ⊥ contains a nonnegative vector, where V ⊥ is the orthogonal complement
of V .

����		
�� 2.3� A subspace V of Rm has a generating cone if and only if V ⊥

contains no nonnegative vector.

P r o o f. This follows immediately from Theorems 2.1 and 2.2. �

Recall the notation used in [1]. Given a set of n linearly independent vectors
x1, . . . , xn in R

m, let V = 〈x1, . . . , xn〉 be the n-dimensional vector subspace they
generate, where 1 ≤ n < m.

As in [1], for x ∈ R
m, let x(i) denote the ith component of x. Then the matrix

whose rows are formed by the xi can be written as⎛
⎜⎜⎜⎝
x1

x2

...
xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
x1(1) x1(2) · · · x1(m)

x2(1) x2(2) · · · x2(m)
...

...
...

...
xn(1) xn(2) · · · xn(m)

⎞
⎟⎟⎟⎠ .

From here we form the following m vectors of Rn:

y1 =

⎛
⎜⎜⎜⎝
x1(1)

x2(1)
...

xn(1)

⎞
⎟⎟⎟⎠ , y2 =

⎛
⎜⎜⎜⎝
x1(2)

x2(2)
...

xn(2)

⎞
⎟⎟⎟⎠ , . . . , ym =

⎛
⎜⎜⎜⎝
x1(m)

x2(m)
...

xn(m)

⎞
⎟⎟⎟⎠ .

Notice that the matrix with rows xi has rank n, so that among the vectors
yj, j = 1, . . . ,m there exist n linearly independent vectors. If for some j we have
yj = 0, then we exclude it from consideration.

We introduce the following definition in analogy to the definition of the funda-
mental set of indices from [1].

��������� 2.4� A set of n indices {m1, . . . ,mn} is called a negative funda-
mental set of indices for the vectors x1, . . . , xn ∈ R

m whenever

103



JENNIFER DEL VALLE — PIOTR J. WOJCIECHOWSKI

(1) the n vectors ym1
, . . . , ymn

are linearly independent; and

(2) for at least one j /∈ {m1, . . . ,mn}, all the coefficients in the expansion

yj =

n∑
r=1

αj,rymr

are non-positive.

As discussed in [3] that a solution ξ to the equation
∑n

i=1 ξixi = b is called
basic if for the set L = {i : ξi > 0}, the set of vectors {yi : i ∈ L} is linearly
independent. For the proof of our main result in this section, we will need the
following lemmas.

����
 2.5 ( [3], Theorem 2.11)� If the equation
n∑

i=1

ξixi = b

has a nonnegative solution, then it has a basic nonnegative solution.

����
 2.6� If α1y1 + . . . αmym = 0, with αi ≥ 0 and not all 0, and all yk 	= 0,
then there exists a subset L⊆ {1, . . . ,m} such that the set S of vectors {yi : i∈L}
is linearly independent and there is j 	∈ L such that yj is a negative linear
combination of the vectors from S.

P r o o f. Without loss of generality, we can assume that α1 	= 0 and consider the
equation

α2y2 + · · ·+ αmym = −α1y1.

By assumption, there is a nonnegative solution to this equation and therefore,
by Lemma 2.5, there exists a basic nonnegative solution with the set L of indices
as above. But then

y1 = − 1

α1

∑
i∈L

ξiyi.

�

Now, we come to the main result of this section.

������� 2.7� The vector subspace V of R
m is directly ordered (has a gener-

ating cone) if and only if the vectors x1, . . . , xn do not admit a negative funda-
mental set of indices {m1, . . . ,mn}.
P r o o f. First, assume that there exists a negative fundamental set of indices,
{m1, . . . ,mn}. Without loss of generality, we may assume that {m1, . . . ,mn} =
{1, . . . , n} = I. Then there exists j /∈ I such that

yj =

n∑
i=1

αiyi,
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where αi ≤ 0 for each i. This is equivalent to

yj −
n∑

i=1

αiyi = 0

which implies the existence of the vector

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α1

−α2

...
−αn

0
...
0
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in V ⊥, where 1 occurs at the jth component. But v ≥ 0, so by Corollary 2.3, V +

is not generating.

For the converse, assume that V + is not generating. By Corollary 2.3, there
exists v ∈ V ⊥ such that v ≥ 0. This means, v is of the form⎛

⎜⎜⎜⎝
α1

α2

...
αm

⎞
⎟⎟⎟⎠

with αk ≥ 0 for each k. These coefficients αk and the column vectors yk satisfy
the equation

m∑
k=1

αkyk = 0.

Hence by Lemma 2.6 there exists a basic set of indices {m1, . . . ,mn} = I such
that for some j /∈ I we have

yj =

n∑
i=1

βiyi,

where βi ≤ 0 for each i. The set {m1, . . . ,mn} is the desired set of negative
fundamental indices, and this completes the proof. �

Next, we illustrate Theorem 2.7 with three examples.
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Example 2.1. Let

x1 =

⎛
⎜⎜⎜⎜⎝

−1
0
4
1

−2

⎞
⎟⎟⎟⎟⎠, x2 =

⎛
⎜⎜⎜⎜⎝

2
2
0

−1
1

⎞
⎟⎟⎟⎟⎠, x3 =

⎛
⎜⎜⎜⎜⎝

0
−1
−1
3
2

⎞
⎟⎟⎟⎟⎠.

A quick calculation shows that these vectors are linearly independent. Following
the method outlined above, we form the five vectors

y1 =

⎛
⎝−1

2
0

⎞
⎠, y2 =

⎛
⎝ 0

2
−1

⎞
⎠, y3 =

⎛
⎝ 4

0
−1

⎞
⎠ ,

y4 =

⎛
⎝ 1

−1
3

⎞
⎠, y5 =

⎛
⎝−2

1
2

⎞
⎠.

Next, we check that there does not exist a negative fundamental set of indices.
There are ten possible sets, which give rise to the following equations.

I1 = {1, 2, 3} :

y4 =
11

3
y1 − 25

6
y2 +

7

6
y3,

y5 =
8

3
y1 − 13

6
y2 +

1

6
y3.

I2 = {1, 2, 4} :

y3 = −22

7
y1 +

25

7
y2 +

6

7
y4,

y5 =
15

7
y1 − 11

7
y2 +

1

7
y4.

I3 = {1, 2, 5} :

y3 = −16y1 + 13y2 + 6y5,

y4 = −15y1 + 11y2 + 7y5.

I4 = {1, 3, 4} :

y2 =
22

25
y1 +

7

25
y3 − 6

25
y4,

y5 =
19

25
y1 − 11

25
y3 +

13

25
y4.

I5 = {1, 3, 5} :

y2 =
16

13
y1 +

1

13
y3 − 6

13
y5,

y4 = −19

13
y1 +

11

13
y3 +

25

13
y5,
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I6 = {1, 4, 5} :

y2 =
15

11
y1 +

1

11
y4 − 7

11
y5,

y3 =
19

11
y1 +

13

11
y4 − 25

11
y5.

I7 = {2, 3, 4} :

y1 =
25

22
y2 − 7

22
y3 +

3

11
y4,

y5 =
19

22
y2 − 15

22
y3 +

8

11
y4.

I8 = {2, 3, 5} :

y1 =
13

16
y2 − 1

16
y3 +

3

8
y5,

y4 = −19

16
y2 +

15

16
y3 +

11

8
y5.

I9 = {2, 4, 5} :

y1 =
11

15
y2 − 1

15
y4 +

7

15
y5,

y3 =
19

15
y2 +

16

15
y4 − 22

15
y5,

I10 = {3, 4, 5} :

y1 =
19

11
y3 − 13

19
y4 +

25

19
y5,

y2 =
15

19
y3 − 16

19
y4 +

22

19
y5.

Inspection shows that not one of the Ii, i = 1, . . . , 10 is a negative fundamental
set. Therefore V + is generating. In fact, notice that

x1 + x2 + x3 =

⎛
⎜⎜⎜⎜⎝

1
1
3
3
1

⎞
⎟⎟⎟⎟⎠ ∈ V.

Example 2.2. Let

x1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
0
1

−2
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, x2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−4
1
2
1
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, x3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
2
1
1

−3
−2

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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These vectors are linearly independent. We form the vectors

y1 =

⎛
⎝ 3
−4
0

⎞
⎠, y2 =

⎛
⎝ 0

1
2

⎞
⎠, y3 =

⎛
⎝ 1

2
1

⎞
⎠,

y4 =

⎛
⎝−2

1
1

⎞
⎠, y5 =

⎛
⎝ 1

0
−3

⎞
⎠, y6 =

⎛
⎝ 1
−1
−2

⎞
⎠.

Next, we investigate the sets of indices:

I1 = {1, 2, 3} :

y4 = − 7

17
y1 +

15

17
y2 − 13

176
y3,

y5 = −2y2 + y3,

y6 =
3

17
y1 − 21

17
y2 +

8

17
y3.

I2 = {1, 2, 4} :

y3 = − 7

13
y1 +

15

13
y2 − 17

13
y4,

y5 = − 7

13
y1 − 11

13
y2 − 17

13
y4,

y6 = − 1

13
y1 − 9

13
y2 − 8

13
y4.

Hence I2 = {1, 2, 4} is a negative set of fundamental indices. Furthermore, from
the equations of y5 and y6 in terms of the set I2, it is clear that the vectors

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
13

11
13

0
17
13

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
13

9
13

0
8
13

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

lie in the orthogonal complement of V.

108



A NOTE ON DIRECTLY ORDERED SUBSPACES OF Rn

Example 2.3. In this example we present a case in which we are able to compress
the matrix formed by the xi. Here, let

x1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
2

−1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
0

−1
3
0
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
0
1

−1
0

−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These vectors form the matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 3
0 0 0
2 −1 1

−1 3 −1
0 0 0
1 2 −1
0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

which can be compressed by removing rows 2 and 5 to form the matrix⎛
⎜⎜⎜⎜⎝

1 −2 3
2 −1 1

−1 3 −1
1 2 −1
0 1 2

⎞
⎟⎟⎟⎟⎠ .

Now, the relevant vectors formed from the transpose of this matrix are

y1 =

⎛
⎝ 1
−2
3

⎞
⎠, y2 =

⎛
⎝ 2
−1
1

⎞
⎠, y3 =

⎛
⎝−1

3
−1

⎞
⎠,

y4 =

⎛
⎝ 1

2
−1

⎞
⎠, y5 =

⎛
⎝ 0

1
2

⎞
⎠

There are ten possibilities of negative fundamental indices:

I1 = {1, 2, 3} :

y4 = − 5

11
y1 +

12

11
y2 +

8

11
y3,

y5 = y1 + y3.
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I2 = {1, 2, 4} :

y3 =
5

8
y1 − 3

2
y2 +

11

8
y4,

y5 =
13

8
y1 − 3

2
y2 +

11

8
y4.

I3 = {1, 2, 5} :
y3 = −y1 + 6y5,

y4 = −13

11
y1 +

12

11
y2 +

8

11
y5.

I4 = {1, 3, 4} :

y2 =
5

12
y1 − 2

3
y3 +

11

12
y4,

y5 = y1 + y3.

I5 = {1, 3, 5} :

This set is not linearly independent.

I6 = {1, 4, 5} :

y2 =
13

12
y1 +

11

12
y4 − 2

3
y5,

y3 = −y1 + y5.

I7 = {2, 3, 4} :
y1 =

12

5
y2 +

8

5
y3 − 11

5
y4,

y5 =
12

5
y2 +

13

5
y3 − 11

5
y4.

I8 = {2, 3, 5} :
y1 = −y3 + y5,

y4 =
12

11
y2 +

13

11
y3 − 5

11
y5.

I9 = {2, 4, 5} :

y1 =
12

13
y2 − 11

13
y4 +

8

13
y5,

y3 = −12

13
y2 +

11

13
y4 +

5

13
y5.
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I10 = {3, 4, 5} :
y1 = −y3 + y5,

y2 = −13

12
y3 +

11

12
y4 +

5

12
y5.

Thus, no negative set of fundamental indices exists, so V + is generating. Notice
that

x1 + x2 + x3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
0
2
3
0
2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ V.

This vector is an interior point of the cone V +.

3. Directly ordered subspaces with the Riesz
decomposition property

It is easy to see that every directly ordered subspace of R3 satisfies the Riesz
Decomposition Property. However, not all directly ordered subspaces of Rn have
the Riesz Decomposition Property if n > 3.

Example 3.1. Let n = 4 and V be given by the equation

x+ y − z − t = 0.

The subspace V is directly ordered because⎛
⎜⎜⎝

a
a
a
a

⎞
⎟⎟⎠∈ V

and for the appropriate choice of a it bounds from above any two given vectors
from V. We have, however,⎛

⎜⎜⎝
1
1
0
2

⎞
⎟⎟⎠ ≤

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

2
0
0
2

⎞
⎟⎟⎠
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and all these vectors are in V +. If we had⎛
⎜⎜⎝

1
1
0
2

⎞
⎟⎟⎠ = u+ v with

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ≤ u ≤

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ ≤ v ≤

⎛
⎜⎜⎝

2
0
0
2

⎞
⎟⎟⎠

then clearly u3 = v3 = 0. But then

u =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ , so v =

⎛
⎜⎜⎝

1
1
0
2

⎞
⎟⎟⎠ ,

which is a contradiction. Thus V does not satisfy the Riesz Decomposition Prop-
erty.

Let K be a positive cone of an ordered space V. A vector e ∈ K is called an
extremal vector if 0 ≤ x ≤ e implies x = λe for some λ ≥ 0 ( [2, Chapter 1.6]).
Let us denote by E the set of all extremal vectors of K. We will say that the
cone K is generated by its extremal vectors if

K =

{
n∑

i=1

αi ei : n ∈ N, ei ∈ E , αi ≥ 0, i = 1, . . . , n

}
.

We can state and prove the main theorem.

������� 3.1� If V has a generating cone K which is generated by its extreme
vectors and it satisfies the Riesz Decomposition Property, then V is a vector-lat-
tice.

P r o o f. We will show that E is a Hamel basis for V. We can assume that no
two distinct vectors from E are linearly dependent. Since K is generating, it is
enough to show that the set E is linearly independent. Suppose on the contrary
that for some n ∈ N there exist e, e1, . . . , en ∈ E such that e =

∑n
i=1 αiei and

let n be a minimal number such that e is a linear combination of the vectors
e1, . . . , en. Since e is extremal, there must be a negative αi for some i = 1, . . . , n.
Otherwise ai > 0 for i = 1, . . . , n and we would have α1e1 ≤ ∑n

i=1 αiei = e, but
then for some λ, α1e1 = λe, which is not true. We can assume then that αi > 0
for i = 1, . . . , p and αi < 0 for i = p+ 1, . . . , n for some 1 < p < n. So

e =

p∑
i=1

αiei −
n∑

i=p+1

(−αi)ei <

p∑
i=1

αiei.

By the Riesz Decomposition Property

e =

p∑
i=1

fi, where 0 ≤ fi ≤ αiei.
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But since each ei is an extreme vector, fi = βiei, βi ≥ 0, i = 1, . . . , p. So

e =

p∑
i=1

βiei.

This contradicts the minimality of n. Therefore the set E is a Hamel basis of V
and the positive (or Yudin) basis of K. It is well-known (and straightforward)
(see, e.g., [2, Theorem 3.17]) that the resulting ordering makes V a vector-lat-
tice. �

We immediately obtain the characterization of the subspaces of Rn.

����		
�� 3.2� A directly ordered subspace of Rn is a lattice-subspace if and
only if it satisfies the Riesz Decomposition Property.

P r o o f. If V is the subspace of Rn, then its positive cone V ∩ (Rn)+ is a poly-
hedral cone (for an elementary proof see, e.g., [3, Corollary to Theorem 2.12])
and as such it is generated by its extremal vectors. So by the Theorem 3.1, V is
a lattice-subspace. �
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