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A NOTE ON MEASURABILITY

OF MULTIFUNCTIONS APPROXIMATELY

CONTINUOUS IN SECOND VARIABLE

Grażyna Kwiecińska

ABSTRACT. Let I ⊂ R be an interval,
(
X,M(X)

)
a measure space, and (Z, ‖·‖)

a reflexive Banach space. We prove that a multifunction F from X × I to Z
is measurable whenever it is M(X)-measurable in the first and approximately

continuous and almost everywhere continuous in the second variable.

1. Introduction

It is well known that Lebesgue measurability of a function f : R2 → R im-
plies Lebesgue measurability of the functions f(x, ·) and f(·, y) for almost every
x ∈ R and almost every y ∈ R. The converse is, however, not true even if
all these functions are Lebesgue measurable. There are various sufficient con-
ditions on the functions f(x, ·) and f(·, y) ensuring that f is measurable (see,
e.g., [2], [3], [8], [11]). It is known that if

(
X,M(X)

)
is a measurable space,

(Y, ρ) a separable metric space, and (Z, d) a metric space, then a function
f : X × Y → Z, M(X)-measurable in the first and continuous in the second
variable is measurable with respect to the product of the σ-field M(X) and the
Borel σ-field of Y. This result was also proved in the case of a multifunction
(see [12, Theorem 2]). Unfortunately, without additional hypotheses, this re-
sult cannot be extended to multifunctions with a weaker assumption in place of
the continuity. Among others, the continuum hypothesis implies that this result
fails if the continuity is replaced with the approximate continuity, as can be seen
from the proof of [2, Theorem 2]. Our purpose is to show that if Y = I ⊂ R is
an interval and (Z, d) is a reflexive Banach space (with a metric d generated by

c© 2012 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 54C60, 54C08 28C20, 26B05.

Keywords: multifunctions, approximate continuity, integrability, measurability.

91
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the norm in Z), then the reinforcement of the approximate continuity of a mul-
tifunction F from X × Y to Z in the second variable with continuity almost
everywhere ensures its measurability.

2. Preliminaries

Let N and R denote the sets of positive integers and real numbers, respectively.
Let I ⊂ R be an interval and let L(R) be the σ-field of Lebesgue measurable
subsets of R (in case of need, the Lebesgue measure m in L(R) is understood).

Let S and Z be two nonempty sets. We assume that for every point s ∈ S
a non-empty subset Φ(s) of Z is given. In this case, Φ is a multifunction from S
to Z and we will write Φ : S �→ Z.

If Φ : S �→ Z and G ⊂ Z are given, then we define

Φ−(G) =
{
s ∈ S : Φ(s) ∩G �= ∅

}
.

If (Z, d) is a metric space, z0 ∈ Z and M ⊂ Z, then B(z0, r) will denote an open
ball centered in z0 with radius r > 0, B(M, r) =

⋃{
B(z, r) : z ∈ M

}
, and B(Z)

the σ-field of Borel subsets of Z.

Let P(Z) be the power set of (Z, d) and let P0(Z) = P(Z) \ ∅. We put

Cb(Z) =
{
A ∈ P0(Z) : A is closed and bounded

}
.

In the sequel, convergence in the space Cb(Z) will denote the convergence in the
Hausdorff metric denoted by h.

Now, we collect some material which can be useful for the next section: ter-
minology, known facts from the literature, and some properties which are new
for multifunctions of one variable.

Let
(
S,M(S)

)
be a measurable space and (Z, d) a metric one.

We will say a multifunction Φ : S �→ Z is M(S)-measurable if for each open
set G ⊂ Z, Φ−(G) ∈ M(S).

Let Φn : S �→ Z for n ∈ N and Φ : S �→ Z be multifunctions with values in
Cb(Z). To say that (Φn)n∈N converges to Φ means that the sequence

(
Φn(s)

)
n∈N

converges to Φ(s) for each s ∈ S. One can prove that (see [7, (1.21)]):

(1) If (Z, d) is separable and the sequence (Φn)n∈N converges to Φ, then Φ is
M(S)-measurable whenever Φn is M(S)-measurable for each n ∈ N.

Let
(
S, T (S)

)
be a topological space and (Z, d) a metric one. Let Φ : S �→ Z be

a multifunction. Unless otherwise stated, we assume that Φ(s) ∈ Cb(Z).

The statement that Φ is h-continuous will mean that Φ treated as a function
from S to the space

(
Cb(Z), h

)
is continuous.

We will say a multifunction Φ : I �→ Z is approximately h-continuous at s ∈ I
if there exists a set A ∈ L(R), including s, such that s is a density point of A and
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the restriction F |A is h-continuous at s; Φ is approximately h-continuous if it is
approximately h-continuous at any point s ∈ I.

It is known that a multifunction Φ : I �→ Z almost everywhere approximately
h-continuous is L(R)-measurable ([5, Theorem 2]).

From now on, let (Z, || · ||) be a reflexive Banach space with a metric d gen-
erated by the norm; θ will denote the origin of Z, ||K|| = h

(
K, {θ}

)
when

K ∈ Cb(Z), and co(K) the convex hull of K.

If A ⊂ Z, B ⊂ Z, and λ ∈ R then, as usual,

A+ B = {a+ b : a ∈ A ∧ b ∈ B} and λA = {λa : a ∈ A}.

It is known that ([1, Lemma 2.2 (ii)])

(2) If Ai, Bi ∈ Cb(Z) for i = 1, 2, then

h(A1 +A2, B1 +B2) ≤ h(A1, B1) + h(A2, B2).

We put

Cbc(Z) =
{
A ∈ Cb(Z) : A is convex

}
.

By reflexivity of (Z, || · ||), the space Cbc(Z) with the addition defined above is
a commutative semigroup which satisfies the cancelation low (see [10]). Note
that the reflexivity of (Z, || · ||) is used to show that

(3) A+B ∈ Cbc(Z) whenever A,B ∈ Cbc(Z).

The completeness of (Z, d) implies that
(
Cb(Z), h

)
is complete. Therefore, Price’s

inequality (see [9, (2.9), p. 4])

h
(
co(A), co(B)

)
≤ h(A,B)

implies the following.

(4) A Cauchy sequence in Cbc(Z) must converge to an element of Cbc(Z).

Now, let T ∈ L(R) and let Φ : T �→ Z be a measurable multifunction with
values in Cbc(Z). Suppose that Φ is bounded, i.e., all its values are contained in
a fixed totally bounded set K ⊂ Z.

We define an integral of Φ as follows (in the case Z = R
k, cf. [4, p. 218]).

If Φ takes only a finite number of values B1, B2, . . . , Bn, then we put∫
E

Φ(t) dt =

n∑
i=1

m(Di) ·Bi,

where E ⊂ T is a bounded measurable set and Di =
{
t ∈ E : Φ(t) = Bi

}
for

i = 1, 2, . . . , n. By (3),
∫
E
Φ(t) dt ∈ Cbc(Z).
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It is easy to see that:

(5) If A,B ∈ L(R) are non-overlapping and E = A ∪B, then∫
E

Φ(t) dt =

∫
A

Φ(t) dt+

∫
B

Φ(t) dt.

Let Ψ : T �→ Z be a measurable and bounded multifunction with values in
Cbc(Z). Using (2), one obtains

(6) h

⎛
⎝∫

E

Φ(t) dt,

∫
E

Ψ(t) dt

⎞
⎠ ≤

∫
E

h
(
Φ(t),Ψ(t)

)
dt

whenever Φ and Ψ take a finite number of values.

For a general case of a measurable and bounded multifunction, the definition
of its integral is based on the following lemma ([6, Lemma 1]).

����� 1� Let a totally bounded convex set K ⊂ Z and a number δ > 0 be
given. Then there exists a finite family Fδ ⊂ Cbc(Z) such that if D ∈ Cbc(K),
then there exists a smallest set B ∈ Fδ such that D ⊂ B ⊂ B(D, δ).

Now, take K in the lemma to be the totally bounded convex set containing
all the values of Φ. Suppose t ∈ T. Let Fδ(t) be the family corresponding to
δ > 0, and let Φδ(t) be the smallest member of Fδ(t) containing Φ(t).

Then h
(
Φ(t),Φδ(t)

)
< δ and Φδ : T �→ Z takes only a finite number of values.

Moreover, if (δn)n∈N is a sequence of positive real numbers and limn→∞ δn = 0,
then, by (6), ⎛

⎝∫
E

Φδn(t) dt

⎞
⎠
n∈N

is a Cauchy sequence in Cbc(Z). Thus, by (4), the limit

h− lim
δ→0

∫
E

Φδ(t) dt

exists in Cbc(Z) and we take this limit to be the integral of Φ on E, i.e.,∫
E

Φ(t) dt =: h− lim
δ→0

∫
E

Φδ(t) dt ∈ Cbc(Z).

Note that by a passage to a limit in (5) and (6), we can see the following.

(7) The properties (5) and (6) are true for all measurable and bounded multi-
functions from T to Z with values in Cbc(Z).

The following result is known [6, Theorem 6].
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����	�� 1� If a bounded multifunction Φ : I �→ Z with closed and convex
values is approximately h-continuous, then it is a derivative, i.e.,

Φ(t) = h− lim
Δt→0

1

Δt

t+Δt∫
t

Φ(s) ds for t ∈ I.

Now, we present a different approach of defining integrability for multifunc-
tions. It is based on the definition of Riemann integral. Moving from H u k u h a -
r a’ s idea of integrability (in the case Z = R

k, cf. [4]), we define anR-integrability
of multifunctions in a more general case.

Let I = [a, b] and let Φ : I �→ Z be a multifunction with values in Cbc(Z).
Let Δ = {a0, a1, . . . an} be a partition of I and let λ(Δ) = max{ai+1 − ai}
be the diameter of the partition. Let P denote the family of all pairs (Δ, τ),
where τ = (t0, t1, . . . tn−1) is a sequence of points such that ti ∈ [ai, ai+1] for
i = 0, . . . , n− 1. We put

CΦ(Δ, τ) =

n−1∑
i=0

(ai+1 − ai)Φ(ti)

for (Δ, τ) ∈ P . Note that (3) implies CΦ(Δ, τ) ∈ Cbc(Z). Moreover, by (2),

(8) h
(
CΦ(Δ, τ), CΨ(Δ, τ)

)
≤

n−1∑
i=0

(ai+1 − ai) h
(
Φ(ti),Ψ(ti)

)
whenever Ψ : I �→ Z is a multifunction with values in Cbc(Z).

We say that a multifunction Φ : I �→ Z is R-integrable (on I) if there exists
B ∈ Cbc(Z) such that

∀ε > 0 ∃η > 0 ∀(Δ, τ) ∈ P
[
λ(Δ) < η ⇒ h

(
CΦ(Δ, τ), B

)
< ε

]
,

and we define (R)
∫
I
Φ(t) dt to be the set B.

Note that by (8), we have

h

⎛
⎝∫

I

Φ(t) dt,

∫
I

Ψ(t) dt

⎞
⎠ ≤

∫
I

h
(
Φ(t),Ψ(t)

)
dt ≤ (b− a) ε,

provided that h
(
Φ(ti),Ψ(ti)

)
≤ ε for each t ∈ I. Therefore, similarly to the case

of real functions,

(9) if Φ : I �→ Z is h-continuous, then Φ is R-integrable.


	����
�
�� 1� If a multifunction Φ : I �→ Z is bounded and almost everywhere
h-continuous, then Φ is R-integrable.
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P r o o f. Let K ∈ Cbc(Z) be such that Φ(t) ⊂ K for t ∈ I. Let DΦ denote a set
of discontinuity points of Φ. By assumption, m(DΦ) = 0. Fix ε > 0. Let (In)n∈N

be a sequence of open intervals such that DΦ ⊂
⋃

n∈N
In and Σn∈Nm(In) < ε.

Without loss of generality, we can assume that In ∩ Im = ∅ for n �= m. Let
In = (αn, βn) for n ∈ N and Aε = [a, b] \

⋃
n∈N

In. Then, m(Aε) > b− a− ε. We
define a multifunction Φε : I �→ Z by

Φε(t) =

⎧⎨
⎩
Φ(t) if t ∈ Aε,

βn−t
βn−αn

Φ(αn) +
t−αn

βn−αn
Φ(βn) if t ∈ (αn, βn) ∩ I, n ∈ N.

Note that Φε(t) ∈ Cbc(Z). Moreover, Φε is h-continuous and, by (9), also R-in-
tegrable. Let B ∈ Cbc(Z) be such that

∫
I
Φε(t) dt = B. Let (Δ, τ) ∈ P and η > 0

be such that λ(Δ) < η and h
(
CΦε

(Δ, τ), B
)
< ε.

Then,

h
(
CΦ(Δ, τ), B

)
≤ h

(
CΦ(Δ, τ), CΦε

(Δ, τ)
)

+ h
(
CΦε

(Δ, τ), B
)

= h
(
Σn−1

i=0 (ai+1 − ai) Φ(ti),Σ
n−1
i=0 (ai+1 − ai)Φε(ti)

)
+ h

(
CΦε

(Δ, τ), B
)
,

and then, by (2),

h
(
CΦ(Δ, τ), B

)
≤ Σn−1

i=0 (ai+1 − ai) h
(
Φ(ti),Φε(ti)

)
+ h

(
CΦε

(Δ, τ), B
)
.

For that reason
h
(
CΦ(Δ, τ), B

)
≤ 2 ε ||K||+ ε,

since Φ(ti) = Φε(ti) for ti ∈ [ai−1, ai] ∩ Aε and h
(
Φ(ti),Φε(ti)

)
≤ 2 ||K|| for

ti ∈ [ai−1, ai] \Aε. This finishes the proof of Proposition 1. �

Following H u k u h a r a [4], one can prove that R-integrability of a measur-
able and bounded multifunction Φ : I �→ Z implies its integrability. Moreover,
(R)

∫
I
Φ(t) dt =

∫
I
Φ(t) dt.

3. Main results

Now, we pass on to multifunctions of two variables. Let
(
X,M(X), μ

)
be

a measure space with a σ-finite complete measure μ defined on M(X) and let
M(X) ⊗ B(R) be the σ-field generated by the family of sets A × B, where
A ∈ M(X) and B ∈ B(R).

Let (Z|| · ||) be still a reflexive Banach space with the metric d generated by
the norm, and we will still consider the multifunctions F : X × I �→ Z with
values in Cbc(Z).
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Let (x, y) ∈ X×I be a fixed point. Then the multifunction Fx : I �→ Z defined
by Fx(y) = F (x, y) will be called the x-section of F , and the multifunction
F y : X �→ Z defined by F y(y) = F (x, y), the y-section of F.

Similarly, if E ⊂ X × I and (x, y) ∈ X × I, then Ex =
{
y ∈ I : (x, y) ∈ E

}
will be called the x-section of E, and Ey =

{
x ∈ X : (x, y) ∈ E

}
, the y-section

of E.

Our purpose is to prove the measurability of a multifunction F : X × I �→ Z
whose all x-sections are approximately h-continuous and almost everywhere
h-continuous and all y-sections are M(X)-measurable. In order to attain, we
will need the notion of (J) property.

The (J) property for real functions of two real variables was introduced by
L i p i ń s k i [8] and considered intensively by G r a n d e [3]. It is also generalized
into the case of multifunction [7].

���
�
�
�� 1� A bounded multifunction F : X×I �→ Z has the (J) property if
for each y ∈ I, F y is M(X)-measurable, for each x ∈ X, Fx is L(R)-measurable,
and for each interval P ⊂ I, a multifunction ΦP : X �→ Z given by

ΦP (x) =

∫
P

F (x, y) dy

is M(X)-measurable.

A multifunction with the (J) property need not be measurable.

Example 1. Let E ⊂ R
2 be Sierpiński’s set, i.e., E �∈ L(R2) and its x-sections

and y-sections have at most two elements for any (x, y) ∈ R
2. Let F : R2 �→ R

be given by

F (x, y) =

{
[0, 1] if (x, y) �∈ E,

{0} if (x, y) ∈ E.

Then F is not L(R2)-measurable, but F has the (J) property.

It is known that ([7, Prop. 2.24]):


	����
�
�� 2� If the space (Z, d) is separable and F : X×I �→ Z is a bounded
multifunction such that Fx is R-integrable for each x ∈ X, and F y is M(X)-
-measurable for each y ∈ I, then F has the (J) property.

We can now prove an important (for the final result) theorem on measurability
of multifunctions with the (J) property.

����	�� 2� Let us suppose that (Z, d) is separable. If a bounded multifunction
F : X× I �→ Z has the (J) property and for each x ∈ X, Fx is a derivative, i.e.,

Fx(y) = h− lim
Δy→0

1

Δy

y+Δy∫
y

Fx(t) dt for y ∈ I,
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then F is measurable with respect to the μ×m-completion of M(X)⊗ B(R).

P r o o f. Let n ∈ N be fixed and let Δ = {y0,n, y1,n, . . . , yn,n} be a partition of I
into n equal intervals. Let us put

Fn(x, y) =

{
1

yi,n−yi−1,n

∫ yi,n

yi−1,n
F (x, y) dy if x ∈ X and y ∈ (yi−1,n, yi,n),

{θ}, if x ∈ X and y = yi,n, i = 0, 1, . . . n.

Next, let Φi,n : X �→ Z, for i = 1, 2, . . . n, be a multifunction given by

Φi,n(x) =

yi,n∫
yi−1,n

F (x, y) dy.

By the (J) property of F , we can see that

(10) the multifunction Φi,n is M(X)-measurable for each i = 1, 2, . . . n.

Now, define a multifunction Φn : X ×
⋃n

i=1(yi−1,n, yi,n) �→ Z by

Φn(x, y) = Φi,n(x) for y ∈ (yi−1,n, yi,n).

Then, (10) shows that

Φ−
n (V ) =

n⋃
i=1

Φ−
i,n(V )× (yi−1,n, yi,n) ∈ M(X)⊗ B(R)

whenever V is an open subset of Z. Consequently, Fn is M(X)⊗ B(R)-measu-
rable and, by (1), we only need to show that

(11) h− limn→∞ Fn(x, y) = F (x, y) for every x ∈ X and for almost every y ∈ I.

Let us fix (x0, y0) ∈ X × I such that y0 �= yi,n for n ∈ N and i = 1, 2, . . . , n, and
choose a sequence (yin,n) such that yin−1 < y0 < yin . Since Fx0

is the derivative
at y0, it follows that

F (x0, y0) = h − lim
Δy→0

1

Δy

y0+Δy∫
y0

F (x0, y) dy.

Let us put

An =
1

y0 − yin−1,n

y0∫
yin−1,n

F (x0, y) dy and Bn =
1

yin,n − y0

yin,n∫
y0

F (x0, y) dy.

Then

(12) lim
n→∞h(An, F0) = 0 and lim

n→∞ h(Bn, F0) = 0,

where F0 = F (x0, y0).
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Let us put zn = h
(
Fn(x0, y0), F0

)
. Note that

zn = h

⎛
⎜⎝ 1

yin,n − yin−1,n

yin,n∫
yin−1,n

F (x0, y) dy,
1

yin,n − yin−1,n

yin,n∫
yin−1,n

F0 dy

⎞
⎟⎠

=
1

yin,n − yin−1,n
h

⎛
⎜⎝

yin,n∫
yin−1,n

F (x0, y) dy,

yin,n∫
yin−1,n

F0 dy

⎞
⎟⎠ .

By (7), we have
yin,n∫

yin−1,n

F (x0, y) dy =

y0∫
yin−1,n

F (x0, y) dy +

yin,n∫
y0

F (x0, y) dy

and
yin,n∫

yin−1,n

F0 dy =

y0∫
yin−1,n

F0 dy +

yin,n∫
y0

F0 dy.

Next, (2) shows that

h

⎛
⎜⎝

y0∫
yin−1,n

F (x0, y) dy +

yin,n∫
y0

F (x0, y) dy,

y0∫
yin−1,n

F0 dy +

yin,n∫
y0

F0 dy

⎞
⎟⎠

≤ h

⎛
⎜⎝

y0∫
yin−1,n

F (x0, y) dy,

y0∫
yin−1,n

F0 dy

⎞
⎟⎠+ h

⎛
⎝ yin,n∫

y0

F (x0, y) dy,

yin,n∫
y0

F0 dy

⎞
⎠ .

Moreover,

1

yin,n − yin−1,n
<

1

y0 − yin−1,n
and

1

yin,n − yin−1,n
<

1

yin,n − y0
.

Therefore,

zn <
1

y0 − yin−1,n
h

⎛
⎜⎝

y0∫
yin−1,n

F (x0, y) dy,

y0∫
yin−1,n

F0 dy

⎞
⎟⎠

+
1

yin,n − y0
h

⎛
⎝ yin,n∫

y0

F (x0, y) dy,

yin,n∫
y0

F0 dy

⎞
⎠ ,

and finally,

h
(
Fn(x0, y0), F0

)
< h(An, F0) + h(Bn, F0).
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Thus, (12) shows that (11) is true, which finishes the proof of Theorem 2. �

As a straightforward consequence of Propositions 1 and 2, Theorems 1 and 2,
we get the following corollary.

��	����	� 1� If the space (Z, d) is separable and a bounded multifunction
F : X × I �→ Z has Fx approximately h-continuous and almost everywhere
h-continuous for each x ∈ X and F y is M(X)-measurable for each y ∈ I,
then F is measurable with respect to the μ×m-completion of M(X)⊗ B(R).
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