
�

�
�����������	 
��	�����
��

DOI: 10.2478/v10127-012-0032-x
Tatra Mt. Math. Publ. 52 (2012), 115–131

MODES OF CONTINUITY INVOLVING ALMOST

AND IDEAL CONVERGENCE

Antonio Boccuto — Xenofon Dimitriou — Nicolas Papanastassiou

ABSTRACT. We investigate some properties of almost convergence and com-
pare it with other kinds of convergence. Moreover, we present different modes
of continuity considering almost, Single and ideal convergence, giving some rela-

tions between them and some examples. Finally, we pose some open problems.

1. Introduction

Almost convergence was deeply investigated by G. G. L o r e n t z in [12],
who studied several of its features. Some properties of continuous functions with
respect to almost convergence and some relations between continuous and linear
functions were investigated in [2], [3], [6]. In particular, in [6] it was shown
that every function f : R → R, sequentially continuous with respect to almost
convergence, is linear. Similar studies were continued in [7], in which abstract
methods of convergence, and in particular some types of matrix methods, were
considered (see also [15]). Some other investigations about statistical convergence
and (strong) summability in the context of matrix methods were done in [10].

In [11, Proposition 3.3] a characterization of the classical continuity was given
by means of ideal convergent sequences. Some relations between different types
of ideal continuity were examined in [5]. A particular case of ideal convergence,
which can be viewed as generated both by an ideal of N and by a summabil-
ity matrix method associated with a positive regular matrix is the statistical
convergence, introduced in [8], [17] (see also [7], [9], [11]).

c© 2012 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary: 26A03, 26A09, 26A15, 40A35,
54A20, 54C05, 54C08; Secondary: 40C05, 40G15.
Keywords: almost convergence, Single convergence, ideal convergence, Pringsheim-Single
convergence, (Lorentz) uniform equal convergence, modes of continuity.

Supported by Universities of Perugia and Athens.

115



ANTONIO BOCCUTO — XENOFON DIMITRIOU — NICOLAS PAPANASTASSIOU

In Section 2 we give a characterization of almost convergence, and we compare
it with the Single convergence. Moreover, we investigate some differences between
almost and ideal convergence.

In Section 3 we present some different kinds of sequential continuity in terms
of almost and ideal convergence, and give some comparison results. Finally, we
pose some open problems.

Our thanks to the referee for his/her helpful suggestions.

2. Almost and ideal convergence

In this section we give a characterization of almost convergence and we show
that it is in general different from ideal and Single convergence.

����������� 2.1	

(a) An ideal of N is a subset I ⊂ P(N) with N �∈ I, A ∪ B ∈ I whenever A,
B ∈ I, and with the property that, if C ∈ I and D ⊂ C, then D ∈ I.

(b) A filter of N is a subset F ⊂ P(N) with ∅ �∈ F, A ∩ B ∈ F whenever A,
B ∈ F, and with F ∈ F whenever E ∈ F and F ⊃ E.

(c) An ideal I is called admissible if and only if it contains the ideal Ifin of all
finite subsets of N.

(d) A filter F is said to be free if and only if it contains the filter Fcofin of the
cofinite subsets of N.

(e) Given an ideal I of N, we call the set

F = F(I) := {N \A : A ∈ I}
the dual filter associated with I. In this case we say that I is the dual ideal
associated with F.

Observe that an ideal is admissible if and only if its dual filter is free.
From now on, we always deal with admissible ideals or free filters.

(f) We say that I is a P -ideal if and only if for any sequence (Aj)j in I there
are sets Bj ⊂ N, j ∈ N, such that the symmetric difference AjΔBj is finite
for all j ∈ N and

⋃∞
j=1Bj∈ I (see also [4]).

Ifin and Id (the ideal of all subsets of N with zero asymptotic density (see
also [11])) are some examples of P -ideals.

The following result will be useful in the sequel.


���������� 2.2	 If F is a free filter of N, P ∈ F and A ⊂ N, A �∈ F and
N \A �∈ F, then both P ∩A and P \A are infinite.

116



MODES OF CONTINUITY INVOLVING ALMOST AND IDEAL CONVERGENCE

P r o o f. Suppose by contradiction that P ∩ A is finite. Note that N \ (P ∩ A)
belongs to F, since it is cofinite and F is free. Then

P \A = P ∩ (N \ (P ∩ A)
) ∈ F .

Hence N \ A ∈ F, which contradicts the hypothesis. Thus, P ∩ A is infinite.
Analogously it is possible to prove that P \A is infinite. This finishes the proof.

�

We now recall the ideal, Single and almost convergence, and the Pringsheim
convergence for double sequences (see also [12], [13]). From now on, let (X, ‖ · ‖)
be a normed linear space, X �= {0}, and x0∈ X be a fixed point.

����������� 2.3	

(a) A sequence (xn)n in X is said to be I-convergent to x0, and we write
(I) limn xn= x0, if and only if {n ∈ N : ‖xn−x0‖ > ε} ∈ I for every ε > 0.

(b) Let ym,n, m ≥ 0, n ≥ 1 be a double sequence in X. We say that x0 is the
Pringsheim limit of (ym,n)m,n if and only if for all ε > 0 there is n ∈ N

with ‖ym,n − x0‖ ≤ ε for all m, n ≥ n.

(c) Given a sequence (xn)n in X, we say that (xn)n almost converges ((A)-
-converges) to x0, and we write (A) limnxn=x0, if and only if limnym,n=x0

uniformly with respect to m, where

ym,n :=
1

n

n∑
i=1

xm+i, m ≥ 0, n ≥ 1. (1)

(d) A sequence (xn)n in X Pringsheim-Singly converges ((PS)-converges)
to x0, and we write shortly (PS) limn xn = x0, if and only if x0 is the
Pringsheim limit of (ym,n)m,n, where (ym,n)m,n is as in (1).

(e) A sequence (xn)n in X Singly converges ((S)-converges) to x0, and we
write in brief (S) limn xn= x0, if and only if limn ym,n= x0 for all m ≥ 0,
where (ym,n)m,n is as in (1).

(f) Fix x0 ∈ X. Given ε > 0, we say that an integer m ≥ 0 is ε-stable with
respect to a double sequence (ym,n)m,n if and only if there is an integer
n = n(ε,m), with the property that ‖ym,n − x0‖ ≤ ε for all n ≥ n.

Note that a sequence (xn)n Singly converges to x0 if and only if, for each ε > 0,
every integer m ≥ 0 is ε-stable with respect to the double sequence (ym,n)m,n

defined in (1).

We will prove the equivalence between (A)- and (PS)-convergence. First, we
compare almost and Singly convergences. Of course, (A)-convergence implies
(S)-convergence. We now give an example of sequence, Singly but not almost
convergent.
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Example 2.4. Let X = R, x0 = 1
2 , and let us construct a sequence (xk)k as

follows. Set x1 = 0, and for all n ∈ N put xk = 1 if n2+ 1 ≤ k ≤ n2+ n and
xk= 0 if n2+ n+ 1 ≤ k ≤ (n+ 1)2. Observe that

1

k

k∑
i=1

xi ≤ 1

2
for all k ∈ N. (2)

Moreover, for every n ∈ N and n2+ 1 ≤ k ≤ (n+ 1)2, we get

1

k

k∑
i=1

xi ≥ 1

(n+ 1)2

n∑
i=1

i =
n

2(n+ 1)
. (3)

Since limn
n

2(n+1) =
1
2 , from (2) and (3) it follows that

lim
k

y0,k = lim
k

1

k

k∑
i=1

xi =
1

2
. (4)

Set now

Sm,n := n ym,n =

n∑
i=1

xm+i, m ≥ 0, n ≥ 1. (5)

Let us proceed by induction on m. We have proved in (4) that limk y0,k = 1
2 .

Now suppose that limn ym−1,n = 1
2 , and we claim that limn ym,n=

1
2 . In this way

we will show that (xk)k Singly converges to 1
2 .

For all m ≥ 0, n ≥ 1 we get

Sm−1,n+1 − Sm,n =

n+1∑
i=1

xm−1+i −
n∑

i=1

xm+i =

n∑
i=0

xm+i −
n∑

i=1

xm+i = xm, (6)

and hence

lim
n

ym,n = lim
n

1

n
Sm,n = lim

n

1

n− 1
Sm,n−1

= lim
n

1

n− 1
Sm−1,n − lim

n

1

n− 1
xm

= lim
n

1

n
Sm−1,n · lim

n

n

n− 1
= lim

n
ym−1,n =

1

2

by the inductive hypothesis, which gives the claim.

We now prove that (xk)k does not almost converge to 1
2 . Indeed, let ε0 = 1

2 ,

and for every n ∈ N and n2 + 1 ≤ k ≤ n2 + n, set m = m(k) = n2. We have

∣∣∣xm+1 + · · ·+ xm+n

n
− 1

2

∣∣∣ = 1

2
= ε0.

Thus we get the assertion. �
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We now prove that (PS)-convergence implies almost convergence. This will
give the equivalence between (PS)- and almost convergence, since the converse
implication is obvious.


������ 2.5	 Let (xn)n be a sequence in X, (PS)-convergent to x0 ∈ X.
Then (xn)n almost converges to x0 (thus (PS)-convergence is not generated by
any matrix summability method—see [12], [15]).

P r o o f. Observe that, in order to obtain this result, it will be sufficient to show
that (PS)-convergence implies Single convergence, that is

lim
n

ym,n = x0 for every m ≥ 0, (7)

where (ym,n)m,n is as in (1). Almost convergence will follow from (PS)-conver-
gence and (7).

Indeed, for each ε > 0, let n be such that

‖ym,n − x0‖ ≤ ε for all m,n ≥ n .

From (7) it follows that in correspondence with m = 0, 1, . . . , n− 1 there is

nm∈ N with
‖ym,n − x0‖ ≤ ε for all n ≥ nm.

Let n∗ := max{n, n0, n1, . . . nn−1}. For all m ≥ 0 and n ≥ n∗, we get

‖ym,n − x0‖ ≤ ε, that is almost convergence.

Now, to prove (7), it will be sufficient to show that every m ≥ 0 is 2ε-stable
for each ε > 0.

Fix arbitrarily ε > 0, and set m = n = n(ε), where n is as in the definition of
(PS)-convergence. So, every integer q ≥ m is ε-stable, and hence a fortiori even
2ε-stable.

We now claim that m− 1 is σ1-stable for each σ1 > ε. To this aim, let Sm,n,
m ≥ 0, n ≥ 1, be as in (5). By (6) we get

ym−1,n+1 =
Sm−1,n+1

n+ 1
=

xm

n+ 1
+

Sm,n

n+ 1

=
xm

n+ 1
− Sm,n

n(n+ 1)
+

Sm,n

n
=

xm

n+ 1
− ym,n

n+ 1
+ ym,n.

Therefore, taking into account the ε-stability of m, there is an integer ñ = ñ(m)
with the property that for all n ≥ ñ we have

‖ym−1,n+1 − ym,n‖ ≤ ‖xm‖
n+ 1

+
‖ym,n‖
n+ 1

≤ ‖xm‖+ ‖x0‖+ ε

n+ 1
.

Observe that for every σ1 > ε there is an integer n̂ large enough, with

‖xm‖+ ‖x0‖+ ε

n+ 1
≤ σ1 − ε whenever n ≥ n̂.
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For each n ≥ max{ñ, n̂}, we get

‖ym−1,n+1− x0‖ ≤ ‖ym−1,n+1− ym,n‖+ ‖ym,n− x0‖ ≤ σ1− ε+ ε = σ1.

Hence, m− 1 is σ1-stable.

Proceeding by a similar argument, it is possible to check thatm−2 is σ2-stable
for each σ2 > σ1. By induction, we obtain thatm−j is σj-stable for all σj > σj−1,

j = 3, . . . ,m. If we take σj = ε
(
1 + j

m

)
, j = 1, . . . ,m, then σm = 2ε, and so we

get that every m ≥ 0 is 2ε-stable.

Thus we obtain (7), and hence almost convergence of the sequence (xn)n. �

We now see that, in general, (A)- and (S)-convergences do not coincide with
I-convergence. We begin by giving an example of sequence, (A)-convergent to 0
(and a fortiori (S)-convergent to 0) but not I-convergent to 0 for any admissible
ideal I of N. Let X = R, and consider the sequence n 
→ (−1)n. Observe that, if
m is even, then we get

n∑
k=1

(−1)k+m =

n∑
k=1

(−1)k =

{−1 if n is odd,
0 if n is even.

If m is odd, then we have
n∑

k=1

(−1)k+m = −
n∑

k=1

(−1)k =

{
1 if n is odd,
0 if n is even.

So for all m ≥ 0, n ≥ 1 we get∣∣∣∣∣
n∑

k=1

(−1)k+m

∣∣∣∣∣ ≤ 1,

and hence the sums
∑n

k=1(−1)k+m are bounded uniformly with respect to m.
From this it follows that the sequence n 
→ (−1)n is almost convergent to 0.

On the other hand, we claim that this sequence is not I-convergent to 0 for
any ideal I of N. Indeed, let ε0 = 1

2 ; we get that
{
n ∈ N : |(−1)n| > ε0

}
= N �∈ I,

and thus the claim follows. �

In a similar way, given a normed linear space (X, ‖ · ‖) and a fixed element
x0 ∈ X, x0 �= 0, it is possible to show that the sequence n 
→ (−1)n ·x0 is almost
convergent to 0, but is not I-convergent to 0.

In the following proposition we see that for each ideal I �= Ifin there are
sequences I-convergent to a point x0, but not (S)-convergent to x0 (and a fortiori
not (A)-convergent to x0).


���������� 2.6	 Let I �= Ifin be an ideal of N, (X, ‖ · ‖) be a normed lin-
ear space, X �= {0}, and x0 ∈ X. Then there is a sequence (xn)n in X with
(I) limn xn= x0 but not (S)-convergent to x0.
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P r o o f. Let A ∈ I be an infinite set, A = {k1 < · · · < kn < · · · }. Since I �= Ifin,
then A does exist. Let us define f : A → N by setting f(kn)= min{m ∈ N : m >
kn, m �∈ A}, n ∈ N, and let ε0 > ‖x0‖. In the first step, pick z1 ∈ X with
‖z1 − x0‖ > f(k1)(ε0 + ‖x0‖). Note that such an element z1 does exist, since
sup{‖x− y‖ : x, y ∈ X} = +∞. In the second step, choose z2 ∈ X with

‖z2 − x0‖ > ‖z1 − x0‖+ f(k1)(ε0 + ‖x0‖).
By proceeding analogously, in the nth step we can find an element zn ∈ X with

‖zn− x0‖ > ‖z1− x0‖+ ‖z2− x0‖+ · · ·+ ‖zn−1− x0‖+ f(kn)(ε0+ ‖x0‖). (8)

Now, let us define xm = zn if m = kn, n ∈ N, and xm = x0 if m �∈ A. By
construction, it is easy to see that (I) limm xm= x0.

We now prove that the sequence (xm)m does not (S)-converge to x0. Choose
m = 0, fix arbitrarily n ∈ N and let p = kn; we have f(kn) > kn= p. Moreover,
we get

xm+1 + · · ·+ xm+p = x1 + · · ·+ xkn

=xk1
+ · · ·+ xkn

+ xl1 + · · · + xln′

= z1 + · · ·+ zn + n′x0,

(where l1, . . . , ln′ are suitable elements of N \ A). Taking (8) into account,
we have∥∥∥x1 + · · ·+ xp

p
− x0

∥∥∥
=
∥∥∥xk1

+ · · ·+ xkn
+ (n′ − p)x0

p

∥∥∥
=

1

p
‖z1 + · · ·+ zn − nx0‖

=
1

p
‖(z1 − x0) + · · ·+ (zn − x0)‖

≥ 1

p

(
‖zn − x0‖ − ‖z1 − x0‖ − · · · − ‖zn−1 − x0‖

)
≥ 1

p

(
f(kn)(ε0 + ‖x0‖) + ‖z1 − x0‖+ ‖z2 − x0‖+ · · ·+ ‖zn−1 − x0‖

− ‖z1 − x0‖ − ‖z2 − x0‖ − · · · − ‖zn−1 − x0‖
)

>
1

p
· p · (ε0 + ‖x0‖) = ε0 + ‖x0‖ ≥ ε0.

Thus the sequence (xn)n is not (S)-convergent to 0. This completes the proof.
�
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3. Modes of continuity

In this section we deal with modes of continuity using almost and ideal con-
vergence. Let I be a fixed admissible ideal of N.

����������� 3.1	 Let (X, ‖ · ‖), (Y, ‖ · ‖) be two normed linear spaces, X,
Y �= {0}, f : X → Y be a function and x0 ∈ X. We say that f is:

• A1-continuous at x0, if and only if limn f(xn) = f(x0) (in the usual sense)
whenever (A) limn xn= x0;

• A1-continuous on X, if and only if f is A1-continuous at each x0 ∈ X;

• A2-continuous at x0, if and only if (A) limn f(xn) = f(x0)
whenever limn xn= x0;

• A2-continuous on X, if and only if f is A2-continuous at each x0 ∈ X;

• A3-continuous at x0, if and only if (A) limn f(xn) = f(x0)
whenever (A) limn xn= x0;

• A3-continuous on X, if and only if f is A3-continuous at each x0 ∈ X;

• I-continuous at x0, if and only if (I) limn f(xn) = f(x0)
whenever (I) limn xn= x0;

• I-continuous on X, if and only if f is I-continuous at each x0 ∈ X;

• AI-continuous at x0, if and only if (I) limn f(xn) = f(x0)
whenever (A) limn xn= x0;

• AI-continuous on X, if and only if f is AI-continuous at each x0 ∈ X;

• IA-continuous at x0, if and only if (A) limn f(xn) = f(x0)
whenever (I) limn xn= x0;

• IA-continuous on X, if and only if f is IA-continuous at each x0 ∈ X.

Remark 3.2	 Observe that I-continuity is equivalent to the usual continuity
(see [11, Proposition 3.3]), and that AIfin- and IfinA-continuity coincide with
A1- and A2-continuity, respectively.

Moreover, since usual convergence implies (A)-convergence (see also [12]),
then clearly both ordinary and A3-continuity at a point x0 ∈ X imply A2-con-
tinuity at x0, and A1-continuity at x0 implies usual continuity at x0.

We now prove the following.


���������� 3.3	 Let f : X → Y be a function, and I be a P -ideal of N.
If f is AI-continuous at a point x0 ∈ X, then f is constant.

P r o o f. First of all observe that, in order to prove the proposition, it is enough
to check that f(z + x0) = f(x0) for all z ∈ X.
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Let E be the set of all even natural numbers. We first consider the case in
which E �∈ I and N \ E �∈ I. Let z ∈ X be arbitrarily fixed, set zn = z + x0 if
and only if n ∈ E and zn = −z + x0 if and only if n ∈ N \ E. By construction,
it is not difficult to see that (A) limn zn = x0. Since f is AI-continuous at x0,
we get (I) limn f(zn) = f(x0). Since I is a P -ideal, there exists a set P ∈ F,
where F is the dual filter associated with I, P = {k1 < · · · < kn < · · · },
with the property that limn f(zkn

) = f(x0) in the usual sense (see also [11]).
By Proposition 2.2 we get that both P ∩ E and P \ E are infinite. So there
exists a strictly increasing sequence (ln)n in N with kln ∈ E for all n ∈ N.
Thus f(x0) = limn f(zkln

) = f(z + x0), and hence f is constant on X, by
arbitrariness of z.

If N\E ∈ I, then E ∈ F. Fix arbitrarily z ∈ X and let us proceed analogously
as above. In this case we obtain that P ∩ E ∈ F, and hence it is infinite. So we
get f(x0) = f(z + x0), and thus f is constant, since z was chosen arbitrarily.

If E ∈ I, then N \E ∈ F. By exchanging the roles of E and N \E, we get that
P\E ∈ F, and so it is infinite. Thus we obtain the existence of a strictly increasing
sequence (ln)n in N with kln ∈ N \ E for all n ∈ N. Hence, f(x0) = f(−z + x0),
and so again we get that f is constant on X, thanks to arbitrariness of z. This
finishes the proof. �

As a consequence of Proposition 3.3, we have

��������� 3.4	 If f : X → Y is A1-continuous at a point x0 ∈ X, then f is
constant. Thus a continuous and not constant function is not A1-continuous.


���������� 3.5	 Let X, Y be two normed linear spaces, I �= Ifin be an admis-
sible ideal of N and f : X → Y be an IA-continuous function on X (that is, f is
IA-continuous at each x ∈ X). Then f is bounded (that is, f(X) is a bounded
set in Y).

P r o o f. Let f(X) be not bounded. Since I �= Ifin there is an infinite set K =
{k1 < k2 < . . .} such that K ∈ I. Let x0 ∈ X. We proceed as in the proof of
Proposition 2.6. Then we can construct a sequence (yn)n ⊆ f(X) as follows

yn =

{
f(x0), n /∈ K,

zm, n ∈ K, n = km, m ∈ N

and such that yn
A

�→ f(x0). But yn
I→ f(x0) and since yn ∈ f(X) for all n ∈ N,

it follows that there exists a sequence (x′
n)n ⊆ X such that yn = f(x′

n) for every
n ∈ N. We set (xn)n⊆ X as follows

xn =

{
x0, n /∈ K,
x′
n, n ∈ K, n = km, m ∈ N.

So, if n ∈ N, then we have the following cases:
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(i) n ∈ K = {km : m ∈ N} ⇒ xn = x′
n ⇒ f(xn) =f(x′

n) = yn;

(ii) n /∈ K = {km : m ∈ N} ⇒ xn = x0 ⇒ f(xn) = f(x0) = yn.

Hence yn = f(xn) for any n ∈ N. Moreover, by construction we have that

xn
I→ x0 but f(xn) = yn

A

�→ f(x0).

This contradicts the hypothesis of IA-continuity of f at x0. Since x0 was chosen
arbitrarily, it follows that f(X) is a bounded set. Thus the proof is completed.

�

��������� 3.6	 Every continuous and not bounded function is not IA-conti-
nuous for I �= Ifin.

The following notion will be useful to prove some properties of IA-continuous
functions.

���������� 3.7	 A function f : X → Y is locally bounded at a point x0 ∈ X,
if and only if there are two positive real numbers δ, M with ‖f(x)‖ ≤ M when-
ever x ∈ X, ‖x− x0‖ < δ.


���������� 3.8	 Every function f : X → Y, A2-continuous at a point x0 ∈ X,
is locally bounded at x0.

P r o o f. If we deny the thesis, then for each δ and M > 0 there exists x ∈ X
with ‖x − x0‖ < δ and ‖f(x)‖ > M . So, in correspondence with δ = 1 and
M = 1+‖f(x0)‖ there is x1 ∈ X with ‖x1−x0‖ < 1 and ‖f(x1)‖ > 1+‖f(x0)‖.
To δ = 1/2 and M = 2 + ‖f(x1)‖ + 2‖f(x0)‖ there corresponds an element
x2 ∈ X with ‖x2 − x0‖ < 1/2 and ‖f(x2)‖ > 2 + ‖f(x1)‖+ 2‖f(x0)‖. So, in the
m+nth step an element xm+n∈ X can be found, with ‖xm+n− x0‖ < 1

m+n
and

‖f(xm+n)‖ > (m+ n) + ‖f(x1)‖+ · · ·+ ‖f(xm)‖
+ ‖f(xm+1)‖+ · · ·+ ‖f(xm+n−1)‖+ (m+ n)‖f(x0)‖

>n+ ‖f(xm+1)‖+ · · ·+ ‖f(xm+n−1)‖+ n‖f(x0)‖. (9)

Note that ‖xn − x0‖ < 1/n for all n ∈ N, and hence limn xn = x0 in the usual
sense. Taking (9) into account, for all m, n ∈ N we have:∥∥∥∥f(xm+1) + · · ·+ f(xm+n)

n
− f(x0)

∥∥∥∥
=

∥∥∥∥ [f(xm+1)− f(x0)] + · · ·+ [f(xm+n)− f(x0)]

n

∥∥∥∥
≥ 1

n

(‖f(xm+n)− f(x0)‖ − ‖f(xm+1)− f(x0)‖ − · · · − ‖f(xm+n−1)− f(x0)‖
)
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≥ 1

n

(‖f(xm+n)‖ − ‖f(xm+1)‖ − · · · − ‖f(xm+n+1)‖ − n‖f(x0)‖
)

≥ 1

n

(
n+ ‖f(xm+1)‖+ · · ·+ ‖f(xm+n+1)‖+ n‖f(x0)‖

− ‖f(xm+1)‖ − · · · − ‖f(xm+n+1)‖ − n‖f(x0)‖
)
=

1

n
· n = 1.

Thus we obtain that the sequence
(
f(xn)

)
n
does not (A)-converge to f(x0).

Hence, f is not A2-continuous at x0, a contradiction. �

We now give a condition under which IA-continuity implies usual continuity.
Let (σ) be a mode of convergence, with the property that a sequence (xn)n
in X (σ)-converges to x0∈ X whenever limn xn= x0 in the usual sense. Almost,
Single and ideal convergence are examples of (σ)-convergences.


������ 3.9	 Let X, Y be two normed linear spaces with X, Y �= {0} and
dim Y < ∞, and x0 ∈ X. Assume that f : X → Y is locally bounded at x0.
Moreover, suppose that

(
f(xn)

)
n
(σ)-converges to f(x0) whenever (xn)n is a se-

quence in X, convergent to x0 in the ordinary sense and with xl �= xs for all
l �= s.

Then f is continuous at x0 in the usual sense.

P r o o f. By contradiction, suppose that f is not continuous at x0. There exists
a positive real number ε0 with the property that for every τ >0 there is xτ ∈X
with ‖xτ − x0‖ < τ and ‖f(xτ) − f(x0)‖ ≥ ε0. We construct a sequence (xn)n
in X as follows. In the first step, pick an x1∈ X with

‖x1 − x0‖ < 1 and ‖f(x1)− f(x0)‖≥ ε0.

Note that x1 �= x0. In the second step, choose an x2∈ X with

‖x2 − x0‖< min

(‖x1 − x0‖
2

,
1

2

)
and ‖f(x2)−f(x0)‖≥ ε0,

and observe that x2 �=x1 and x2 �= x0. Proceeding by induction, in the nth step,
pick an element xn ∈ X with

‖xn − x0‖ < min

(‖xn−1 − x0‖
2

,
1

n

)
and ‖f(xn)− f(x0)‖ ≥ ε0.

It is not difficult to check that xn �= x0 for all n ∈ N and xl �= xs when-
ever l �= s. Note that the sequence (xn)n converges to x0 in the usual sense.
By the assumption, f is locally bounded at x0, and hence there exist δ > 0,
M > 0 with ‖f(x)‖ ≤ M whenever x ∈ X, ‖x−x0‖ < δ. Since limn xn=x0 in
the ordinary sense, in correspondence with this positive real number δ there is
n0 ∈ N with ‖xn − x0‖ < δ for all n ≥ n0. For each n ∈ N, set yn= xn0+n. Note
that limn yn = x0 in the usual sense, ‖f(yn) − f(x0)‖ ≥ ε0 for all n ∈ N and
‖f(yn)‖ ≤M for every n ∈ N. Let BM ⊂ Y be the closed ball of center 0 and
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radiusM. Since dim Y < ∞, BM is compact, and so there are a strictly increasing
sequence (nk)k in N and an element y0 ∈ BM with limk f(ynk

) = y0. Since
‖f(yn) − f(x0)‖ ≥ ε0 for each n ∈ N, then y0 �= f(x0). Note that limn yn= x0

and hence limk ynk
= x0. By hypothesis, we get

(σ) lim
k

f(ynk
) = f(x0).

On the other hand, since limk f(ynk
) = y0, we also have

(σ) lim
k

f(ynk
) = y0.

Thus y0 = f(x0), a contradiction. �

A consequence of Proposition 3.8 and Theorem 3.9 is the following.

��������� 3.10	 Let X, Y be two normed linear spaces as in Theorem 3.9.
If f : X → Y is A2-continuous or IA-continuous at x0, then f is continuous
at x0 in the ordinary sense.

Remark 3.11	 Observe that, if X �= {0} is any normed linear space, then
the identity function id: X → X is continuous in the usual sense, A2 and A3-
-continuous, but not IA-continuous at any point x0 ∈ X for every I �= Ifin,
thanks to Proposition 2.6.

The following example shows that, in general, the hypothesis dim Y < ∞
in Theorem 3.9 cannot be dropped.

Example 3.12. Let X= R, Y = l2 be the space of all real sequences (xn)n with
the property that ∞∑

n=1

x2
n < +∞.

Let Q be the set of all rational numbers, Q := {rn : n ∈ N}. For each n ∈ N,
let en be the element of l2 whose nth coordinate is 1 and the other coordinates
equal to 0, and let us define f : R → l2 as follows:⎧⎨⎩

f(0) = 0,

f(x) = en if x = rn, x �= 0,

f(x) = 0 if x ∈ R \Q.

Note that f is not continuous at 0 in the usual sense. Indeed, let (xn)n be any
sequence of rational numbers, convergent to 0 and with xn �= 0 for every n ∈ N.
There is a sequence (in)n in N with xn= rin for all n ∈ N, and hence

‖f(xn)− f(0)‖2 = ‖f(xn)‖2 = ‖ein‖2 = 1 for all n ∈ N.

So f is not continuous at 0 in the ordinary sense.

We now prove that the sequence
(
f(xn)

)
n
(A)-converges to 0 for any sequence

(xn)n in R with xl �= xs for all l �= s.
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Fix arbitrarily ε > 0, and let p0 ∈ N be with p0 > 1
ε2 . Choose arbitrarily

p ≥ p0 and n ∈ N. In correspondence with n and p, denote by ri1 , . . . , riq those
elements of the type xn+j , with xn+j ∈ Q \ {0}, j = 1, . . . , p, provided that they
exist. Since the xn’s are distinct, we get∥∥∥∥f(xn+1) + · · ·+ f(xn+p)

p

∥∥∥∥
2

=
1

p

∥∥ei1 + · · ·+ eiq
∥∥
2

=
1

p
q1/2 ≤ 1√

p
≤ 1√

p0
< ε.

If xn+j �∈ Q \ {0} for all j = 1, . . . , p, then we have∥∥∥∥f(xn+1) + · · ·+ f(xn+p)

p

∥∥∥∥
2

= 0.

In both cases, we obtain almost convergence to 0 of the sequence
(
f(xn)

)
n
. �

Remarks 3.13	 (a) Observe that in the argument of Example 3.12, in general,
the condition that the elements xn of the involved sequence are distinct, cannot
be dropped.

Indeed, for each n ∈ N and 2n−1 ≤ k < 2n−1, set xk = 1
n , and choose m = 0.

Of course, (xk)k converges to 0 in the usual sense. Let 1
n = rin , n ∈ N. We get

‖f(x1) + · · ·+ f(x2n−1)‖2 =
∥∥∥∥∥
n−1∑
k=0

2keik

∥∥∥∥∥
2

=

√√√√n−1∑
k=0

(2k)2 =

√√√√n−1∑
k=0

4k =

√
4n − 1

3
,

and hence

lim
n

∥∥∥∥f(x1) + · · ·+ f(x2n−1)

2n − 1

∥∥∥∥
2

= lim
n

1

2n − 1
·
√

4n − 1

3

= lim
n

√
4n − 1

3(4n − 2n+1 + 1)
=

√
1

3
.

Thus the sequence
(
f(xk)

)
k
does not Singly converge to 0, and a fortiori it does

not almost converge to 0.

(b) All above results of Section 3 hold, even if in Definitions 3.1 almost con-
vergence is replaced with Single convergence, and the techniques of the proofs
are the same.

Let now Iu be the ideal of all subsets of N having Banach (or uniform) density
zero. We have the following.
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���������� 3.14	 Let X be a normed linear space, x0 ∈ X and x = (xn)n be
a bounded sequence in X, such that (Iu) limn xn = x0. Then, (A) limn xn = x0.

P r o o f. Put M = ‖x‖∞ + ‖x0‖, where ‖x‖∞ denotes the supremum norm of
(xn)n. For each ε > 0 and m, n ∈ N set

B(ε)
m,n =

{
m+ 1 ≤ k ≤ m+ n : ‖xk − x0‖ ≥ ε

2

}
.

By hypothesis, we get that limn
�(B(ε)

m,n)

n = 0 uniformly with respect to m ≥ 0,
where � denotes the cardinality of the set into brackets, and thus there exists an
N = N(ε) ∈ N with

�(B
(ε)
m,n)

n
≤ ε

2M
(10)

for all n ≥ N(ε) and m ≥ 0.

By (10), for each n ≥ N(ε) and m ≥ 0 we get

0 ≤

∥∥∥∥∥∥∥∥∥
m+n∑

k=m+1

xk

n
− x0

∥∥∥∥∥∥∥∥∥ =
∥∥∥∥∥∥∥∥∥

m+n∑
k=m+1

xk − nx0

n

∥∥∥∥∥∥∥∥∥ =
∥∥∥∥∥∥∥∥∥

m+n∑
k=m+1

(xk − x0)

n

∥∥∥∥∥∥∥∥∥
≤

m+n∑
k=m+1

‖xk − x0‖
n

=
1

n

⎛⎜⎜⎝ ∑
k∈B

(ε)
m,n

‖xk − x0‖ +
∑

k/∈B
(ε)
m,n

m+1≤k≤m+n

‖xk − x0‖

⎞⎟⎟⎠
≤ M �(B

(ε)
m,n)

n
+

1

n

nε

2
≤ ε

2
+

ε

2
= ε,

taking into account that

‖xk − x0‖ ≤ ‖xk‖+ ‖x0‖ ≤ ‖x‖∞ + ‖x0‖ = M

for all k ∈ N, and consequently (A) limn xn = x0. So the proof is complete. �

A consequence of Proposition 3.14 is the following.

��������� 3.15	 Let f : X → Y be a bounded continuous function. Then f is
IuA-continuous on X.

P r o o f. Let x0 ∈X and (xn)n be a sequence in X, (Iu)-convergent to x0∈X.
Since f is continuous, the sequence

(
f(xn)

)
n
(Iu)-converges to f(x0) (see Re-

mark 3.2). But f is bounded, and thus
(
f(xn)

)
n
is a bounded sequence in Y.

By Proposition 3.14 we get that (A) limn xn= x0. This concludes the proof. �
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Remark 3.16	 By a similar argument, we can prove that for any normed linear
spaces X, Y and any bounded sequence (xn)n in X with (Id) limn xn = x0

(where Id is the ideal of all subsets of N of asymptotic density zero) we get that
(S) limn xn = x0, and consequently any bounded continuous function f : X → Y
is IdS-continuous on X (compare with Proposition 2.6).

We now recall the following (see also [14]).

���������� 3.17	 LetX �= ∅ be a set and f, fn (n ∈ N), be real-valued functions
defined on X. We say that the sequence (fn)n converges uniformly equally to f

on X, and we write fn
u.e.→ f, if and only if there exist (εn)n ∈ c+0 (= the positive

elements of the space of all sequences convergent to zero) and a natural number
k = k[(εn)n] such that

�
({n ∈ N : |fn(x)− f(x)| ≥ εn}

)≤ k for all x ∈ X,

where � denotes the cardinality of the set into brackets.

Remark 3.18	 A similar definition can be stated when (R, | · |) is replaced with
an arbitrary normed linear space (Y, ‖ · ‖).

Thus we can formulate the following.

����������� 3.19	 Let X, Y be two normed linear spaces, x0 ∈ X and I be
an admissible ideal of N. Then:

(i) If (xn)n is a sequence in X and φn, φ : N → X,

φn(m) =
xm+1 + · · ·+ xm+n

n
,

φ(m) = x0 for every n,m ∈ N, then we say that (xn)n converges Lorentz

uniformly equally to x0, and we write xn
Au.e.−→ x0, if and only if φn

u.e.→ φ.

(ii) If f : X → Y is a function, then we say that f is:

• B1-continuous at x0, if and only if limn f(xn) = f(x0) whenever
(Au.e.) limn xn= x0;

• B1-continuous on X, if and only if f is B1-continuous at each x0∈ X;

• B2-continuous at x0, if and only if (Au.e.) limn f(xn) = f(x0) whenever
limn xn= x0;

• B2-continuous on X, if and only if f is B2-continuous at each x0∈ X;

• B3-continuous at x0, if and only if (Au.e.) limn f(xn) = f(x0) whenever
(Au.e.) limn xn= x0;

• B3-continuous on X, if and only if f is B3-continuous at each x0∈ X;

• BI-continuous at x0, if and only if (I) limn f(xn) = f(x0) whenever
(Au.e.) limn xn= x0;
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• BI-continuous on X, if and only if f is BI-continuous at each x0∈ X;

• IB-continuous at x0, if and only if (Au.e.) limn f(xn) = f(x0) whenever
(I) limn xn= x0;

• IB-continuous on X, if and only if f is IB-continuous at each x0 ∈ X.

Remark 3.20	 Observe that BIfin- and IfinB-continuity coincide with B1- and
B2-continuity, respectively.

Open problems:

(a) For which admissible ideals of N does the usual continuity coincide with
IA-continuity?

(b) For which normed linear spaces X is it true that every A3-continuous
function f : X → X is linear? A positive answer was given in [6, Theo-
rem 1] when X = R (see also [1], [16]).

(c) Study similar problems for continuities defined by any sequential matrix
summability method (see also [10]).

(d) Study the fundamental properties of the modes of continuities of Defi-
nitions 3.19 and their relations to the modes of continuities formulated
in Definitions 3.1.
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[16] SMÍTAL, J.: On Functions and Functional Equations. Adam Hilger, Bristol, UK, 1988.

[17] STEINHAUS, H.: Sur la convergence ordinaire et la convergence asymptotique, Colloq.
Math. 2 (1951), 73–74.

Received April 20, 2012 Antonio Boccuto

Department of Mathematics and
Computer Sciences
University of Perugia
via Vanvitelli 1
I–06123 Perugia
ITALY

E-mail : boccuto@yahoo.it
boccuto@dmi.unipg.it

Xenofon Dimitriou
Nicolas Papanastassiou

Department of Mathematics
University of Athens
Panepistimiopolis
Athens 15784
GREECE

E-mail : xenofon11@gmail.com
dxenof@math.uoa.gr
npapanas@math.uoa.gr

131


	1. Introduction
	2. Almost and ideal convergence
	3. Modes of continuity
	REFERENCES

