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ON A DRYGAS INEQUALITY

Zygfryd Kominek

ABSTRACT. The goal of the paper is to give sufficient conditions for which the
solution to the Drygas inequality is continuous.

Introduction

Throughout the paper, let (X,+) be an abelian topological group uniquely
divided by two satisfying the following two conditions:

1.
⋃∞

n=0 2
nU = X, for every neighbourhood U of zero;

2. for every neighbourhood V of zero, there exists a neighbourhood W of zero
such that W ⊂ V, 1

2W ⊂ W.

We will investigate the problem of the continuity of solutions to the following
Drygas inequality

ϕ(x+ y) + ϕ(x− y) ≤ 2ϕ(x) + ϕ(y) + ϕ(−y), x, y ∈ X, (1)

where ϕ is a real function defined on X. This inequality is strictly connected
with the so-called Drygas equation of the form

ϕ(x+ y) + ϕ(x− y) = 2ϕ(x) + ϕ(y) + ϕ(−y), x, y ∈ X,

which is a generalization of an important quadratic functional equation

ϕ(x+ y) + ϕ(x− y) = 2ϕ(x) + 2ϕ(y), x, y ∈ X (2)

introduced in [1] in connection with the characterization of quasi-inner-product
spaces. The general solution to the quadratic functional equation is of the form
ϕ(x) = B(x, x), x ∈ X, where B is a biadditive and symmetric function de-
fined on X2, and the general solution for the Drygas equation is of the form
ϕ(x) = B(x, x) + A(x), x ∈ X, where B (similarly as in the case of quadratic
functional equation) is a biadditive and symmetric function, and A is an additive
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function [2]. Other interesting results connected with the Drygas functional equa-
tion may be found in [3], [4], [6] and [7]. In both cases (of quadratic functional
equation as well as the Drygas functional equation), polynomial functions are the
solutions and sufficient conditions of their continuity are well-known. In [5], we
have found some sufficient conditions of the continuity of subquadratic functions
that are the functions fulfilling the inequality arising from quadratic functional
equation (2) by changing the equality sign by the inequality “ ≤ ” one. We use
here similar methods as in [5] to obtain our main results. Throughout the paper,
R,N,N0 denote the sets of all reals, the set of all positive integers or the set of
all non-negative integers, respectively.

Some lemmas

Putting x = y = 0 in (1), we get ϕ(0) ≥ 0. If c > 0 is an arbitrary real,
then every function ϕ having the values in the interval [c, 2c] is a solution to our
inequality (1). This easy observation forces to make the following assumption

ϕ(0) = 0. (3)

We will use the following lemmas.

����� 1 ([5])� Let ϕ : X → R be a function. Then for all u ∈ X, ε > 0 and
each neighbourhood W0 of zero there exists a neighbourhood W of zero such that
1
2
W ⊂ W ⊂ W0 and, moreover,

inf
{
f(v); v ∈ u+W

}
+ ε ≥ inf

{
f(v′); v′∈ u+

1

2
W

}
.

����� 2� Let ϕ : X → R be a solution to (1) satisfying condition (3). If ϕ
is locally upper bounded at zero, then it is locally upper bounded at every point
u ∈ X.

P r o o f. Let a neighbourhood V of zero and real number μ be chosen in such
a way that

ϕ(v) ≤ μ

for every v ∈ V. Without loss of generality, we can assume that V = −V. It fol-
lows from (1) and (3) that

ϕ(2x) ≤ 3ϕ(x) + ϕ(−x), x ∈ X.

Fix an arbitrary u ∈ X and take n ∈ N so much that u ∈ 2nV. It is easy to see
that

ϕ(x) ≤ 4nμ

for every x ∈ U := 2nV. This finishes the proof. �
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����� 3� Let ϕ : X → R be a solution to (1) satisfying condition (3). If ϕ is
locally bounded (bilaterally) at zero then it is locally bounded (bilaterally) at every
point of X.

P r o o f. Take m,M ∈ R and symmetric with respect to zero neighbourhood U
of zero in such a way that

m ≤ ϕ(u) ≤ M, u ∈ U.

By Lemma 2, ϕ is locally upper bounded at each point of X. We will show that
it is also locally bounded below at every point of X. Fix an arbitrary x0 ∈ X.
Let W0 ⊂ U be a neighbourhood of zero and Mx0

∈ R be chosen so that

ϕ(w) ≤ Mx0
, w ∈ (x0 +W0) ∪ (−x0 −W0).

Let V0 be such symmetric with respect to zero neighbourhood of zero that 1
2V0 ⊂

V0 ⊂ W0. If t ∈ x0 +
1
2V0, then t = x0 +

1
2v with a v ∈ V0. Putting

w := x0 − 1

2
v,

we obtain

2ϕ(t) + ϕ(w) + ϕ(−w) ≥ ϕ(t+ w) + ϕ(t− w)

= ϕ(2x0) + ϕ(v),

and, consequently,

2ϕ(t) ≥ ϕ(2x0) +m− 2Mx0
, t ∈ x0 +

1

2
V0.

This completes the proof. �

����� 4� Let ϕ : X → R be a solution to (1) satisfying condition (3). If there
exists a point x0 ∈ X such that ϕ is locally bounded below at x0 and −x0 then
it is locally bounded below at zero.

P r o o f. Let V be a neighbourhood of zero and let μ ∈ R be such that

ϕ(x) ≥ μ, x ∈ (x0 + V ) ∪ (−x0 + V ).

For every v ∈ V, we hence get

2ϕ(v) ≥ ϕ(v + x0) + ϕ(v − x0)− ϕ(x0)− ϕ(−x0)

≥ 2μ− ϕ(x0)− ϕ(−x0),

as required. �
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Results

����	�� 1� Let ϕ : X → R be a function satisfying inequality (1) and condi-
tion (3). If ϕ is locally bounded below at each point of X and upper semicontin-
uous at zero, then it is continuous in X.

P r o o f. Let u ∈ X be fixed and take arbitrary ε > 0. It follows from the upper
semicontinuity at zero that there exists a neighbourhood U0 of zero such that

ϕ(t) ≤ ε, t ∈ U0. (4)

Without loss of generality, we may assume that ϕ is lower bounded on the set
U0 + u. Take a symmetric with respect to zero neighbourhood W of zero such
that

1

2
W ⊂ W ⊂ U0,

and, simultaneously,

inf
{
ϕ(v); v ∈ u+W

}
+ ε ≥ inf

{
ϕ(v′); v′ ∈ u+

1

2
W

}
.

For every v ∈ u+W, we get

ϕ(u) + ϕ(v) ≤ 2ϕ

(
u+ v

2

)
+ ϕ

(
u− v

2

)
+ ϕ

(
v − u

2

)
≤ 2ϕ

(
u+ v

2

)
+ 2ε.

Observe that v+u
2 ∈ u+ 1

2W. Therefore,

ϕ(u) + inf
{
ϕ(v); v ∈ u+W

} ≤ 2 inf

{
ϕ(v′); v′ ∈ u+

1

2
W

}
+ 2ε,

and, consequently,

ϕ(u) ≤ inf
{
ϕ(v); v ∈ u+W

}
+ 4ε.

This finishes the proof of the lower semicontinuity of ϕ at the point u. To prove
the upper semicontinuity at u, take, as above, an arbitrary ε > 0 and let U0

be a neighbourhood of zero such that condition (4) is fulfilled. Since ϕ is upper
semicontinuous at u then there exists a neighbourhood W ⊂ U0 of zero such
that

ϕ(u) ≤ ϕ(u+ w) + ε, w ∈ W.

We may assume that W is symmetric with respect to zero. Thus for each w ∈ W
we have

ϕ(u− w) ≤ 2 ϕ(u) + ϕ(w) + ϕ(−w)− ϕ(u+ w)

≤ ϕ(u) + 3ε.

This finishes the proof of the upper semicontinuity of ϕ at u and completes the
proof of our Theorem 1. �
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As an esasy consequence of Theorem 1 and Lemmas 3 and 4, we obtain the
following theorems.

����	�� 2� Let ϕ : X → R be a function satisfying inequality (1) and condi-
tion (3). If ϕ is locally bounded below at the points of x0 �= 0 and −x0 and upper
semicontinuous at zero, then it is continuous in X.

����	�� 3� Let ϕ : X → R be a function satisfying inequality (1) and condi-
tion (3). If ϕ is continuous at zero then it is continuous in X.

����� 5� Let ϕ : X → R be a solution to (1). If it is locally bounded above at
zero and locally bounded below at a point x0 then it is locally bounded bilaterally
at each point of some neighbourhood of zero.

P r o o f. Let U0 be a neighbourhood of zero symmetric with respect to zero and
let M ∈ R be a constant such that

ϕ(x) ≤ M, x ∈ U0.

Since ϕ is locally bounded below at x0, we may assume that

ϕ(t) ≥ m, t ∈ x0 + U0,

with a constant m ∈ R. By virtue of (1), for every y ∈ U0, we hence get

ϕ(y) ≥ ϕ(x0 + y) + ϕ(x0 − y)− 2ϕ(x0)− ϕ(−y) ≥ 2 m− 2ϕ(x0)−M.

This finishes the proof. �

����	�� 4� Let ϕ : X → R be a function satisfying inequality (1) and con-
dition (3). If ϕ is upper semicontinuous at zero and locally bounded below at
a point x0, then it is continuous in X.

P r o o f. It follows from the upper semicontinuity at zero that ϕ is locally bound-
ed above at zero. According to Lemma 5, there exists a point x0 �= 0 such that
ϕ is locally bounded below at x0 and −x0 simultaneously. Our assertion now
follows from Theorem 2. �
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