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ON POINTS OF THE REGULAR DENSITY

Sebastian Lindner — W�ladys�law Wilczyński

ABSTRACT. In this note, we introduce the notion of regular density. Next, we
prove that x ∈ R is the regular density point of a measurable set A if and only if

it is an O’Malley point of A.

1. Notation

In the sequel, we use the following symbols:

χA – the characteristic function of the set A,

μ(A) – the Lebesgue measure of the set A,∨b
a f – the total variation of the function f on [a, b],

D(A, I) = μ(A ∩ I)/|I| – the average density of A on the interval I,

d(A, x) – the density of the set A at x,

d+(A, x) – the right side density of the set A at x,

Φ(A) – the set of all density points of the set A.

2. Definitions

Let A ⊂ R be an arbitrary Lebesgue measurable set and x0 ∈ R. Put

fx0
(h) = D

(
A, [x0 − h, x0 + h]

)
for h > 0 and fx0

(0) = 1.

Obviously, the function fx0
is continuous on R

+ if and only if x0∈ Φ(A).

Similarly, put

f+
x0
(h) = D

(
A, [x0, x0 + h]

)
for h > 0 and f+

x0
(0) = 1.

We shall say that x0 is the regular density point of the set A if and only
if the following conditions are satisfied: (1) x0 ∈ Φ(A) and (2)

∨1
0 fx0

< +∞.
We denote the set of the regular density points of the set A by ΦR(A).
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Using the function f+
x0

we obtain the definition of the right hand regular density

point. The definitions of Φ+
R, f

−
x0

and Φ−
R are self-explaining.

For a measurable set A ⊂ R and a point x0 ∈ R, we will say that x0 is
an O’Malley point of the set A if and only if

1∫
0

1

h

(
χA′(x0 + h) + χA′(x0 − h)

)
dh < +∞.

The point x0 is a right side O’Malley point of A if and only if

1∫
0

1

h
χA′(x0 + h) dh < +∞.

A set of all O’Malley (resp. right side O’Malley) points of the set A will be
denoted by ΦOM (A) (resp. Φ+

OM (A)). The operator ΦOM and the topology gen-
erated by it were examined in [1]. It was proved that ΦOM has the following
properties:

a) if μ(A�B) = 0, A and B are Lebesgue measurable, then ΦOM (A) =
ΦOM (B),

b) ΦOM (∅) = ∅, ΦOM (R) = R,

c) ΦOM (A ∩B) = ΦOM (A) ∩ΦOM (B) if A and B are Lebesgue measurable.

However, for O’Malley points, the Lebesgue Density Theorem does not hold.
In [1], one can find an example of a measurable set E ⊂ [0, 1] such that
μ
(
E \ ΦOM (E)

)
> 0. Simultaneously, ΦOM (A) ⊂ Φ(A) for each measurable

A ⊂ R, so the family

TOM =
{
A ⊂ R : A is Lebesgue measurable and A ⊂ ΦOM (A)

}
is a topology strictly stronger than the natural topology and strictly weaker than
the density topology.

3. The “right side” case

The following example shows that the condition of regular density is essen-
tially stronger than the condition of the ordinary density.

Example 1. We shall construct the set A such that 0 ∈ Φ(A) \ Φ+
R(A).

Let us define the sequence an by the following recursion

a1 = 1 and an = an−1/
(
n(n+ 1)

)
for every n > 1.
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Simultaneously, for n > 1, let bn = n · an−1/(n + 1). Let A = (−∞, 0] ∪⋃
n>1[an, bn]. Observe that, for any n, the function f0 is increasing on the interval

[an, bn] and decreasing on the interval [bn+1, an].

Let us consider h ∈ [bn, bn−1]. Then

f0(h) ≥ f0(an−1) >
μ(A ∩ [0, an−1])

an−1
>

bn − an
an−1

= 1− 1

n
,

which implies that 0 ∈ Φ(A). At the same time,

f0(an−1) <
bn

an−1
= 1− 1

n+ 1
and f0(bn) >

bn − an
bn

= 1− 1

n2
,

so

f0(bn)− f0(an) >
1

n+ 2
− 1

n2

and the series
∞∑

n=1

(
f0(bn)− f0(an)

)
is divergent.

In the sequel, we shall express the number
∨1

0 f
+
x0

in a more convenient way.

����� 1� Let x0 ∈ Φ(A). Then

1∨
0

f+
x0

=

∫
[0,1]∩(A−x0)

1

h

(
1− f+

x0
(h)
)
dh +

∫
[0,1]∩(A′−x0)

1

h
f+
x0
(h) dh.

P r o o f. Since x0 ∈ Φ(A) the function f+
x0

is continuous. Moreover, for every
ε > 0 the function f+

x0
restricted to the interval [ε, 1] satisfies the Lipschitz

condition with the constant 1
ε , so it is absolutely continuous. Hence,

1∨
ε

f+
x0

=

1∫
ε

|(f+
x0
)′(h)| dh

and finally,
1∨
0

f+
x0

=

1∫
0

|(f+
x0
)′(h)| dh.

To simplify the calculations, we can replace the derivative of the function f+

with the right hand side derivative:

1∨
0

f+
x0

=

1∫
0

∣∣∣∣∣ lim
h�→h+

f+
x0(h�) − f+

x0(h)

h� − h

∣∣∣∣∣ dh

=

1∫
0

∣∣∣∣ lim
h�→h+

1

h� − h

(
µ(A ∩ [x0, x0 + h�])

h�
− µ(A ∩ [x0, x0 + h])

h

)∣∣∣∣ dh
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=

1∫
0

∣∣∣∣ lim
h�→h+

1

h� − h

(
µ(A ∩ [x0, x0 + h])

h�
+

µ(A ∩ [x0 + h, x0 + h�])

h�

−µ(A ∩ [x0, x0 + h])

h

)∣∣∣∣ dh

=

1∫
0

∣∣∣∣ lim
h�→h+

1

h� − h

(
(h− h�)µ(A ∩ [x0, x0 + h])

h�h
+

µ(A ∩ [x0 + h, x0 + h�])

h�

)∣∣∣∣ dh

=

1∫
0

∣∣∣∣ lim
h�→h+

(
−µ(A ∩ [x0, x0 + h])

h�h
+

1

h�

µ(A ∩ [x0 + h, x0 + h�])

h� − h

)∣∣∣∣ dh

=

1∫
0

∣∣∣∣ lim
h�→h+

(
− 1

h�
f+
x0

(h) +
1

h�
f+
(x0+h)

(h� − h)

)∣∣∣∣ dh

=

1∫
0

∣∣∣∣− 1

h
f+
x0

(h) +
1

h
d+(A,x0 + h)

∣∣∣∣dh.

By virtue of the Lebesgue density theorem,

d(A, x) = d+(A, x) = χA(x) a.e.,

hence

1∨
0

f+
x0

=

1∫
0

1

h

∣∣−f+
x0
(h) + χA(x0 + h)

∣∣ dh =

1∫
0

1

h

∣∣−f+
x0
(h) + χ(A−x0)(h)

∣∣ dh.
For (x0 + h) ∈ A, we have

| − f+
x0
(h) + χ(A−x0)(h)| = 1− f+

x0
(h),

in the opposite case,

| − f+
x0
(h) + χ(A−x0)(h)| = f+

x0
(h).

Therefore,
1∨
0

f+
x0

=

∫
[0,1]∩(A−x0)

1

h

(
1− f+

x0
(h)
)
dh +

∫
[0,1]∩(A′−x0)

1

h
f+
x0
(h) dh.

�

The last two numbers will be denoted by C1(A, x0) and C2(A, x0), respec-
tively.

���	�
���� 1� For every measurable A ⊂ R and for every x0 ∈ R, the num-
bers C1(A, x0), C2(A, x0) ∈ [0,+∞], moreover, C1(A, x0) is finite if and only if
C2(A, x0) is finite.
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P r o o f. Notice that for every positive ε, by virtue of absolute continuity of fx0

on [ε, 1], we have

1 ≥ |f+
x0
(1)− f+

x0
(ε)| =

∣∣∣∣∣∣
1∫

ε

(f+
x0
)′(h) dh

∣∣∣∣∣∣ .
After the calculations analogous to those from the proof of Lemma 1, the last
term can be expressed as∣∣∣∣∣∣

1∫
ε

(f+
x0
)′(h) dh

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1∫
ε

1

h

(
χ(A−x0)(h)− f+

x0
(h)
)
dh

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

[ε,1]∩(A−x0)

1

h

(
1− f+

x0
(h)
)
dh −

∫
[ε,1]∩(A′−x0)

1

h
f+
x0
(h) dh

∣∣∣∣∣∣∣ .
The last expression tends to |C1 − C2| when ε tends to 0, so when one of the
numbers C1 and C2 is finite, so is the other. �

������� 1� For every measurable set A ⊂ R

Φ+
OM (A) = Φ+

R(A).

P r o o f. Observe first that if g(x) : [0, 1] → [0, 1] and ε ∈ (0, 1), then

1∫
0

1

h
g(h) dh < +∞ if and only if

ε∫
0

1

h
g(h) dh < +∞.

Since x ∈ Φ(A), we can choose such ε > 0 that f+
x (h) > 1

2 for 0 < h < ε.
Therefore,

1

2

∫
[0,ε]∩(A′−x)

1

h
dh <

∫
[0,ε]∩(A′−x)

1

h
f+
x (h) dh ≤

∫
[0,ε]∩(A′−x)

1

h
dh,

so

ε∫
0

1

h
χA′(x+ h) dh =

∫
[0,ε]∩(A′−x)

1

h
dh < +∞ ⇐⇒

∫
[0,ε]∩(A′−x)

1

h
f+
x (h) dh < +∞.

By virtue of Proposition 1, the last equivalence gives us the thesis. �
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4. The bilateral case

Since
1∫

0

1

h

(
χA′(x0 + h) + χA′(x0 − h)

)
dh =

1∫
0

1

h
χA′(x0 + h) dh +

1∫
0

1

h
χA′(x0 − h) dh,

we obtain that for every measurable A ⊂ R

ΦOM (A) = Φ+
OM (A) ∩ Φ−

OM (A).

Similarly,

1

2h
μ
(
A ∩ [x0 − h, x0 + h]

)
=

1

2

(
1

h
μ
(
A ∩ [x0, x0 + h]

)
+

1

h
μ
(
A ∩ [x0 − h, x0]

))
,

so,

fx0
(h) =

1

2

(
f+
x0
(h) + f−

x0
(h)
)
.

Therefore, if, for a given point x0, the functions f+
x0

and f−
x0

are of bounded
variation, the function fx0

is of bounded variation, too. This means that

ΦR(A) ⊃ Φ+
R(A) ∩ Φ−

R(A).

Now, we shall show

������� 2� For every measurable set A ⊂ R,

ΦR(A) = Φ+
R(A) ∩ Φ−

R(A).

P r o o f. To prove that ΦR(A) ⊂ Φ+
R(A) ∩ Φ−

R(A), it suffices to show, that∨1
0 f

−
x = +∞ implies

∨1
0 fx = +∞. We shall prove it for x = 0. We will write f,

f+, f− instead of f0, f
+
0 , f

−
0 , and A+, A− instead of A ∩ [0, 1] and (−A) ∩ [0, 1],

respectively. Assume that 0 is the density point of the set A and n is an arbitrary
natural number. There exists H > 0 such that

f+(h) > 1− 1

n
and f−(h) > 1− 1

n
for h ∈ (0, H).

Let

[x′, x′′] ⊂ (0, H) with D
(
A−, [x′, x′′]

)
<

1

n
and f−(x′) = a−.
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Since
a− > 1− 1

n
,

then

f−(x′)− f−(x′′)

= a−− a−x1 + D(A−, [x′, x′′]) · (x′′ − x′)
x′′ > a−−

a−x′ + 1
n (x

′′ − x′)
x′′

=

(
a−− 1

n

)
x′′ − x′

x′′ >

(
1− 2

n

)
x′′ − x′

x′′ .

On the other hand,

a+ = f+(x′) > 1− 1

n
and

f+(x′′)− f+(x′) = f+(x′′)− a+

=
a+x′

x′′ +
μ(A+ ∩ (x′, x′′))

x′′ − a+ <
a+x′

x′′ +
x′′ − x′

x′′ − a+

=
(
1− a+

)(x′′ − x′

x′′

)
<

1

n

(
x′′ − x′

x′′

)
.

In particular, for n = 4, we obtain

f+(x′′)− f+(x′) <
1

2

(
f−(x′)− f−(x′′)

)
,

and consequently,
1

4

(
f−(x′)− f−(x′′)

)
< f(x′′)− f(x′).

Assume now that 1∨
0

f− = +∞.

There exists the decreasing sequence (xn)n∈N tending to 0 such that

∞∑
n=1

|f−(xn+1)− f−(xn)| = +∞.

We can assume additionaly that for every n ∈ N,

f−(x2n)− f−(x2n−1) > 0 and f−(x2n+1)− f−(x2n) < 0

and that x1 < H.

We now concentrate our attention on the number

f−(x2)− f−(x1),

yet the foregoing argument can be repeated for every positive component.
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Since f−(x2)− f−(x1) > 0, we have μ
(
A− ∩ (x2, x1)

)
< x1 − x2. So,

μ
(
(A−)′ ∩ (x2, x1)

)
> 0.

Denote yi=f−(xi). For y ∈ (y1, y2), let z(y)=max
{
x ∈ [x2, x1] : f

−(x)=y
}
.

Let B = z
(
[y1, y2]

)
⊂ [x2, x1]. Observe that if x ∈ Φ

(
A−∩ (x2, x1)

)
, then x �∈ B.

Hence, by virtue of the Lebesgue density theorem,

μ
(
B \ Φ

(
(A−)′ ∩ (x2, x1)

))
= 0.

But f−(B) = (y1, y2) and the function f− satisfies the Lusin N condition, so

μ

(
f−
(
B ∩ Φ

(
(A−)′ ∩ (x2, x1)

)))
= y2 − y1.

Let

E = f−
(
B ∩ Φ

(
(A−)′ ∩ (x2, x1)

))
.

If y ∈ E, then there exists exactly one such number x′ ∈ B∩Φ
(
(A−)′∩ (x2, x1)

)
that y = f−(x′). Let x′′ ∈ (x′, x1). If the interval [x′, x′′] is short enough, then

(1) f−(x′) > f−(x′′),
(2)

[
f−(x′′), f−(x′)

]
⊂ (y1, y2),

(3) D
(
A−, [x′, x′′]

)
< 1

n .

Consequently,

f+(x′′)− f+(x′) <
1

2

(
f−(x′)− f−(x′′)

)
and

1

4

(
f−(x′)− f−(x′′)

)
< f(x′′)− f(x′).

The family M of intervals f−([x′, x′′]
)
satisfying the above conditions covers

the set E in the Vitali sense. Hence, by virtue of the Vitali covering theorem,
there exists a sequence

{
[z′′k , z

′
k]
}
k∈N

of pairwise disjoint intervals from M such

that

μ

(
E \

⋃
k∈N

[zk, tk]

)
= 0 and

⋃
k∈N

[zk, tk] ⊂ (y2, y1).

Hence, ∑
k∈N

(tk − zk) = y1 − y2.

For every k ∈ N, the interval

[zk, tk] = f−([x′
k, x

′′
k ]
)
.

From the definition of the set B, it follows that f−(x′
k) = tk. Let x

′′′
k ∈ (x′

k, x
′′
k]

such that f(x′′′
k ) = zk.
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Now, if N ∈ N is big enough, we have

x1∨
x2

f ≥
N∑

k=1

|f(x′
k)− f(x′′′

k )| ≥ 1

4

N∑
k=1

|f−(x′
k)− f−(x′′′

k )| ≥ 1

8

(
f−(x2)− f−(x1)

)
.

Using the same argument to every component of the type

f−(x2n)− f−(x2n−1),

we obtain that
1∨
0

f = +∞.

This finishes the proof. �

From the last result we obtain

��������� 1� For every measurable set A ⊂ R,

ΦOM (A) = ΦR(A).
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