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3Institute of Mathematics Lodz University of Technology, �Lódź, POLAND

ABSTRACT. We examine some generalized densities (called (ψ,n)-densities)

obtained as a result of strengthening the Lebesgue Density Theorem. It turns out
that these notions are the generalizations of superdensity, enhanced density and
m-density, and have some applications in the theory of sets of finite perimeter
and in Sobolev spaces.

1. Introduction

Lebesgue density is an important notion of measure theory and the theory
of real functions. The basic theorem connected with this topic is Lebesgue Den-
sity Theorem which was proved at the beginning of the 20th century and stated
that almost each point of any Lebesgue measurable set is its density point.
The notion of density was used by Lebesgue also in his differentiation theo-
rem which was generalized into Rn by Lebesgue in 1910. The general version
of this theorem concerning Radon measures was obtained by Besicovitch [3].
The classical textbooks of geometric measure theory present very general
versions of his results (known also as Lebesgue-Besicovitch Differentiation
Theorem, see, for instance [8]). The consequence of this theorem (almost all
points of Lebesgue measurable set E ⊂ Rn are density points of E and almost all
points of Rn \ E are dispersion points of this set) plays the crucial role in real
functions theory.
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In 1936, Stanis�law Ulam in The Scottish Book asked about the possibility
of strengthening Lebesgue Density Theorem [17], Problem 146. The answer for
the real line was presented by S. J. Taylor in 1959 [18]. The notion of superdensity
presented in [16] is a special case of Taylor’s results. Some generalizations of this
notion were the inspiration for [4]. To our surprise, the theory of generalized
density on Rn has wide applications in seemingly distant theories. It shows that
our results from [10] and [12] are quite practical.

In Section 2 of this paper, we define two notions of densities on Rn using them
to examine some density-type topologies. We want to draw the reader’s attention
to the importance of the chosen differentiation basis (in one case, we followed
Besicovich). The main aim of Section 3 is to present the mentioned applications
in the theory of sets with finite perimeter and in Sobolev spaces.

2. On ψ-density topologies on Rn

Remind that x ∈ R is called a density point of a measurable set A ⊂ R

if limλ(I)→0
λ(A′∩I)
λ(I) = 0, where I is an interval containing x, λ stands for the

Lebesgue measure, and A′ is the complement of A. In [18], Taylor modified the
definition of a density point by introducing a new factor ψ

(
λ(I)

)
in denominator

of the fraction λ(A′∩I)
λ(I) , where ψ is a nondecreasing continuous function from

(0,∞) to (0,∞) such that limx→0+ ψ(x) = 0 (the family of such a function will
be denoted by C). He formulated the most important and interesting results
in the following theorems.

��� ����� �	
���� ������� ([18], Theorem 3)� For any Lebesgue measur-
able set E ⊂ R there exists a function ψ ∈ C such that for almost all x ∈ E,

lim
λ(I)→0

λ(E′ ∩ I)

λ(I)ψ(λ(I))
= 0,

where I runs through all intervals containing x.

��� ������ �	
���� ������� ([18], Theorem 4)� For any function ψ ∈ C
and any real number α, 0 < α < 1, there exists a perfect set E ⊂ [0, 1] such that
λ(E) = α and for all x ∈ E

lim sup
λ(I)→0

λ(E′ ∩ I)

λ(I)ψ(λ(I))
= ∞,

where I runs through all intervals containing x.

Taylor’s results gave rise to concepts of ψ-density and the ψ-density topology
on R [19]. The obtained results were extended firstly onto R2 [10], in Polish and
later on Rn for n > 2 [12].
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In Rn, n ≥ 2, we can obtain different notions of density-type topologies de-
pending on differentiation bases at a point. The following differentiation bases
S (named after [16]) are the most useful:

• the cube base SQ = {Q(x, r) : x ∈ Rn, r > 0}, where Q(x, r) is a cube with
the center at x ∈ Rn and edge length r;

• the symmetric base SB = {B(x, r) : x ∈ Rn, r > 0}, where B(x, r) is a ball
of radius r centered at x ∈ Rn.

The notion of (ψ, n)-density point of a set A ⊂ Rn is a modification of ordinary
density. Let us consider n-dimensional cube Q(x, r) with the edges parallel to the
coordinate axes. Obviously, a volume of Q(x, r) (denoted by |Q(x, r)|) is equal
to rn. By λn we denote n-dimensional Lebesgue measure and for n = 1 we omit
the number. Remind that x ∈ Rn is an ordinary density point of a measurable
set A ⊂ Rn (we will write A ∈ Ln) if

lim
r→0

λn(A′ ∩Q(x, r))

|Q(x, r)| = 0. (1)

���������� 1� Let ψ ∈ C, x ∈ Rn, A ∈ Ln. We will say that x is a (ψ, n)-density
point of A with respect to cubes if

lim
r→0

λn(A′ ∩Q(x, r))

|Q(x, r)| · ψ(|Q(x, r)|) = 0. (2)

We will say that x is a (ψ, n)-dispersion point of A with respect to cubes if x
is a (ψ, n)-density point of A′ with respect to cubes.

In other words, x is a (ψ, n)-density point of A with respect to cubes if

limr→0
λn(A′∩Q(x,r))

rn·ψ(rn) = 0. Note that for n = 1 the notion of (ψ, 1)-density point

coincides with ψ-density point on R. If n = 1 and ψ = id, then we obtain
superdensity described by Lukeš, Malý and Zajiček [16]. If n = 2, then the
notion of (ψ, 2)-density point is equivalent to ordinary ψ-density point on the
plane described in [10] and [12].

For any A ∈ Ln we define the set

Φ(ψ,n)(A) = {x ∈ Rn : x is a (ψ, n) − density point of A with respect to cubes}

(for short, we will write Φψ in case when n = 1). Observe that

Φ(ψ,n)(A) =

{
x ∈ Rn : lim

r→0

λn(A′ ∩Q(x, r))

rn · ψ(rn)
= 0

}
=
⋂
k∈N

⋃
p∈N

⋂
r∈(0, 1p )

Akr,

where

Akr =

{
x ∈ Rn :

λn(A′ ∩Q(x, r))

rn · ψ(rn)
≤ 1

k

}
.
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Since the function F (x, r) = λn(A′∩Q(x,r))
rn·ψ(rn) is continuous with respect to x, and

Akr is a closed set for fixed r and k, it follows that Φ(ψ,n)(A) is a Fσδ set. It means
that Φ(ψ,n) : Ln → Ln. Obviously, Φ(ψ,n)(∅) = ∅, Φ(ψ,n)(R

n) = Rn. Moreover,
for any measurable A,B ⊂ Rn we have Φ(ψ,n)(A ∩ B) = Φ(ψ,n)(A) ∩ Φ(ψ,n)(B)
and if λn(A
B) = 0, then Φ(ψ,n)(A) = Φ(ψ,n)(B). Since any (ψ, n)-density point
is an ordinary density point, then for any set A ∈ Ln the difference Φ(ψ,n)(A)\A
is a set of measure zero. Hence, the operator Φ(ψ,n) is an almost lower density
operator (see [14]). It is not a lower density operator. Indeed, it is sufficient
to take a set A = E × [0, 1]n−1, where E ⊂ [0, 1] is a set of positive measure
constructed in The Second Taylor’s Theorem. Then, A ⊂ Rn is a perfect set
ofpositive measure which has no (ψ, n)-density points.

The pair (Ln,Nn), where Nn is the σ-ideal of null sets on Rn, has the hull
property. In consequence, the family

T(ψ,n) = {A ∈ Ln : A ⊂ Φ(ψ,n)(A)}

is a topology [14]. It will be called (ψ, n)-density topology. It is strictly stronger
than the natural topology T n

nat and strictly weaker than the density topology
T n
d on Rn (for n = 1 it is the ψ-density topology described in [19]).

To see how different these three topologies are, we recall the definition of sim-
ilarity.

���������� 2 ([2])� Let T1, T2 be two different topologies defined on the same
set X. We will say that topological spaces (X, T1) and (X, T2) are similar (or
the topologies T1 and T2 are similar) if they have the same families of sets with
nonempty interiors (we will write then T1 ∼ T2).

It is easy to observe that T n
d �∼ T(ψ,n) and T n

nat �∼ T(ψ,n). Take a set E from
The First Taylor Theorem. As a set of positive measure, it has a nonempty
interior in the density topology on the real line, so A = E×Rn−1 has nonempty
interior in T n

d . Simultaneously, it has the empty interior in T(ψ,n). Analogously,

B = Q′×Rn−1 has nonempty interior in T(ψ,n), but its interior in T n
nat is empty.

Among (ψ, n)-density topologies there exist nonsimilar topologies, but the proof
is much more difficult. For n = 1, it is presented in [13]. In the proof for a certain
function ψ1 ∈ C there is constructed the Cantor-like set (perfect and nowhere
dense) of positive measure with nonempty interior in Tψ1

topology and empty
interior in Tψ2

topology for another function ψ2 ∈ C.

From the fact that the operator Φ(ψ,n) is an almost lower density operator,
we immediately obtain (for details, see [14]) that (Rn, T(ψ,n)) is neither a first
countable, nor a second countable, nor a separable, nor a Lindelöf space. Sev-
eral other properties of T(ψ,n) follow from the proofs carried for the topology Tψ .
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It is easy to check that for any set U ∈ Tψ the set U × Rn−1 is open in T(ψ,n)

for the same function ψ ∈ C. Consequently, if E ⊂ R is Tψ -nowhere dense, then

E × Rn−1 is T(ψ,n)-nowhere dense.

To consider the other properties of a space (Rn, T(ψ,n)), we will use the fol-
lowing lemma which is a consequence of The Second Taylor’s Theorem.

����	 3� For any n ∈ N and any ψ ∈ C there is an increasing sequence (Ek)∞k=1

of (ψ, n)-nowhere dense and (ψ, n)-closed sets such that λn (
⋃∞
k=1 Ek) = 1.

P r o o f. Assume first that n = 1 and fix ψ ∈ C. By The Second Taylor’s The-
orem, there is a perfect nowhere dense set E1 ⊂ [0, 1] such that λ(E1) = 1

2

and lim supI→0
λ(E′

1∩I)
λ(I)ψ(λ(I)) = ∞ for all x ∈ E1. Obviously, E1 is Tψ -nowhere

dense and Tψ -closed. On every connected component (ai, bi) of the set [0, 1]\E1

we construct an analogous set Ei2 and we put E2 = E1 ∪
⋃∞
i=1E

i
2. The set E2

is Tψ -nowhere dense, Tψ -closed and λ(E2) = 1
2 + 1

4 . Inductively we construct
the increasing sequence of Tψ -nowhere dense and Tψ -closed sets Ek. It is easy
to observe that λ (

⋃∞
k=1 Ek) = 1.

If n is an arbitrary positive integer and ψ ∈ C, then we use the first part of the
lemma for the function ψ∗(t) = ψ(tn), and

(
Ek × [0, 1]n−1

)∞
k=0

is the requested
sequence of sets. �

Clearly, null sets are (ψ, n)-closed and (ψ, n)-nowhere dense. Directly from
the above lemma, we obtain:

����������� 4� For any n ∈ N and ψ ∈ C the set Rn is a T(ψ,n)-first cate-
gory set. Consequently, (Rn, T(ψ,n)) is not a Baire space.

Later, we will use Lemma 3 once more to show that (Rn, T(ψ,n)) is not regular.
Making use of the results obtained for topologies Tψ , we have the following
observations.

������	���� 5� Let ψ1, ψ2∈C. If lim supx→0
ψ1(x)
ψ2(x) <∞, then T(ψ1,n)⊂T(ψ2,n).

If simultaneously lim infx→0
ψ1(x)
ψ2(x) > 0, then T(ψ1,n) = T(ψ2,n).

P r o o f. Assume that lim supx→0
ψ1(x)
ψ2(x) <∞. Take A ∈ T(ψ1,n) and x ∈ A. Then,

limr→0
λn(A′∩Q(x,r))
rn·ψ1(rn) = 0. From the equality

λn(A′ ∩Q(x, r))

rn · ψ2(rn)
=
λn(A′ ∩Q(x, r))

rn · ψ1(rn)
· ψ1(rn)

ψ2(rn)

we immediately obtain that

lim
r→0

λn(A′ ∩Q(x, r))

rn · ψ2(rn)
= 0, hence A ∈ T(ψ2,n).

In the same way, we show that if lim infx→0
ψ1(x)
ψ2(x) > 0, then T(ψ2,n) ⊂ T(ψ1,n). �
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������	���� 6� Let ψ1, ψ2 ∈ C. If limx→0
ψ2(x)
ψ1(x) = ∞, then T(ψ1,n) � T(ψ2,n)

for any n ∈ N.

P r o o f. From the condition limx→0
ψ2(x)
ψ1(x) = ∞, it follows that

lim sup
x→0

ψ1(x)

ψ2(x)
<∞

and from Observation 5, we obtain the inclusion T(ψ1,n) ⊂ T(ψ2,n). We will show

that this inclusion is proper. Put ψ∗
i (r)=ψi(r

n), i=1, 2. Then, limx→0
ψ∗

2 (x)
ψ∗

1 (x) =∞.

From [11, Theorem 8], there exists a set A ∈ Tψ∗
2
\ Tψ∗

1
. Then,

A× Rn−1 ∈ T(ψ2,n) \ T(ψ1,n). �

There are some properties of topologies T(ψ,n) which depend on the so-
-called Δ2 condition.

���������� 7� We will say that ψ ∈ C fulfills (Δ2) condition (ψ ∈ Δ2) if

lim sup
h→0+

ψ(2h)

ψ(h)
<∞. (Δ2)

It is easy to observe that

ψ ∈ Δ2 if and only if lim sup
h→0+

ψ(αh)

ψ(h)
<∞ for any α > 0 (see [11]).

The name of this condition is taken from the theory of Orlicz spaces. Functions
of the form ϕ(x) = xp, p ≥ 1, play an important role in these spaces because
for such functions the Orlicz space Lϕ(μ) becomes Lp(μ) space. In the the-
ory of (ψ, n)-density topologies, we also obtain interesting results for functions
of similar form: ψ(x) = xα, α > 0.

Obviously, for any ψ ∈ C, (ψ, n)-density topology is invariant under transla-
tion.

������	���� 8� The topology T(ψ,n) is invariant under multiplication by non-
zero numbers if and only if ψ ∈ Δ2.

P r o o f. Observe that for any α > 0 and A ∈ Ln
λn(αA′ ∩Q(x, r))

rn · ψ(rn)
=

αnλn(A′ ∩Q(x, rα))

αn ·
(
r
α

)n · ψ
((

r
α

)n) · ψ
((

r
α

)n)
ψ(rn)

.

If ψ ∈ Δ2 and A ∈ T(ψ,n), then, from the above equality, αA ∈ T(ψ,n) for any
α > 0. To show the opposite implication, assume that there is a > 0 such that

lim suph→0+
ψ(ah)
ψ(h)

= ∞. Put ψ∗(h) = ψ(hn). Then, lim suph→0+
ψ∗(ah)
ψ∗(h)

= ∞.

From [19], it follows that then, there exists an interval set A =
⋃∞
i=1[ai, bi]

with 0 < ai < bi < ai+1, i ∈ N, such that 0 is a ψ∗-density point of A and is not
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a ψ∗-density point of aA. Then, 0 is a (ψ, n)-density point of E = A × [0, 1]n−1

and is not a (ψ, n)-density point of aE. �

In consequence, if ψ1 ∈ Δ2 and ψ2 /∈ Δ2, then T(ψ1,n) �= T(ψ2,n).

������	���� 9� For any function ψ ∈ Δ2 there exist functions ψ1, ψ2 ∈ Δ2

such that T(ψ1,n) � T(ψ,n) � T(ψ2,n).

P r o o f. Let ψ1(x) = xψ(x) and ψ2(x) =
√
ψ(x). Then, ψ1, ψ2 ∈ Δ2 and

lim
x→0+

ψ(x)

ψ1(x)
= lim
x→0+

ψ2(x)

ψ(x)
= ∞.

From Observation 6, we obtain T(ψ1,n) � T(ψ,n) � T(ψ2,n). �

Some information on ψ-density topologies on R which are generated by ψ �∈Δ2

one may find in [11]. In particular, it was shown that for any α > 0 there is a
function ψα �∈ Δ2 such that Txα+1 � Tψα

� Txα . Based on this observation, we
can show an analogous result for (ψ, n)-density topologies: for any number α > 0
there exists a function ψα /∈ Δ2 for which T(xα+1,n) � T(ψα,n) � T(xα,n).

In Definition 2, we may use various differentiation basis. It is interesting that
for ψ ∈ Δ2 the notion of (ψ, n)-density point with respect to cubes coincide with
the following notion.

���������� 10� Let ψ ∈ C, x ∈ Rn, A ∈ Ln. We will say that x is an (ψ, n)-
-density point of A with respect to balls if

lim
r→0

λn(A′ ∩B(x, r))

|B(x, r)| · ψ(|B(x, r)|) = 0.

As the volume of the ball is described by the formula |B(x, r)| = ω(n)rn,

where ω(n) = π
n
2

Γ(n
2 +1)

(Γ is the Euler gamma function), equivalently we may

consider the condition
lim
r→0

λn(A′ ∩B(x, r))

rn · ψ(ω(n)rn)
= 0.

����������� 11� Assume that ψ ∈ Δ2. Then, x is a (ψ, n)-density point of A
with respect to balls if and only if it is a (ψ, n)-density point of A with respect
to cubes.

P r o o f. Clearly, for any cube Q(x, r) there exist numbers a, b > 0 such that
Q(x, r) ⊂ B(x, ar) and B(x, r) ⊂ Q(x, br). Assume that x is a (ψ, n)-density
point of A with respect to balls. Then

λn(A′ ∩Q(x, r))

rn · ψ(rn)
· ψ(rn)

ψ(ω(n)anrn)
=
λn(A′ ∩Q(x, r))

rn · ψ(ω(n)anrn)
≤ λn(A′ ∩ B(x, ar))

rn · ψ(ω(n)anrn)
.
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As ψ ∈ Δ2, lim supr→0+
ψ(rn)

ψ(ω(n)anrn) < ∞ and x is a (ψ, n)-density point of A

with respect to cubes.

Analogously, if x is a (ψ, n)-density point of A with respect to cubes, then

λn(A′ ∩B(x, r))

rn · ψ(bnrn)
=
λn(A′ ∩ B(x, r))

rn · ψ(ω(n)rn)
· ψ(ω(n)rn)

ψ(bnrn)
≤ λn(A′ ∩Q(x, br))

rn · ψ(bnrn)
.

�

������� 12� Let ψ �∈ Δ2. Then

(a) there exists a set A ⊂ Rn such that 0 is a (ψ, n)-density point of A with
respect to balls and it is not a (ψ, n)-density point of A with respect to cubes;

(b) there exists a set B ⊂ Rn such that 0 is a (ψ, n)-density point of B with
respect to cubes and it is not a (ψ, n)-density point of B with respect to balls.

P r o o f. We describe the construction for n = 2. The proof for bigger n is
analogous. First, we will construct the measurable set A ⊂ R2 such that 0 is
not its (ψ, 2)-dispersion point with respect to cubes and 0 is its (ψ, 2)-dispersion
point with respect to balls.

Let

Θ = (0, 0), r > 0, F (A, r) =
λ2(A ∩Q(Θ, r))

r2ψ(r2)

and

G(A, r) =
λ2(A ∩B(Θ, r))

πr2ψ(πr2)
.

The set Xr = Q(Θ, r) \B
(
Θ,
√

2
5r
)

has a positive Lebesgue measure and∣∣∣∣B(Θ,
√

2
5r
)∣∣∣∣ = 2π

5 |Q(Θ, r)|.

Moreover, λ2(Xr) > 4P, where P denotes the area of the isosceles right triangle
included in Xr with hypotenuse tangent to the ball B(Θ, r). Hence

λ2

(
Xr ∩Q(Θ, r)

)
= λ2(Xr) >

(√
2 − 2

√
2

5

)2
r2. (3)

Let us denote α =
(√

2 − 2
√

2
5

)2
. Since ψ �∈ Δ2, then there exists h1 > 0 such

that ψ(h1) ≤ α and
ψ(h1)

ψ(2π
5 h1)

<
1

5
. (4)

Let r1 =
√
h1. By (3), we obtain

F (Xr1 , r1) =
λ2(Xr1 ∩Q(Θ, r1))

r2
1ψ(r2

1)
>

αr2
1

r2
1ψ(r2

1)
≥ 1.
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Let A1 be a measurable subset of Xr1 such that λ2(A1)
r21ψ(r21)

= 1. For 0 < r <
√

2
5r1

the ball B(Θ, r) is disjoint with A1, hence G(A1, r) = 0. For r ≥
√

2
5r1 from (4)

we have

G(A1, r) =
λ2(A1 ∩B(Θ, r))

πr2ψ(πr2)
≤ λ2(A1)

2π
5 r

2
1 · ψ

(
2π
5 r

2
1

)
=

λ2(A1)

r2
1 · ψ (r2

1)
·
ψ
(
r2
1

)
ψ
(

2π
5 r

2
1

) · 5

2π
<

1

5
.

Hence, G(A1, r) <
1
5 for any r > 0.

Assume that we defined positive numbers r1 > r2 > · · · > rk−1 and measur-
able disjoint sets A1, A2, . . . , Ak−1 such that for any i = 1, 2, . . . , k − 1:

Ai⊂Q(Θ, ri) \B
(

Θ,

√
2

5
ri

)
, F (Ai, ri)=1 and G(Ai, r)<

1

5i
for r>0.

There exists rk <
√

2
5rk−1 such that |Q(Θ, rk)| ≤ λ2(Ak−1) and

ψ(r2k)

ψ( 2π
5 r

2
k)
< 1

5k .

Analogously, as we did it before, we choose the measurable set Ak ⊂ Q(Θ, rk) \
B
(

Θ,
√

2
5rk

)
such that F (Ak, rk) = 1. Then: for 0 < r <

√
2
5rk the ball

B(Θ, rk) is disjoint with Ak, so G(Ak, r) = 0 and for r ≥
√

2
5r1

G(Ak, r) =
λ2(Ak ∩ B(Θ, r))

πr2ψ(πr2)
≤ λ2(Ak)

r2
k · ψ (r2

k)
·
ψ
(
r2
k

)
ψ
(

2π
5
r2
k

) · 5

2π
<

1

5k
.

Therefore, for any r > 0 we obtain G(Ak, r) <
1
5k .

Put A =
⋃∞
k=1Ak. Then, 0 is not a (ψ, 2)-dispersion point of A with respect

to cubes (because for any k ∈ N, we have F (Ak, rk) = 1). Simultaneously, 0 is a
(ψ, 2)-dispersion point of A with respect to balls. Indeed, first observe that for
i ≥ k + 1 all sets Ai are included in the cube

Q(Θ, rk+1) and |Q(Θ, rk+1)| ≤ λ2(Ak).

Moreover, those sets are included in B
(

Θ,
√

2
5rk

)
, hence

λ2

(
A ∩ B(Θ, rk−1)

)
≤ λ2

(
A ∩B

(
Θ,

√
2

5
rk

))

≤
∞∑
i=k

λ2(Ai) ≤
∞∑

i=k+1

λ2(Ai) + λ2(Ak)

≤ Q(Θ, rk+1)| + λ2(Ak) ≤ 2λ2(Ak).
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Take r > 0. Then, there is a number k ∈ N such that r ∈ (rk, rk−1).

From monotonicity of ψ, we have
ψ(r2

k)

ψ(πr2
k)

≤ ψ(r2
k)

ψ(2π
5 r

2
k)

≤ 1

5k
and consequently,

G(A, r) ≤ λ2(A ∩ B(Θ, rk−1))

πr2
k · ψ (πr2

k)
≤ 2λ2(Ak)

r2
k · ψ (r2

k)
·
ψ
(
r2
k

)
ψ (πr2

k)
· 1

π
<

1

5k
,

which finishes the proof of the first part of the theorem.

The proof of (b) is analogous. For any r > 0, the set

Xr = B(Θ, r) \Q
(

Θ,

√
7

2
r

)

has a positive Lebesgue measure and λ2(Xr)
|B(Θ,r)| is constant. Denote α =

λ2(Xr)

|B(Θ, r)| .
Since ψ �∈ Δ2, then there exists a positive number h1 such that

ψ(πh1)

ψ(7
2h1)

<
1

5
and ψ(πh1) ≤ α.

Put r1 =
√
h1. Then

G(Xr1 , r1) =
λ2(Xr1 ∩B(Θ, r1))

πr2
1ψ(πr2

1)
=

λ2(Xr1)

|B(Θ, r1)| ·
1

ψ(πr2
1)

≥ 1.

Let V1 be a measurable subset of Xr1 for which

λ2(V1)

|B(Θ, r1)| ·
1

ψ(πr2
1)

= 1.

Then, F (V1, r) = 0 for any 0 < r <
√

7
2r1 (because V1 ∩ Q(Θ, r) = ∅).

For r ≥
√

7
2r1 we have

F (V1, r) =
λ2(V1 ∩Q(Θ, r))

r2ψ(r2)
≤ λ2(V1)

7
2r

2
1 · ψ

(
7
2r

2
1

) =
λ2(V1)

πr2
1 · ψ (πr2

1)
·
ψ
(
πr2

1

)
ψ
(

7
2r

2
1

) · 2π

7
<

1

5
.

Hence, F (V1, r) <
1
5 for any r > 0. We fix k ∈ N and assume that we defined

positive numbers r1, r2, . . . , rk−1 and the sets V1, V2, . . . , Vk−1 such that for any
i = 1, 2, . . . , k − 1:

Vi ⊂ B(Θ, ri) \Q
(

Θ,

√
7

2
ri

)
, G(Vi, ri) = 1 and F (Vi, r) <

1

5i
for r>0.

Take rk < rk−1 for which

|B(Θ, rk)| ≤ λ2(Vk−1) and
ψ(πr2

k)

ψ(7
2r

2
k)
<

1

5k
.
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Repeating the previous reasoning, we choose the measurable set

Vk ⊂ B(Θ, rk) \Q
(

Θ,

√
7

2
rk

)
such that G(Vk, rk) = 1.

Then,

F (Vk, r) <
1

5k
for any r > 0.

By puting V =
⋃∞
k=1 Vk, we obtain, in the same way as in the previous part

of the proof, that 0 is its (ψ, 2)-dispersion point of V with respect to cubes and
0 is not a (ψ, 2)-dispersion point of V with respect to balls. �

It is evident that functions of the form ψ(x) = xα with α > 0 fulfill (Δ2)
condition. Hence, for such functions, (ψ, n)-density with respect to balls means
the same as with respect to cubes and it is equivalent to the notion of m-
-density examined in [5]. From Observation 6, we obtain continuum different
m-density topologies Tm for different m and if m1 > m2, then Tm1

� Tm2
.

From Proposition 2 [13], it follows that for any m ∈ [n,∞) there is a function
ψ ∈ C such that Tm is not similar to T(ψ,n). Moreover, for any m ∈ [n,∞)
there exists a number k > m such that Tm is not similar to Tk. Indeed, for
m = n the topology Tn coincides with the density topology on Rn and it is not
similar to any topology Tm for m > n. Based on Theorem 22 and Proposition 24
from [13], for any α > 1 there exists a perfect set E ⊂ [0, 1] of positive measure
which has nonempty interior in the topology Tψ1

for ψ1(x) = xα−1 and has the

empty interior in Tψ2
with ψ2(x) = x3α−1. Making use of the set E×Rn−1 ⊂ Rn,

one can check that for any m ∈ (n,∞) the topology Tm is not similar to T3m.
We do not know if topologies Tm and T2m are similar.

From Proposition 4, we have that (Rn, T(ψ,n)) is not a Baire space. Since
T(ψ,n) is finer than the natural topology on Rn, (Rn, T(ψ,n)) is a Hausdorff space.
Repeating the reasoning from [16] (Sections 4. A and 6. D), using the notion
of Gδ-insertion property and Theorem 4.6, one may conclude that (Rn, T(ψ,n)) is
not regular. For the convenience of the reader, we will prove it straightforward
using Lemma 3.

������� 13� For any n ∈ N and ψ ∈ C the space (Rn, T(ψ,n)) is not regular.

P r o o f. Observe that the function ψ∗(t) = ψ(tn) belongs to C, too. Let (Ek)
∞
k=1

be the increasing sequence of Tψ∗ -nowhere dense and Tψ∗ -closed subsets of [0, 1]

constructed in Lemma 3. Let us consider the set A =
(
(
⋃∞
k=1 Ek)∩(0, 1)

)
×Rn−1.

It is open in (ψ, n)-density topology because λn((0, 1)n \ A) = 0. We will prove
that (Rn, T(ψ,n)) is not regular by showing that for any nonempty set U ⊂ A
open in (ψ, n)-density topology, the T(ψ,n)-closure of U is not contained in A.
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Let us fix a subset U ∈ T(ψ,n) of A. We will find a sequence
(
x(k)

)
k∈N

of ele-

ments of U such that x = limk→∞ x(k) �∈ A and

lim sup
r→0

λn(U ∩Q(x, r))

rn
≥ 1

2
.

Since E1 × Rn−1 is Tψ -nowhere dense and U ∈ T(ψ,n), there is a point

x(1) = (x
(1)
1 , . . . , x(1)

n ) ∈ U \
(
E1 × Rn−1

)
.

The sequence (Ek)k∈N
is increasing and x

(1)
1 ∈

⋃∞
k=1 Ek, so there is p1 ∈ N such

that x
(1)
1 ∈ Ep1 \ Ep1−1. We denote by (a1, b1) this component of R \ Ep1−1

which contains x
(1)
1 and we put ε1 = min{x(1)

1 −a1, b1 − x
(1)
1 }. Since x(1) is a

(ψ, n)-density point of U (so, it is a density point of U ), we can choose a number
r1 ∈ (0, ε1) such that λn

(
U ∩Q(x(1), r1)

)
> rn1 ·

(
1 − 1

2n+1

)
. Then,

λn

(
Q(x(1), r1) \ U

)
< rn1 · 1

2n+1
=
(r1

2

)n
· 1

2
.

Note that if y ∈ Q(x(1), r14 ), then Q(y, r12 ) ⊂ Q(x(1), r1). Therefore, λn

(
U ∩

Q
(
y, r12

))
> ( r12 )n · 1

2 . Moreover, for any y ∈ Q(x(1), r14 ) the distance between

y and Ep1−1 × Rn−1 is greater than 3
4r1.

The set U1 = U ∩ Q(x(1), r1) has a nonempty T(ψ,n)-interior, so there ex-

ists point x(2) ∈ U1 \
(
Ep1 × Rn−1

)
. Denote by p2 a positive integer such that

x
(2)
1 ∈ Ep2 \ Ep2−1 and by (a2, b2) the component of R \ Ep2−1 such that

x
(2)
1 ∈ (a2, b2).

We now proceed by induction and we find a sequence (x(k))k∈N of points
of Rn, a sequence (pk)k∈N of positive integers, and a decreasing sequence (rk)k∈N

tending to zero such that for any k ∈ N and any y ∈ Q(x(k), rk4 )

x(k) ∈ U ∩Q
(
x(k−1),

rk
4

)
, (5)

λn

(
U ∩Q

(
y,
rk
2

))
>
(r1

2

)n
· 1

2
, (6)

dist
(
y, Epk−1 × Rn−1

)
>

3

4
rpk−1. (7)

From (5), we know that the sequence (x(k))k∈N is convergent. By (7),

x = lim
k→∞

x(k) �∈ A.

Finally, for any k ∈ N and x ∈ Q(x(k), rk4 ) from (6)

lim sup
r→0

λn(U ∩Q(x, r))

rn
≥ lim sup

k→∞

λn(U ∩Q(x, rk2 ))(
rk
2

)n ≥ 1

2
. �
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At the end of the article, we show that the generalized densities are used
in such distant areas of mathematics as theory of sets of finite perimeter and
Sobolev spaces.

3. Applications

According to the legend, ancient Carthage was founded on the land which can
be encompassed by a single ox hide. This hide was cut into thin strips which were
put end to end to encircle the hill. It was the source of the first isoperimetric
problem: what is the curve which encloses the maximum area for a given perime-
ter? To formulate analogous problem in Rn, we need a notion of volume of a set
and a notion of perimeter of a set. Those two notions are basic for geometric
measure theory and the sets of finite perimeter are the basic geometric tools
in the theory of currents, of rectifiable sets, of functions with bounded variation.

First results connected with volume were obtained by H. Lebesgue in 1901-
-1902. In the 1920s, R. Cacciopoli gave the first modern definition of perimeter
and later, in the 1950s, it was developed by Cacciopoli and E. De Giorgi. The def-
inition of perimeter of a Borel set E ⊂ Rn given by Cacciopoli was geometric
and intuitive. It was equal to

P (E) = inf
{

lim inf
n→∞ Area(δEn), En polyhedra, En → E in L1

(loc)

}
.

It is obvious that E has finite perimeter if P (E) <∞.

Following [8], we present the definition of De Giorgi.

���������� 14� Let U be an open set in Rn, f : Rn → Rm. A variation of a
Lebesgue integrable function f on U is given by

Df(U ) = sup

⎧⎨
⎩
∫
U

(divG)f dx : G ∈ C1
0 (U,Rn), |G(x)|Rn ≤ 1 for all x ∈ U

⎫⎬
⎭ ,

where div(G) =
∑n
i=1

δGi

δxi
, C1

0 (U,Rn) denotes the set of all Rn-valued functions
G on U such that G is continuously differentiable and G vanishes outside a cer-
tain compact subset of U , |·|Rn denotes the Euclidean norm on Rn. If Df(U )<∞,
then we say that f is of finite variation. We say that f ∈ L1

(loc)(U ) has locally

bounded variation in U if for each open set V ⊂⊂ U (this means that V is
compactly contained in U )

Df(U ) = sup

⎧⎨
⎩
∫
U

(divG)f dx : G∈C1
0 (V,Rn), |G(x)|Rn ≤1 for all x∈V

⎫⎬
⎭ .
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We will write then f ∈ BV(loc)(U ).

We say that a Lebesgue measurable bounded set E ⊂ U has a locally finite
perimeter (denoted by P (E)) in U if χE ∈ BV(loc)(U ), where χE is the indicator
function of a set E.

The next step of defining the perimeter was done by H. Federer in the 1960s.
The notion of perimeter was a generalization of Hn−1-measure of the boundary
of a set E. The topological boundary of the set of finite perimeter can be very
irregular, it can even have full Lebesgue measure. The primeter of a set is in-
variant under modifications by sets of Lebesgue measure zero (in Rn), although
such a set may essentially change (increase) the size of topological boundary.

H. Federer characterized the sets of finite perimeter via Hausdorf measure
Hn−1 of (so-called) the essential boundary of a set.

���������� 15� The essential (measure-theoretic) boundary of the set E is
defined by

δ∗E =

{
x ∈ Rn : lim sup

r→0
min

{
λn(B(x, r) ∩ E)

|B(x, r)| ,
λn
(
B(x, r) \ E

)
|B(x, r)|

}
> 0

}
.

������� 16 ( [9])� E has a finite perimeter if and only if Hn−1(δ∗E) <∞.

Moreover, Federer proved that P (E) = Hn−1(δ∗E). He also showed that if
a set E ⊂ Rn is of finite perimeter, then Hn−1(δ∗E \ Σ 1

2
E) = 0, where the

boundary Σ 1
2
E consists of such points where both E and its complement E′

have density exactly 1
2 . Moreover, according to [1], he proved that there exists

a set N such that Hn−1(N) = 0 and Rn = E1 ∪ δ∗(E)∪E0 ∪N (E1 and E0 are
the interior and exterior of E in density topology, respectively).

Recently, in 2020 in [15], there was shown that Federer’s characterization
given in Theorem 16 remains true if the essential boundary of E is exchanged
by the smaller boundary (called strong boundary) consisting of those points
where the lower densities of sets E and E′ are at least a given number.

In 2012 in [4], there was presented a definition of enhanced density points
and enhanced density sets. Delladio transfered superdensity from the real line
into Rn. It is a case of (ψ, n)-density with respect to balls for ψ = id. Observe
that such ψ fulfills Δ2 condition, so this notion is equivalent to (ψ, n)-density
with respect to cubes.

���������� 17 ([4])� x ∈ Rn is an enhanced density point of A ⊂ Rn if

lim
r→0

λ∗n(A′ ∩B(x, r))

rn+1
= 0.

In the same paper, Delladio proved the following theorem.
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������� 18� Let E be a locally finite perimeter subset of Rn, n ≥ 2. Then

lim
r→0

λ∗n(A′ ∩B(x, r))

rn+ n
n−1

= 0 at a.e. x ∈ E.

In particular, E is an enhanced density set. With denotations from Section 2,
enhanced density set means that λn(E\Φ(x,n)(E)) = 0. From the above theorem,
it follows that the family of enhanced density sets includes locally finite perimeter
sets which have some applications in differential forms, rectifiable sets, partially
differencial equations.

The properties of enhanced density proved among others in [4] follow directly
from the properties of (ψ, n)-density as a special case. It is interesting, then
although the results are the same, the presented proofs show quite different
tools and methods.

In 2015, Delladio generalized his definition of enhanced density (see [5]).
He showed the connection between the theory of sets of finite perimeter and
fine topology methods, which have some applications in potential theory.

���������� 19� Let m ∈ [n,∞); x ∈ Rn is an m-density point of A ⊂ Rn if

lim
r→0

λ∗n(A′ ∩B(x, r))

rm
= 0.

Directly from the observation

lim
r→0

λ∗n(A′ ∩ B(x, r))

rm
= 0 ⇐⇒ lim

r→0

λ∗n(A′ ∩B(x, r))

|B(x, r)| · rm−n = 0,

we have the next remark.

Remark 20. If ψ(x) = xα for α ≥ 0, then (ψ, n)-density point with respect
to balls is equivalent to the notion of m-density examined by Delladio (in par-
ticular, for α = 1 it is the enhanced density).

������� 21 ([5])� Let E be a set of finite perimeter in Rn, n ≥ 2. Then

lim
r→0

λ∗n(A′ ∩ B(x, r))

rm0
= 0 at a.e. x ∈ E, with m0 = n+ 1 +

1

n− 1
.

That means that almost every point of a set of finite perimeter is its m0-
-density point (a half of the Lebesgue Density Theorem). Moreover, m0 is the
maximum order of density common to all sets of finite perimeter.

������� 22 ([5])� For all m > m0 there is a compact set Fm of finite perimeter
in Rn such that λ∗n(Fm) > 0 and the set of m-density points of Fm is empty.

Sets of finite perimeter have become a tool to study many problems involv-
ing surfaces and interfaces, in areas such as materials science, fluid mechanics,
surface physics, image processing, oncology, and computer vision.
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Sobolev spaces are inextricably associated with partial differential equations.
For us, it was a real surprise when we found out that in this part of mathe-
matics there are many elements of real functions theory linked to different kinds
of densities and approximately continuities.

For the convenience of the reader, we recall some basic definitions and deno-
tations. Sobolev functions on Rn are the functions f : U → Rm (U is an open
subset of Rn) such that their weak first derivatives belong to some Lp space,
1 ≤ p ≤ ∞.

���������� 23 ( [8])� Assume that f ∈ L1
(loc)(U ), 1 ≤ i ≤ n. We say that

gi ∈ L1
(loc)(U ) is the weak partial derivative of f with respect to xi in U if

∫
U

f
∂ϕ

∂xi
= −

∫
U

giϕ dx for all ϕ ∈ C1
0 (U ).

We will say that f belongs to the Sobolev space W 1,p(U ) if f ∈ Lp(U ) and

the weak partial derivatives ∂f
∂xi

exist and belong to Lp(U ) for i = 1, . . . , n.

The function f belongs to W 1,p
(loc)(U ) if f ∈ W 1,p(V ) for each open set V ⊂ U .

We say that f is a Sobolev function if f ∈ W 1,p
(loc)(U ) for some 1 ≤ p ≤

∞. Each Sobolev function has locally bounded variation (but not contrary).
Every Sobolev space is a Banach space.

The notion of approximately continuous functions was introduced at the be-
ginning of the 20th century. In 1915, A. Denjoy [7] stated that a real valued
function f is approximately continuous at a point x0 if and only if there exists
a measurable set Ax0

such that

lim
h→0+

m(Ax0
∩ [x0 − h, x0 + h])

2h
= 1 and f(x0) = lim

x→x0

x∈Ax0

f(x).

This first definition did not involve the concept od density topology, which
was defined later in the 1960s. Now, a point x0 which fulfills the first from
above conditions is called a density point of a set Ax0

. Almost simultaneously,
Denjoy also defined the approximate upper limit of f at x0 as the greatest

lower bound of all members y for which limh→0+
m(B∩[x0−h,x0+h])

2h = 0, where
B = {x ∈ R : f(x) > y}. Analogously, one can define the approximate lower limit
of f at x0. When both values are equal, then we say that there exists the ap-
proximate limit denoted by (ap) limx→x0

f(x). It is proved ( [20]) that these two
definitions of approximately continuity are equivalent and we can say that f is
approximately continuous at a point x0 if and only if f(x0) = (ap) limx→x0

f(x).
Making use of approximate limit, one may define approximate differentiation
not only for real functions but also for functions from Rn into Rm.
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���������� 24 ([8])� Let f : Rn → Rm. We say that f is approximately differ-
entiable at x ∈ Rn if there is a linear mapping L : Rn → Rm such that

(ap) lim
y→x

|f(y) − f(x) − L(y − x)|
|y − x| = 0.

������� 25 ([8])� Assume that f ∈ BV(loc)(R
n). Then, f is approximately

differentiable almost everywhere with respect to λn (we will write λn-a.e.).

Since W 1,p
(loc)(R

n) ⊂ BV(loc)(R
n) (1 ≤ p ≤ ∞), any Sobolev function is ap-

proximately differentiable λn-a.e. Its approximate derivative is equal to its weak
derivative λn-a.e. The above result was widen onto m-approximately continuity
(differentiability) by Delladio in [6].

���������� 26 ( [6])� A function f : A → R (A ⊂ Rn) is m-approximately
continuous (differentiable) at x if there is a set E ⊂ A such that x ∈ E is a point
of m-density of E and f |E is continuous (differentiable).

������� 27 ( [6])� Let E be an open set in Rn, n ≥ 2, f ∈ W 1,p
(loc)(E) with

1≤p<n. Then, f is (n+ p∗)-approximately continuous a.e. in E (p∗ = np
n−p is

the Sobolev conjugate of p).

A set of the form L−(f) = {x : f(x) ≤ c, x ∈ Rn, c ∈ R} is called a sub-
level of a function f . By exchanging ≤ into ≥ in this denotation we obtain the
definition of superlevel of f .

������� 28 ([6])� If E is a sublevel (superlevel) set of a function f ∈W 1,p
(loc)(E),

then almost every point of E (with respect to λn) is its (n+ p∗)-density point.
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