Mathematical Publications
DOI: 10.2478/tmmp-2019-0022
Tatra Mt. Math. Publ. 74 (2019), 85-90

HOW TO OBTAIN
 MAXIMAL AND MINIMAL SUBRANGES OF TWO-DIMENSIONAL VECTOR MEASURES

Jerzy Legut - Maciej Wilczyński
Faculty of Pure and Applied Mathematics, Wrocław, POLAND

Abstract

Let (X, \mathcal{F}) be a measurable space with a nonatomic vector measure $\mu=\left(\mu_{1}, \mu_{2}\right)$. Denote by $R(Y)$ the subrange $R(Y)=\{\mu(Z): Z \in \mathcal{F}, Z \subseteq Y\}$. For a given $p \in \mu(\mathcal{F})$ consider a family of measurable subsets $\mathcal{F}_{p}=\{Z \in \mathcal{F}$: $\mu(Z)=p\}$. Dai and Feinberg proved the existence of a maximal subset $Z^{*} \in \mathcal{F}_{p}$ having the maximal subrange $R\left(Z^{*}\right)$ and also a minimal subset $M^{*} \in \mathcal{F}_{p}$ with the minimal subrange $R\left(M^{*}\right)$. We present a method of obtaining the maximal and the minimal subsets. Hence, we get simple proofs of the results of Dai and Feinberg.

1. Introduction

Let $\mu=\left(\mu_{1}, \mu_{2}\right)$ be a finite nonatomic vector measure defined on a measurable space (X, \mathcal{F}), where $\mu_{1} \neq \mu_{2}$. For simplicity and without loss of generality, we assume that $\mu_{1}(X)=\mu_{2}(X)=1$. For each $Y \in \mathcal{F}$ denote by $R(Y)$ the subrange $R(Y)=\{\mu(Z): Z \in \mathcal{F}, Z \subseteq Y\} \subseteq \mu(\mathcal{F})$. It follows from the famous Lyapunov convexity theorem (see Lyapunov [6]) that the subranges $R(Y)$ are convex and compact in \mathbb{R}^{2} for all $Y \in \mathcal{F}$.

For each $p=\left(p_{1}, p_{2}\right) \in \mu(\mathcal{F})=R(X)$ denote by $\mathcal{F}_{p} \subseteq \mathcal{F}$ the following family of measurable subsets of X :

$$
\mathcal{F}_{p}=\{Z \in \mathcal{F}: \mu(Z)=p\} .
$$

Dai and Feinberg [3] defined maximal and minimal subsets of X with the measure p.

[^0]Definition 1.1. A subrange $R\left(Z^{*}\right)$ of $Z^{*} \in \mathcal{F}_{p}$ is called the maximal if $Z \in \mathcal{F}_{p}$ implies that $R(Z) \subseteq R\left(Z^{*}\right)$. We call the set $Z^{*} \in \mathcal{F}_{p}$ the maximal subset of X with the measure p.

Definition 1.2. A subrange $R\left(M^{*}\right)$ of $M^{*} \in \mathcal{F}_{p}$ is called the minimal if $M \in \mathcal{F}_{p}$ implies that $R\left(M^{*}\right) \subseteq R(M)$. We call the set $M^{*} \in \mathcal{F}_{p}$ the minimal subset of X with the measure p.

Dai and Feinberg [3] proved the existence of the maximal and the minimal subsets of X and showed geometric construction of the maximal subranges. We show a method of obtaining such subsets and give another construction of the maximal and also the minimal subranges. Finally, we present a simple example to illustrate the method.

A similar problem concerning a Chebyshev measure was considered by B i a nchini et. al. [1]. They proved that a strictly convex, centrally symmetric and compact subset of \mathbb{R}^{2}, whose boundary contains the origin, is the range of a Chebyshev measure.

2. Main results

Denote by $f_{i}=d \mu_{i} / d m, i=1,2$ the Radon-Nikodym derivatives with respect to the measure $m=\mu_{1}+\mu_{2}$. Legut and Wilczyński [4] used some results of Candeloro and Martellotti [2] to prove the existence of an increasing family of sets $\{A(t)\}_{t \in[0,1]} \subseteq \mathcal{F}$ satisfying

$$
\begin{gather*}
\mu_{1}(A(t))=t, \quad \mu_{2}(A(t))=\max \left\{\mu_{2}(A): A \in \mathcal{F}, \mu_{1}(A(t))=t\right\} \quad t \in[0,1], \tag{2.1}\\
\text { if } t_{1}<t_{2}, t_{1}, t_{2} \in[0,1], \quad \text { then } \quad A\left(t_{1}\right) \subset A\left(t_{2}\right) . \tag{2.2}
\end{gather*}
$$

Moreover, it follows from the Neyman-Pearson lemma (see Lehmann and Rom a no [5], cf. [4]) that there exists a number $y \geq 0$ depending on $t, t \in[0,1]$, such that

$$
I_{A(t)}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f_{2}(x)>y f_{1}(x) \\
0 & \text { if } & f_{2}(x)<y f_{1}(x)
\end{array}\right.
$$

where $I_{A(t)}(x)$ stands for the indicator function of $A(t)$. Leg ut and Wilc z y ński [4] noticed that the range $R(X)$ can be described by the convex, continuous and nondecreasing function $G:[0,1] \rightarrow[0,1]$ defined by $G(t)=\mu_{2}(A(t))$, $t \in[0,1]$ as follows

$$
\begin{equation*}
R(X)=\left\{(t, s) \in[0,1]^{2}: 0 \leq t \leq 1, \quad 1-G(1-t) \leq s \leq G(t)\right\} \tag{2.3}
\end{equation*}
$$

For given $p=\left(p_{1}, p_{2}\right) \in R(X)$, we assume further that $p_{2} \geq p_{1}$. The case of $p_{2}<p_{1}$ can be solved in a similar way.

SUBRANGES OF VECTOR MEASURES

Theorem 2.1. Let $p=\left(p_{1}, p_{2}\right) \in \operatorname{int}(R(X))$. Then, there exists a number $t_{*} \in(0,1)$ such that $Z^{*}=A\left(t_{*}\right) \cup\left(X \backslash A\left(1-p_{1}+t_{*}\right)\right)$ is the maximal subset with the measure p. If $p=\left(p_{1}, p_{2}\right) \in \partial R(X)$, then $Z^{*}=A\left(p_{1}\right)$ is the maximal subset.

Proof. Assume first that $p=\left(p_{1}, p_{2}\right) \in \operatorname{int}(R(X))$. It follows from the properties of the function G that there exists $t_{*} \in\left(0, p_{1}\right)$ such that

$$
\begin{equation*}
G\left(t_{*}+1-p_{1}\right)+p_{2}-1=G\left(t_{*}\right) \tag{2.4}
\end{equation*}
$$

Denote by $Z^{*}=A\left(t_{*}\right) \cup\left(X \backslash A\left(1-p_{1}+t_{*}\right)\right)$ and define the convex and continuous function $G_{p}:\left[0, p_{1}\right] \rightarrow\left[0, p_{2}\right]$ by

$$
G_{p}(t)=\left\{\begin{array}{lll}
G(t) & \text { if } \quad 0 \leq t \leq t_{*} \tag{2.5}\\
G\left(t+1-p_{1}\right)+p_{2}-1 & \text { if } \quad t_{*}<t \leq p_{1}
\end{array}\right.
$$

It can be easily verified (cf. [4) that $Z^{*} \in \mathcal{F}_{p}$ and

$$
\begin{equation*}
R\left(Z^{*}\right)=\left\{(t, s) \in[0,1]^{2}: 0 \leq t \leq p_{1}, \quad p_{2}-G_{p}\left(p_{1}-t\right) \leq s \leq G_{p}(t)\right\} \tag{2.6}
\end{equation*}
$$

We show that Z^{*} is the maximal subset with the measure p. Suppose that there exists a set $Z \in \mathcal{F}_{p}$ such that $R(Z) \backslash R\left(Z^{*}\right) \neq \emptyset$. Let

$$
q=\left(q_{1}, q_{2}\right) \in R(Z) \backslash R\left(Z^{*}\right) \subset\left[0, p_{1}\right] \times\left[0, p_{2}\right] .
$$

There are two possible cases:

$$
\begin{equation*}
q_{2}>G_{p}\left(q_{1}\right)=G\left(q_{1}+1-p_{1}\right)+p_{2}-1, \quad q_{1}>t_{*} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{2}<p_{2}-G_{p}\left(p_{1}-q_{1}\right), \quad q_{1}>p_{1}-t_{*} \tag{2.8}
\end{equation*}
$$

Consider the first case. It follows from (2.7) that

$$
\begin{equation*}
p_{2}-q_{2}<1-G\left(1-p_{1}+q_{1}\right) . \tag{2.9}
\end{equation*}
$$

Since the set $R(Z)$ is centrally symmetric with the center $\left(p_{1} / 2, p_{2} / 2\right)$ (cf. [3]), then we must have $\left(p_{1}-q_{1}, p_{2}-q_{2}\right) \in R(Z) \subset R(X)$. But this contradicts the inequality (2.9) which means, by (2.3), that $\left(p_{1}-q_{1}, p_{2}-q_{2}\right) \notin R(X)$.

The second case can be considered in a similar way, so we omit it.
Assume now that $p=\left(p_{1}, p_{2}\right)$ belongs to the boundary of the range $R(X)$. It means that $p_{2}=G\left(p_{1}\right)$. Using the similar argumentation as presented above for the function $G_{p}:\left[0, p_{1}\right] \rightarrow\left[0, p_{2}\right]$ defined by

$$
G_{p}(t)=G(t), \quad 0 \leq t \leq p_{1}
$$

one can easily verify that $Z^{*}=A\left(p_{1}\right)$ is the maximal subset with the measure p.

Theorem 2.2. Let $p=\left(p_{1}, p_{2}\right) \in \operatorname{int}(R(X))$. Then, there exists a number $t_{*} \in(0,1)$ such that $M^{*}=A\left(1-p_{1}+t_{*}\right) \backslash A\left(t_{*}\right)$ is the minimal subset with the measure ($1-p_{1}, 1-p_{2}$).

Proof. Let $Z^{*}=A\left(t_{*}\right) \cup\left(X \backslash A\left(1-p_{1}+t_{*}\right)\right)$ be the maximal subset with the measure p defined in Theorem [2.1. Denote $M^{*}=X \backslash Z^{*}=A\left(1-p_{1}+t_{*}\right) \backslash A\left(t_{*}\right)$. It is known (cf. [7]) that the range $R(X)$ can be decomposed as follows

$$
\begin{equation*}
R(X)=R\left(Z^{*}\right) \oplus R\left(M^{*}\right) \tag{2.10}
\end{equation*}
$$

where " \oplus " denotes the Minkowski addition. Suppose that there exists a set $M \in \mathcal{F}_{w}$, where $w=\left(1-p_{1}, 1-p_{2}\right)$, such that

$$
\begin{equation*}
R(M) \subset R\left(M^{*}\right) \quad \text { and } \quad R\left(M^{*}\right) \backslash R(M) \neq \emptyset \tag{2.11}
\end{equation*}
$$

Consider another decomposition of the range $R(X)$

$$
\begin{equation*}
R(X)=R(X \backslash M) \oplus R(M) \tag{2.12}
\end{equation*}
$$

It follows from the decompositions (2.10), (2.12) and the inclusion (2.11) that we must have

$$
R\left(Z^{*}\right) \subset R(X \backslash M) \quad \text { and } \quad R(X \backslash M) \backslash R\left(Z^{*}\right) \neq \emptyset
$$

Since $(X \backslash M) \in \mathcal{F}_{p}$, we get a contradiction that Z^{*} is the maximal subset with the measure p, which completes the proof.

From Theorem 2.1 and 2.2 it follows
Proposition 2.3. Let $p=\left(p_{1}, p_{2}\right) \in \partial R(X)$. Then, $Z^{*}=A\left(p_{1}\right)$ is at the same time the maximal subset with measure p and the minimal subset with measure $w=\left(1-p_{1}, 1-p_{2}\right)$.

Dai and Feinberg 3 presented an interesting counterexample which shows that for three-dimensional nonatomic vector measures $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ the maximal and minimal subsets with given measure $p \in \mu(\mathcal{F})$ do not have to exist.

3. Example

Let $(X, \mathcal{F})=([0,1], \mathcal{B})$, where \mathcal{B} denotes the Borel σ-algebra defined on the unit interval $[0,1]$. Consider vector measure $\mu=\left(\mu_{1}, \mu_{2}\right)$ defined on $([0,1], \mathcal{B})$ where μ_{1}, μ_{2} are two nonatomic probability measures with the following density functions:

$$
f_{1}(x) \equiv 1, \quad f_{2}(x)=2-2 x, \quad x \in[0,1] .
$$

It is easy to see that the family $\{A(t)\}_{t \in[0,1]}$ defined by $A(t)=[0, t)$ satisfies (2.1) and (2.2). Hence $G(t)=2 t-t^{2}$, the range $R(X)=\mu(\mathcal{B})$ can be given by

$$
R(X)=\left\{(t, s) \in[0,1]^{2}: 0 \leq t \leq 1, \quad t^{2} \leq s \leq 2 t-t^{2}\right\} .
$$

SUBRANGES OF VECTOR MEASURES

Let $p=\left(\frac{1}{2}, \frac{5}{8}\right)$. Solving the equation (cf. (2.4))

$$
-t^{2}+t+\frac{3}{8}=2 t-t^{2}
$$

for the function $G(t)=2 t-t^{2}$ with respect to t, we get the solution $t_{*}=\frac{3}{8}$. Then, it follows from Theorem 2.1 that the maximal subset Z^{*} with the measure $\left(\frac{1}{2}, \frac{5}{8}\right)$ is given by

$$
Z^{*}=\left[0, \frac{3}{8}\right) \cup\left[\frac{7}{8}, 1\right] .
$$

In turn, using Theorem [2.2 the minimal subset M^{*} with the measure $(1,1)-p=$ $\left(\frac{1}{2}, \frac{3}{8}\right)$ is given by

$$
M^{*}=\left[\frac{3}{8}, \frac{7}{8}\right)
$$

Now, we construct the maximal subrange $\mu\left(Z^{*}\right)$ with the measure $\left(\frac{1}{2}, \frac{5}{8}\right)$ and also minimal subrange $\mu\left(M^{*}\right)$ with the measure $\left(\frac{1}{2}, \frac{3}{8}\right)$. Using (2.5), we obtain the function G_{p}

$$
G_{p}(t)= \begin{cases}2 t-t^{2} & \text { if } \quad 0 \leq t \leq \frac{3}{8} \\ -t^{2}+t+\frac{1}{8} & \text { if } \quad \frac{3}{8}<t \leq \frac{1}{2}\end{cases}
$$

Hence by (2.6), we get the range $R\left(Z^{*}\right)$ presented in Fig. [1. It can be verified (cf. [4]) that

$$
R\left(M^{*}\right)=\left\{(t, s) \in[0,1]^{2}: 0 \leq t \leq \frac{1}{2}, \quad \frac{1}{4} t+t^{2} \leq s \leq \frac{5}{4} t-t^{2}\right\}
$$

Instead of $R\left(M^{*}\right)$, for better perspicuity, the set $R\left(M^{*}\right)+p$ is shown in Fig. [1.

Figure 1. The maximal subrange $R\left(Z^{*}\right)$ with the measure $\left(\frac{1}{2}, \frac{5}{8}\right)$ and the set $R\left(M^{*}\right)+p$, where $R\left(M^{*}\right)$ is the minimal subrange with the measure $\left(\frac{1}{2}, \frac{3}{8}\right)$.

REFERENCES

[1] BIANCHINI, S.-CERF, R.-MARICONDA, C.: Two-dimensional zonoids and Chebyshev measures, J. Math. Anal. Appl. 211 (1997), 512-526.
[2] CANDELORO, D.-MARTELLOTTI, A.: Geometric properties of the range of two--dimensional quasi-measures with respect to the Radon-Nikodym property, Adv. Math. 93 (1992), 9-24.
[3] DAI, P.-FEINBERG, A.: On maximal ranges of vector measures for subsets and purification of transition probabilities, Proc. Amer. Math. Soc. 139 (2011), 4497-4511.
[4] LEGUT, J.-WILCZYŃSKI, M.: How to obtain a range of a nonatomic vector measure in \mathbb{R}^{2}, J. Math. Anal. Appl. 394 (2012), 102-111.
[5] LEHMANN, E. L.-ROMANO, J. P.: Testing Statistical Hypotheses. Springer Science + Business Media. Inc., New York, 1971.
[6] LYAPOUNOFF, A. A.: Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 465-478. (In Russian)
[7] NEYMAN, A.: Decomposition of ranges of vector measures, Israel J. Math. 40 (1981), 54-64.

Received February 5, 2018
Faculty of Pure and Applied Mathematics
Wroctaw University of Science and Technology 50-370 Wroctaw
POLAND
E-mail: Jerzy.Legut@pwr.wroc.pl
Maciej.Wilczynski@pwr.wroc.pl

[^0]: © 2019 Mathematical Institute, Slovak Academy of Sciences.
 2010 Mathematics Subject Classification: Primary 60A10; Secondary 28A10.
 Keywords: Lyapunov convexity theorem, range of a vector measure, maximal subset, maximal subrange of a vector measure.
 Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

