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HOW TO OBTAIN
MAXIMAL AND MINIMAL SUBRANGES
OF TWO-DIMENSIONAL VECTOR MEASURES

JERZY LEGUT — MACIEJ WILCZYNSKI

Faculty of Pure and Applied Mathematics, Wroctaw, POLAND

ABSTRACT. Let (X,F) be a measurable space with a nonatomic vector mea-
sure pt = (p1, p2). Denote by R(Y') the subrange R(Y) ={u(Z2): Z € F,Z CY}.
For a given p € pu(F) consider a family of measurable subsets F, = {Z € F :
u(Z) = p}. Dai and Feinberg proved the existence of a maximal subset Z* € F
having the maximal subrange R(Z*) and also a minimal subset M* € F, with the
minimal subrange R(M™*). We present a method of obtaining the maximal and the
minimal subsets. Hence, we get simple proofs of the results of Dai and Feinberg.

1. Introduction

Let i = (p1, pi2) be a finite nonatomic vector measure defined on a measurable
space (X, F), where pu; # po. For simplicity and without loss of generality,
we assume that up(X) = po(X) = 1. For each Y € F denote by R(Y) the
subrange R(Y) = {u(2) : Z € F,Z C Y} C p(F). It follows from the famous
Lyapunov convexity theorem (see Lyapunov [6]) that the subranges R(Y')
are convex and compact in R? for all Y € F.

For each p = (p1,p2) € u(F) = R(X) denote by F, C F the following family
of measurable subsets of X:

Fo={Z € F:u(z)=p}.

Dai and Feinberg [3] defined maximal and minimal subsets of X with the
measure p.
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DEFINITION 1.1. A subrange R(Z*) of Z* € F,, is called the maximal if Z € F,
implies that R(Z) C R(Z*). We call the set Z* € F,, the maximal subset of X
with the measure p.

DEFINITION 1.2. A subrange R(M™*) of M* € F,, is called the minimal if M € F,,
implies that R(M™*) C R(M). We call the set M* € F, the minimal subset of X
with the measure p.

Dai and Feinberg [3] proved the existence of the maximal and the mini-
mal subsets of X and showed geometric construction of the maximal subranges.
We show a method of obtaining such subsets and give another construction of the
maximal and also the minimal subranges. Finally, we present a simple example
to illustrate the method.

A similar problem concerning a Chebyshev measure was considered by Bian-
chini et. al. [1]. They proved that a strictly convex, centrally symmetric and
compact subset of R?, whose boundary contains the origin, is the range of a
Chebyshev measure.

2. Main results

Denote by f; = du;/dm,i = 1,2 the Radon-Nikodym derivatives with respect
to the measure m = p; + po. Legut and Wilczynski [4] used some results
of Candeloro and Martellotti [2] to prove the existence of an increasing
family of sets {A(t)}1e[0,1) € F satisfying

H1 (A<t)) =1, 2 (A(t)) = max{y2(A4) : A € F, (A(t)) =t} t€0,1], (2.1)
if ¢t < to, t1,t2 € [0, 1], then A(tl) C A(tz) (22)

Moreover, it follows from the Neyman-Pearson lemma (see Lehmann and
Romano [B], cf. [4]) that there exists a number y > 0 depending on ¢, ¢ € [0, 1],

such that )

Lot fo(z) > yfi(e),

Lo () = :

0 if folz) <yfi(z),
where I 4 () stands for the indicator function of A(t). Legut and Wilczy -
ski [4] noticed that the range R(X) can be described by the convex, continuous
and nondecreasing function G : [0,1] — [0,1] defined by G(t) = pa(A(t)),
t € [0, 1] as follows

RX)={(t,s)€[0,1]?:0<t<1, 1-G(1—-t)<s<G®)}. (2.3)
For given p = (p1,p2) € R(X), we assume further that po > p;. The case

of pa < p1 can be solved in a similar way.
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THEOREM 2.1. Let p = (p1,p2) € int(R(X)). Then, there exists a number
te € (0,1) such that Z* = A(t.) U (X \ A(1 —p1+t.)) is the mazimal subset with
the measure p. If p = (p1,p2) € OR(X), then Z*= A(p1) is the mazimal subset.

Proof. Assume first that p = (p1,p2) € int(R(X)). It follows from the prop-
erties of the function G that there exists ¢, € (0,p1) such that

G(t*+1*p1)+p2*1:G(t*). (24)
Denote by Z* = A(t,)U(X \ A(1—p; +t.)) and define the convex and continuous
function G, : [0, p1] — [0, p2] by

{G(t) if 0 <t<t,,

Gp(t) = (2.5)

Gt+1—p1)+p2—1 if t.<t<p;.
It can be easily verified (cf. [4]) that Z* € F, and
R(Z%)={(t,s) €[0,1?: 0<t <p1, pa—Gplp1 —t) <s<Gp(t)}. (2.6)

We show that Z*is the maximal subset with the measure p. Suppose that there
exists a set Z € F,, such that R(Z) \ R(Z*) # 0. Let

q=(q1,92) € R(Z)\ R(Z") C [0, p1] % [0, po].
There are two possible cases:

@2 >Gp(@) =Gl@+1-p)+p2—1 q >t (2.7)
and
@2 <p2—Gp(pr—q1), @ >p1—ti. (2.8)
Consider the first case. It follows from (2.7)) that
pe—@<1-GI1-p1+q) (2.9)

Since the set R(Z) is centrally symmetric with the center (p1/2,p2/2) (cf. [3]),
then we must have (p1 — ¢1,p2 — ¢2) € R(Z) C R(X). But this contradicts the

inequality (2.9) which means, by [23)), that (p1 — q1,p2 — ¢2) ¢ R(X).
The second case can be considered in a similar way, so we omit it.

Assume now that p = (p1,p2) belongs to the boundary of the range R(X).
It means that p; = G(p1). Using the similar argumentation as presented above
for the function Gy, : [0, p1] — [0, p2] defined by
Gp(t) = G(t), 0<t<p,

one can easily verify that Z*= A(p1) is the maximal subset with the measure p.

O
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THEOREM 2.2. Let p = (p1,p2) € int(R(X)). Then, there exists a number
ty € (0,1) such that M*= A(1 — p1 + t.) \ A(ts) is the minimal subset with the
measure (1 —p1,1 —pa).

Proof. Let Z*= A(t,) U (X \ A(1 — p1 +t.)) be the maximal subset with the

measure p defined in Theorem 2] Denote M*= X\ Z*= A(1 —p1 +t.)\ A(ts).

It is known (cf. [7]) that the range R(X) can be decomposed as follows
R(X)=R(Z") ® R(M"), (2.10)

where “@” denotes the Minkowski addition. Suppose that there exists a set
M € Fy, where w = (1 — p1,1 — pa), such that

R(M)C R(M*) and R(M*)\ R(M) # 0. (2.11)
Consider another decomposition of the range R(X)
R(X)=R(X\M)® R(M). (2.12)

It follows from the decompositions (2.I0), (2.12)) and the inclusion ([2.11]) that

we must have
' R(Z*)C R(X\M) and R(X\M)\R(Z") #0.

Since (X \ M) € F,, we get a contradiction that Z*is the maximal subset with
the measure p, which completes the proof. O

From Theorem [2.1] and it follows

PROPOSITION 2.3. Let p = (p1,p2) € OR(X). Then, Z*= A(p1) is at the same
time the mazimal subset with measure p and the minimal subset with measure

w=(1-p1,1—pa).
Dai and Feinberg [3] presented an interesting counterexample which

shows that for three-dimensional nonatomic vector measures p = (1, p2, p3) the
maximal and minimal subsets with given measure p € u(F) do not have to exist.

3. Example

Let (X, F) = ([0,1], B), where B denotes the Borel o-algebra defined on the
unit interval [0,1]. Consider vector measure p = (u1, p2) defined on ([0, 1], B)
where pq, po are two nonatomic probability measures with the following density
functions:

file) =1, fo(x)=2-2z, z€]0,1].

It is easy to see that the family {A(t)}icpo,1) defined by A(t) = [0,¢) satisfies
&I) and Z2). Hence G(t) = 2t — t?, the range R(X) = u(B) can be given by

RX)={(t,s)€[0,1]?:0<t <1, #*<s<2—t}.
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Let p = (3,3). Solving the equation (cf. (Z4))
3
7t2+t+§ =2t —t°

for the function G(t) = 2t — ¢* with respect to ¢, we get the solution ¢, = 3.
Then, it follows from Theorem [2.1] that the maximal subset Z*with the measure

15
3\ [7
7= 10,2 u|5,1].
{’8> {8’]

(— —) is given by
In turn, using Theorem [Z2] the minimal subset M * with the measure (1,1)—p =

278
1 3
e [3T)
88
1 5

(— —) is given by
Now, we construct the maximal subrange p(Z*) with the measure (5, g) and

also minimal subrange pu(M*) with the measure (%, %) Using ([2.5]), we obtain

the function G, )
2 — ¢ it 0<t
Gylt) = -
(! {t2+t+§ if 3<t<

Hence by (2.6), we get the range R(Z*) presented in Fig.[Il It can be verified
(cf. [4]) that

11 5
R(M*):{(t,s)€[0,1]2:0§t§§, Zt+t2§s§1t—t2}.

Instead of R(M™), for better perspicuity, the set R(M™*) + p is shown in Fig. [l

2 R(M*)+D..-

H1

FIGURE 1. The maximal subrange R(Z*) with the measure (%, %) and
the set R(M*) + p, where R(M*) is the minimal subrange with the

measure (%, %)
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