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I-COMPLETENESS IN FUNCTION SPACES
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ABSTRACT. In this paper, we have studied the idea of ideal completeness
of function spaces Y X with respect to pointwise uniformity and uniformity of uni-
form convergence. Further, involving topological structure onX, we have obtained
relationships between the uniformity of uniform convergence on compacta on Y X

and uniformity of uniform convergence on Y X in terms of I-Cauchy condition and

I-convergence of a net. Also, using the notion of a k-space, we have given a suf-
ficient condition for C(X,Y ) to be ideal complete with respect to the uniformity
of uniform convergence on compacta.

1. Introduction

The idea of convergence of a real sequence was extended to statistical conver-
gence by H. F a s t [5] (see also I. J. S c h o e n b e r g [17]) as follows:

If N denotes the set of all natural numbers and K ⊂ N, then Kn denotes
the set {k ∈ K : k ≤ n} and |Kn| stands for the cardinality of the set Kn.

The natural density of the set K is defined by d(K) = limn→∞
|Kn|
n , provided

the limit exists.

A sequence {xn} of points in the real number space is said to be statistically
convergent to x0 if for arbitrary ε > 0 the set K(ε) = {k ∈ N : |xk − x0| ≥ ε}
has natural density zero. A lot of works have been done so far on such conver-
gence and its topological consequences after the initial works by T. Š a l á t [16].
However, if one considers the concept of nets instead of sequences, the above
approach does not seem to be appropriate because of the absence of any idea
of density in an arbitrary directed set. Instead, it seems more appropriate to fol-
low the more general approach of ideal convergence [8]. In [8] (see also [9]),
a generalization of the notion of statistical convergence was proposed as follows:

c© 2019 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 54A20; Secondary 40A35, 54E15.
Keywords: ideal, filter, uniform space, I-Cauchy condition, I-convergence, ideal complete-
ness.

Licensed under the Creative Commons Attribution-NC-ND4.0 International Public License.

35



AMAR KUMAR BANERJEE — APURBA BANERJEE

A subcollection I ⊂ 2N is called an ideal if

(i) A,B ∈ I implies A ∪B ∈ I and

(ii) A ∈ I, B ⊂ A imply B ∈ I.

I is called non-trivial ideal if I �= {Φ} and N /∈ I. I is called admissible if it
contains all singletons. If I is a proper non-trivial ideal, then the family of sets
F (I) = {M ⊂ N : N \M ∈ I} is a filter on N and it is called the filter associated
with the ideal I of N. It is easy to check that the family Id =

{
A ⊂ N : d(A) = 0

}
forms a non-trivial admissible ideal of N.

A sequence {xn} of real numbers is said to be I-convergent to x0 ∈ X
(in short, x0 = I-limn→∞xn) if K(ε) ∈ I for each ε > 0, where K(ε) = {k ∈ N :
|xk − x0| ≥ ε}.

B. K. L a h i r i and P. D a s [12] extended the idea of I-convergence to an
arbitrary topological space and observed that few basic properties related to ideal
convergence are also preserved like ordinary convergence in a topological space.
They also introduced [13] the idea of I-convergence of nets in a topological
space and examined how far it affects the basic properties. Later, P. D a s and
S. K. G h o s a l [4] introduced the idea of I-Cauchy nets in a uniform space and
formulated two equivalent forms of I-Cauchy condition of a net in a uniform
space. Also, they proved that every I-convergent net in a uniform space with
respect to the uniform topology satisfies I-Cauchy condition. Further, they have
given a sufficient condition for uniform spaces to be complete in terms of I-con-
vergence of I-Cauchy nets.

In this paper, we have studied the idea of ideal completeness of a uniform
space and have shown a sufficient condition for a subspace of product uniform
space with respect to the pointwise uniformity to be ideal complete. Again,
we have given a necessary and sufficient condition for a product uniform space
with respect to the uniformity of uniform convergence to be ideal complete. Also,
we have obtained that if a uniform space (Y,U) is ideal complete, then so are
(Y X,Uu) and

(
C(X, Y ),Uu

)
, where X is a non-empty set and (Y X,Uu) is the

product uniform space with respect to the uniformity of uniform convergence
Uu, and C(X, Y ) is the space of all continuous functions from X to Y.

Further, involving topology on X in the function space, we have shown sepa-
rately that a net {fλ : λ ∈ Λ} in (Y X,Uk), where Uk is the uniformity of uniform
convergence on compacta, is an I-Cauchy net if and only if for each compact
subset K of X, {fλ|K : λ ∈ Λ} is I-Cauchy in the uniformity of uniform conver-
gence on K and the same result has been given in case of I-convergence of a net
in (Y X, τUk

) where τUk
is the topology of uniform convergence on compacta.

Finally, applying the idea of a k-space and using the preceding results, we have
shown that if X is a k-space and (Y,U) is ideal complete, then C(X, Y ) is ideal
complete in the uniformity of uniform convergence on compacta.
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2. Ideal completeness in function spaces

Let (Y, τ) be a topological space and X be a non-empty set. Let Y X be
endowed with the Tychonoff product topology. We say a subcollection F ⊂ Y X

has the topology of pointwise convergence (or, the pointwise topology) if and only
if it is provided with the subspace topology induced by the Tychonoff product
topology on Y X. Let (Y,U) be a uniform space which we will write sometimes
simply as Y. It may be recalled that for any point x in a uniform space (Y,U),
the collection

{
U [x] : x ∈ Y

}
[where U [x] = {y ∈ Y : (x, y) ∈ U}] forms a local

neighbourhood base at x. The corresponding topology τU is called the uniform
topology on Y. By an open set in Y we shall always mean an open set in the
uniform topology in Y.

Let (D,≥) be a directed set and I be a non-trivial ideal of D. A net in Y
will be denoted by {sα : α ∈ D} or simply by {sα}, when there is no confusion
about D. For α ∈ D, let

Mα = {β ∈ D : β ≥ α}.
Then, the collection F0 = {A⊂D :A⊃Mα, for some α ∈ D} forms a filter in D.
Let I0 = {B ⊂ D : D \B ∈ F0}. Then, I0 is a non-trivial ideal of D.

���������� 2.1 ([13])� A non-trivial ideal I of D will be called D-admissible if
Mα ∈ F (I) for all α ∈ D.

���������� 2.2 ([13])� A net {sα : α ∈ D} in (Y,U) is said to be I-convergent
to x0 ∈ Y if for any open set U in (Y, τU) containing x0, {α ∈ D : sα /∈ U} ∈ I.

���������� 2.3 ([4])� A net {sα : α ∈ D} in a uniform space (Y,U) is said to be
I-Cauchy if for any U ∈U , there exists a β∈D such that

{
α∈D : (sα, sβ) /∈U

}∈I.

It is easy to check that when I = I0, the definition of I-Cauchy condition
of a net coincides with the usual Cauchy condition.

We know two equivalent forms of I-Cauchy condition of a net in a uniform
space which are stated below.

	
����� 2.1 ( [4])� For a net {sα : α ∈ D} in a uniform space (Y,U), the
following conditions are equivqlent:

(1) {sα : α ∈ D} is an I-Cauchy net.

(2) For every U ∈ U there exists A ∈ I such that α, β /∈ A implies (sα, sβ) ∈ U .

(3) For every U ∈ U , {β ∈ D : Eβ(U ) /∈ I
} ∈ I, where

Eβ(U ) =
{
α ∈ D : (sα, sβ) /∈ U

}
.

Throughout the paper, we assume that Λ is a directed set, (Y, τ) is a topolog-
ical space and X is a non-empty set, Y X is endowed with the Tychonoff prod-
uct topology and F ⊂ Y X has the pointwise topology (i.e., subspace topology
induced by the Tychonoff product topology on Y X) unless otherwise stated.
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����� 2.2 ([2])� If F has the pointwise topology, then a net {fλ : λ ∈ Λ}
is I-convergent to f in F if and only if the net

{
fλ(x) : λ ∈ Λ

}
is I-convergent

to f(x) in πx(F) for each x ∈ X, where I is a non-trivial ideal of the directed
set Λ and πx is the xth projection map from Y X onto Y.

P r o o f. Since πx(fλ) = fλ(x) for x ∈ X, the proof follows from [2, Theorem 3.4].
�

We turn now to the discussion of defining a uniformity on the product of uni-
form spaces, subject to the obvious restriction that the topology of such a uni-
formity should be the product topology.

First, we recall the following definition.

���������� 2.4 ([18])� If Xα is a set for each α ∈ A and X =
∏

Xα, the αth
biprojection is the map

Pα : X ×X → Xα ×Xα

defined by Pα(x, y) =
(
πα(x), πα(y)

)
, where πα is the αth projection mapping

from X onto Xα.

	
����� 2.3 ([18])� If Uα is a diagonal uniformity on Xα, for each α ∈ A,
then the sets

P−1
α1

(Uα1
) ∩ P−1

α2
(Uα2

) ∩ · · · ∩ P−1
αn

(Uαn
),

where Uαi
∈ Uαi

, for i = 1, 2, . . . , n, form a base for a uniformity Up on
∏

Xα

which is called the product uniformity on
∏

Xα and whose associated topology
is the product topology on

∏
Xα.

Now, let us assume that (Y,U) is a uniform space.

���������� 2.5 ([18])� The product uniformity Up on Y X is called the unifor-
mity of pointwise convergence or the pointwise uniformity.

Note that the topology associated with the pointwise uniformity on Y X is,
of course, the pointwise topology.

	
����� 2.4� {fλ : λ ∈ Λ} is an I-Cauchy net in Y X with the pointwise
uniformity if and only if

{
fλ(x) : λ ∈ Λ

}
is an I-Cauchy net in Y for each

x ∈ X, where I is a non-trivial ideal of Λ.

P r o o f. Let {fλ : λ ∈ Λ} be an I-Cauchy net in Y X with the pointwise unifor-
mity. Then, for every member of Up of the form P−1

x (U ), where U ∈ U , there ex-
istsB ∈ I such that α, β /∈ B implies (fα, fβ) ∈ P−1

x (U ), i.e., Px(fα, fβ) ∈ U , i.e.,(
fα(x), fβ(x)

) ∈ U and hence by Theorem 2.1, it follows that
{
fα(x) : α ∈ Λ

}
is an I-Cauchy net in Y for each x ∈ X.
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Conversely, suppose
{
fλ(x) : λ ∈ Λ

}
is an I-Cauchy net in Y for each x ∈ X.

Hence by Theorem 2.1, for each U ∈ U and for each x ∈ X, there exists A0 ∈ I
such that α, β /∈ A0 implies

(
fα(x), fβ(x)

) ∈ U . Let us choose a member U ∈
Up. Then, U has the form P−1

x1
(U1) ∩ P−1

x2
(U2) ∩ · · · ∩ P−1

xn
(Un), where Ui ∈ U

for all i = 1, 2, . . . , n and x1, x2, . . . , xn ∈ X. Now, for U1, U2, . . . , Un ∈ U and
x1, x2, . . . , xn ∈ X there exist A1, A2, . . . , An ∈ I such that λ1, λ2 /∈ Ai implies(
fλ1

(xi), fλ2
(xi)

) ∈ Ui for i = 1, 2, . . . , n. Let A =
⋃n

i=1Ai. Then, A ∈ I.

Now, α, β /∈ A implies
(
fα(xi), fβ(xi)

) ∈ Ui for each i = 1, 2, . . . , n, which in

turn implies that Pxi
(fα, fβ) ∈ Ui for each i = 1, 2, . . . , n, i.e., (fα, fβ) ∈ P−1

xi
(Ui)

for each i=1, 2, . . . , n. Thus, α, β /∈A implies (fα, fβ) ∈
⋂n

i=1 P
−1
xi

(Ui)=U ∈Up.
Hence, again applying Theorem 2.1, we get that {fλ : λ ∈ Λ} is an I-Cauchy net
in Y X. �

We define below the notion of ideal completeness of a uniform space in the
same manner as that of a uniform space to be complete.

���������� 2.6� A uniform space (Y,U) is said to be ideal complete if every net
{sα : α ∈ Λ} in (Y,U), which is I-Cauchy in (Y,U), is I-convergent in (Y, τU),
where I is a non-trivial ideal of Λ and τU is the uniform topology on Y corre-
sponding to the uniformity U on Y.

	
����� 2.5� Let F ⊂ Y X be a function space with the pointwise unifor-
mity. Let Λ be a directed set and I be a non-trivial ideal of Λ. Then, F is ideal
complete if

(1) F is pointwise closed (i.e., F is closed in the pointwise topology on Y X),

(2) πx(F) =
{
f(x) : f ∈ F} is ideal complete in Y for each x ∈ X.

P r o o f. Let {fλ : λ ∈ Λ} be an I-Cauchy net in F . Then for each x ∈ X,{
πx(fλ) : λ ∈ Λ

}
is an I-Cauchy net in πx(F). Since πx(F) is ideal complete, so

by definition,
{
πx(fλ) : λ ∈ Λ

}
is I-convergent to some f(x) ∈ πx(F) and this

holds for each x ∈ X. Thus, we see that
{
πx(fλ) : λ ∈ Λ

}
is I-convergent to f(x)

in πx(F) for each x ∈ X. Now, applying Theorem 2.2, we get that {fλ : λ ∈ Λ}
is I-convergent to f in Y X. Since F is pointwise closed, so we have f ∈ F . Hence
the result follows. �

We know that pointwise I-limit of continuous functions (on the real line, say)
need not be continuous, so that C(X, Y ), the space of all continuous functions
from X to Y , is not always ideal complete in the uniformity of pointwise con-
vergence.

The uniformity of pointwise convergence and its topology occupy one end
of the spectrum of structures used to make function spaces out of collections
of functions. At the other end, sit the uniformity of uniform convergence and its
topology which we recapitulate below.
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���������� 2.7 ([18])� If Y has a uniformity U , the family of sets of the form

EU =
{
(f, g) ∈ Y X × Y X :

(
f(x), g(x)

) ∈ U for each x ∈ X
}

for U ∈ U , form a base for a uniformity Uu on Y X called the uniformity of uni-
form convergence. Its associated topology, τUu

, is the topology of uniform con-
vergence.

���������� 2.8� If a net {fλ : λ ∈ Λ} in Y X is I-convergent to f ∈ Y X in the
topology of uniform convergence, we say {fλ : λ ∈ Λ} is uniformly I-convergent
to f , where I is a non-trivial ideal of Λ.

���������� 2.9� If a net {fλ : λ ∈ Λ} in Y X is I-Cauchy in the uniformity
of uniform convergence, then we call {fλ : λ ∈ Λ} uniformly I-Cauchy, where I
is a non-trivial ideal of Λ.

The next theorem provides a relationship between pointwise I-convergence
and uniform I-convergence of a net and subsequently gives a necessary and
sufficient condition for a product uniform space with respect to the uniformity
of uniform convergence to be ideal complete.

	
����� 2.6� A net {fλ : λ ∈ Λ} in (Y X, τUu
) is uniformly I-convergent to f

if and only if

(1) the net {fλ : λ ∈ Λ} is uniformly I-Cauchy in (Y X,Uu) and

(2) the net
{
fλ(x) : λ ∈ Λ

}
is I-convergent to f(x) in (Y, τU ) for each x ∈ X

[i.e., the net {fλ : λ ∈ Λ} is pointwise I-convergent to f in (Y X, τUu
)], where I

is a non-trivial ideal of Λ.

P r o o f. Let {fλ : λ ∈ Λ} be a net in (Y X,Uu) which is uniformly I-convergent
to f ∈ Y X. So, by [4, Theorem 2], it follows that {fλ : λ ∈ Λ} is uniformly
I-Cauchy. Now, by definition of I-convergence of a net, for any U ∈ U we have
the set {

λ ∈ Λ: fλ /∈ EU [f ]
} ∈ I,

where EU [f ] =
{
g ∈ Y X : (f, g) ∈ EU

}
=
{
g ∈ Y X :

(
f(x), g(x)

) ∈ U for each

x ∈ X}. This implies the set
{
λ ∈ Λ: fλ ∈ EU [f ]

} ∈ F (I), where F (I) is the

filter associated with the ideal I. Let A =
{
λ ∈ Λ: fλ ∈ EU [f ]

}
. Then, λ0 ∈ A

implies fλ0
∈ EU [f ], i.e., (f, fλ0

) ∈ EU and so,
(
f(x), fλ0

(x)
) ∈ U for each

x ∈ X, i.e., fλ0
(x) ∈ U

[
f(x)

]
for each x ∈ X. Now, let x0 ∈ X be an arbitrary

element. Then, if A0 =
{
α ∈ Λ: fα(x0) ∈ U [f(x0)]

}
, we see that A ⊂ A0,

and since A ∈ F (I), so we have by definition of a filter A0 ∈ F (I) as well. So,
the set

{
α ∈ Λ: fα(x0) /∈ U [f(x0)]

} ∈ I, i.e., the net
{
fλ(x0) : λ ∈ Λ

}
is I-

-convergent to f(x0) in (Y, τU ). Hence, we conclude that the net
{
fλ(x) : λ ∈ Λ

}
is I-convergent to f(x) in (Y, τU) for each x ∈ X.
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Conversely, let the net {fλ : λ ∈ Λ} in Y X be pointwise I-convergent to f,
i.e., the net

{
fλ(x) : λ ∈ Λ

}
is I-convergent to f(x) in (Y, τU) for each x ∈ X

and {fλ : λ∈Λ} is uniformly I-Cauchy in (Y X,Uu). To show that {fλ : λ ∈Λ}
is uniformly I-convergent to f in (Y X, τUu

), we are to show that for any U ∈ U
the set

{
λ ∈ Λ: fλ /∈ EU [f ]

} ∈ I. Now, for each x ∈ X we have the set{
λ ∈ Λ: fλ(x) /∈ U [f(x)]

} ∈ I, i.e.,
{
λ ∈ Λ: fλ(x) ∈ U [f(x)]

} ∈ F (I), where
F (I) is the filter associated with the ideal I. For each x ∈ X let us call the
set Bx =

{
λ ∈ Λ: fλ(x) ∈ U [f(x)]

}
. Then, Bx ∈ F (I) for each x ∈ X. Now,

choose a symmetric V ∈ U such that V ◦ V ⊂ U . For each x ∈ X let us call
Cx =

{
λ ∈ Λ: fλ(x) ∈ V [f(x)]

}
. Then, again on the basis of the condition (2),

we have Cx ∈ F (I) for each x ∈ X. Since {fλ : λ ∈ Λ} is uniformly I-Cauchy
in (Y X,Uu), so by Theorem 2.1 we have that for V ∈ U there exists A ∈ I such
that α, β /∈ A implies (fα, fβ) ∈ EV. We will prove that for any arbitrary x0 ∈ X,
Ac ⊂ Bx0

. Now, since Ac, Cx0
∈ F (I), so Ac∩Cx0

�= φ. Let us take α0 ∈ Ac∩Cx0
.

Then, for any α ∈ Ac we have (fα0
, fα) ∈ EV , i.e.,

(
fα0

(x), fα(x)
) ∈ V for each

x ∈ X. Hence, in particular,
(
fα0

(x0), fα(x0)
) ∈ V. Again, since α0 ∈ Cx0

, so,

fα0
(x0) ∈ V

[
f(x0)

]
, i.e.,

(
f(x0), fα0

(x0)
) ∈ V. Thus, we get

(
f(x0), fα(x0)

) ∈
V ◦V ⊂ U , i.e., fα(x0) ∈ U

[
f(x0)

]
, i.e., α ∈ Bx0

. Hence, Ac ⊂ Bx0
. Since x0 ∈ X

has been chosen arbitrarily, so we conclude that Ac ⊂ ⋂
x∈X Bx. This in turn

implies that
⋂

x∈X Bx ∈ F (I). Now, we see that
⋂

x∈X Bx =
{
λ ∈ Λ: fλ(x) ∈

U [f(x)] for each x ∈ X
}
=
{
λ ∈ Λ: fλ ∈ EU [f ]}. Thus in turn, we have proved

that
{
λ ∈ Λ: fλ /∈ EU [f ]

} ∈ I. Hence the result follows. �

	
����� 2.7� If a uniform space (Y,U) is ideal complete, then so are

(1) (Y X,Uu),

(2)
(
C(X, Y ),Uu

)
, where C(X, Y ) is the space of all continuous functions from

X to Y with the uniformity of uniform convergence Uu.

P r o o f. (1): Let a net {fλ : λ ∈ Λ} be uniformly I-Cauchy in (Y X,Uu). Then,
the net {fλ(x) : λ∈Λ} is I-Cauchy in (Y,U) for each x∈X. Hence,

{
fλ(x) :λ∈Λ

}
is I-convergent to some f(x) ∈ Y, since (Y,U) is ideal complete space. By pre-
vious result, the function f ∈ Y X defined by f(x) = I-lim fλ(x) for each x ∈ X
is uniform I-limit of the net {fλ : λ ∈ Λ}. Thus, (Y X,Uu) is ideal complete.

(2): It has been proved in [18, Theorem 42.10] that
(
C(X, Y ),Uu

)
is a closed

subspace of (Y X,Uu).

First, we prove that if (M,D) is a uniform space andN⊂M , then an I-Cauchy
net {xλ : λ ∈ Λ} in (N,DN) is also I-Cauchy in (M,D), where I is a non-trivial
ideal of Λ and DN is the relative uniformity induced on N by D. Now, since
{xλ : λ ∈ Λ} is an I-Cauchy net in (N,DN), so for each DN ∈ DN there exists
some λ0 ∈ Λ such that the set

{
λ ∈ Λ: (xλ, xλ0

) /∈ DN

} ∈ I. Now, DN =
D ∩ (N ×N) where D ∈ D and for each D ∈ D there corresponds a DN ∈ DN .
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We also note that
{
λ ∈ Λ: (xλ, xλ0

) /∈ D
} ⊂ {λ ∈ Λ: (xλ, xλ0

) /∈ DN

}
. Hence,{

λ ∈ Λ: (xλ, xλ0
) /∈ D

} ∈ I. So, for each D ∈ D there is some λ0 ∈ Λ such that

the set
{
λ ∈ Λ: (xλ, xλ0

) /∈ D
} ∈ I. Hence, {xλ : λ ∈ Λ} becomes an I-Cauchy

net in (M,D).

Secondly, we show that if (M,D) is an ideal complete uniform space and N
is a closed subset of (M, τD), then (N,DN ) becomes an ideal complete space.

Since an I-Cauchy net {xλ : λ ∈ Λ} in (N,DN) is also I-Cauchy in (M,D)
and if (M,D) happens to be ideal complete space, so the net {xλ : λ ∈ Λ} is
I-convergent to some x0 ∈ M in (M, τD). Now, if x0 ∈ N , then {xλ : λ ∈ Λ} is
I-convergent in (N, τDN

). But if x0 /∈ N , then {xλ : λ ∈ Λ} is a net in N \ {x0}
such that it is I-convergent to x0 ∈ M . Then, x0 becomes a limit point of N
(by [13, Theorem 3]). Since N is closed in (M, τD), then x0 ∈ N . In any case,
x0 ∈ N if N is closed in (M, τD). Hence, {xλ : λ ∈ Λ} is an I-Cauchy net in
(N,DN ) which becomes I-convergent in (N, τDN

).

So, we conclude that
(
C(X, Y ),Uu

)
is an ideal complete subspace of (Y X,Uu).

�
If we involve the topology of X in our function space and Y has a uniform

structure, we can have a uniform structure on Y X which is called the unifor-
mity of uniform convergence on compacta or the uniformity of compact conver-
gence. The definition of that uniformity and the associated topology is recalled
below.

���������� 2.10 ([18])� Suppose Y has a uniformity U . The uniformity of uni-
form convergence on compacta or the uniformity of compact convergence, Uk,
has for a subbase the sets

EK,U =
{
(f, g) ∈ Y X × Y X :

(
f(x), g(x)

) ∈ U, for each x ∈ K
}
,

where K is a compact subset of X and U ∈ U . The topology τUk
thus induced

on Y X is the topology of compact convergence.

	
����� 2.8� A net {fλ : λ ∈ Λ} is I-convergent to f in (Y X, τUk
) where τUk

is
the topology of uniform convergence on compacta if and only if for each compact
subset K of X, {fλ|K : λ ∈ Λ} is uniformly I-convergent to f |K in (Y K, τUu

),
where τUu

is the topology of uniform convergence on Y K and I is a non-trivial
ideal of Λ.

P r o o f. Let {fλ : λ ∈ Λ} be I-convergent to f in (Y X, τUk
). For each subbasic

open set EK,U [f ] containing f in (Y X, τUk
), this implies the set{

λ ∈ Λ: fλ /∈ EK,U [f ]
} ∈ I.

This holds for each fixed compact subset K of X and for each U ∈ U . Hence for
each compact subset K of X, {fλ|K : λ ∈ Λ} is uniformly I-convergent to f |K
in (Y K, τUu

).
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Conversely, suppose {fλ|K :λ∈Λ} is uniformly I-convergent to f |K in (YK,τUu
)

for each compact subset K of X. Let EKi,Ui
[f |Ki

] be arbitrarily chosen basic
open sets containing f |Ki

in (Y Ki , τUu
) for i = 1, 2, . . . , n, respectively. Then,

we have the sets
{
λ ∈ Λ: fλ|Ki

/∈ EKi,Ui
[f |Ki

]
} ∈ I for all i = 1, 2, . . . , n.

This implies the sets
{
λ ∈ Λ: fλ|Ki

∈ EKi,Ui
[f |Ki

]
} ∈ F (I) for all i = 1, 2, . . . , n,

where F (I) is the filter associated with the ideal I. We note below the follwing
observation.

Let K be any compact subset of X, U be any member of the uniformity U
on Y and f ∈ Y X. Now, we see that if EK,U [f |K ] is a basic open set (as per
Definition 2.7) containing f |K in (Y K, τUu

) and EK,U [f ] is a subbasic open set
(as per Definition 2.10) containing f in (Y X, τUk

), then

EK,U [f |K ] =
{
h ∈ Y K : (f |K , h) ∈ EK,U

}
=
{
h ∈ Y K :

(
f |K(x), h(x)

) ∈ U for each x ∈ K
}

and

EK,U [f ] =
{
g ∈ Y X : (f, g) ∈ EK,U

}
=
{
g ∈ Y X :

(
f(x), g(x)

) ∈ U for each x ∈ X
}

=
{
g ∈ Y X :

(
f |K(x), g|K(x)

) ∈ U for each x ∈ K
}
.

Now, let g ∈ Y X be arbitrary. Then, g|K ∈ Y K. Now, it is clear from the above
that g|K ∈ EK,U [f |K ] implies g ∈ EK,U [f ], and conversely, g ∈ EK,U [f ] implies
g|K ∈ EK,U [f |K ]. Thus, we obtain{

λ∈Λ: fλ|K ∈EK,U [f |K ]
}
=
{
λ ∈ Λ: fλ ∈ EK,U [f ]

}
.

Consequently, we get from the above observation that{
λ ∈ Λ: fλ ∈ EKi,Ui

[f ]
} ∈ F (I) for all i = 1, 2, . . . , n.

Hence, n⋂
i=1

{λ ∈ Λ: fλ∈EKi, Ui
[f ]} ∈ F (I),

i.e.,

{
λ ∈ Λ: fλ ∈

n⋂
i=1

(
EKi, Ui

[f ]
)} ∈ F (I),

i.e.,

{
λ ∈ Λ: fλ ∈

(
n⋂

i=1

EKi,Ui

)
[f ]

}
∈ F (I).

So, we get {
λ ∈ Λ: fλ /∈

(
n⋂

i=1

EKi,Ui

)
[f ]

}
∈ I.
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Now, keeping in mind that (
⋂n

i=1EKi,Ui
)[f ] being a basic open set in (Y X, τUk

)

containing f the net {fλ : λ ∈ Λ}, is I-convergent to f in (Y X , τUk
). �

	
����� 2.9� A net {fλ : λ ∈ Λ} is an I-Cauchy net in (Y X,Uk) where Uk

is the uniformity of uniform convergence on compacta if and only if for each
compact subset K of X, {fλ|K : λ ∈ Λ} is uniformly I-Cauchy in (Y K,Uu)
where Uu is the uniformity of uniform convergence on Y K and I is a non-trivial
ideal of Λ.

P r o o f. Let {fλ : λ ∈ Λ} be an I-Cauchy net in (Y X,Uk). Then, for each sub-
basic element EK,U there exists some λ0 ∈ Λ such that the set{

λ ∈ Λ: (fλ, fλ0
) /∈ EK,U

} ∈ I.

This holds for each fixed compact subset K of X and for each U ∈ U . Hence,
{fλ|K : λ ∈ Λ} is uniformly I-Cauchy in (Y K,Uu) for each compact subset K
of X.

Conversely, let {fλ|K :λ∈Λ} be uniformly I-Cauchy in (Y K,Uu) for each com-
pact subsetK ofX.Then, for arbitrarily chosen basic elementsEK1,U1

, EK2,U2
, . . .

. . . , EKn,Un
in (Y K1,Uu), (Y K2,Uu), . . . , (Y

Kn,Uu), respectively, we have
by [4, Theorem 2.1] that there exist A1, A2, . . . , An ∈ I such that α, β /∈ Ai

implies (fα|Ki
, fβ |Ki

) ∈ EKi,Ui
for each i = 1, 2, . . . , n. We note below the

following observation.

Let K be any compact subset of X, U be any member of the uniformity U
on Y. Now, we see that if EK,U be a basic element for the uniformity Uu on Y K

and a subbasic element for the uniformity Uk on Y X, then for the first case
mentioned

EK,U =
{
(f, g) ∈ Y K × Y K :

(
f(x), g(x)

) ∈ U for each x ∈ K
}

⊂
{
(f, g) ∈ Y X × Y X :

(
f(x), g(x)

) ∈ U for each x ∈ K
}
= EK,U

mentioned for the second case.

Thus, we obtain that (fα|K , fβ |K) ∈ EK,U implies (fα, fβ) ∈ EK,U . Let us
say A =

⋃n
i=1Ai. Then, clearly A ∈ I, and it follows from the observation made

just before that α, β /∈ A implies (fα, fβ) ∈ EKi,Ui
for all i = 1, 2, . . . , n. Hence,

we can conclude that α, β /∈A implies (fα, fβ)∈
⋂n

i=1EKi,Ui
. Since

⋂n
i=1EKi,Ui

is
a basic element for the uniformity Uk on Y X, so, it follows by [4, Theorem 2.1]
that {fλ : λ ∈ Λ} is an I-Cauchy net in (Y X,Uk). �

We now recall the concept of a topological space to be a k-space which plays
a central role in the discussion of both completeness and compactness relative
to the uniformity of uniform convergence on compacta and its topology.
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���������� 2.11 ([18])� A topological space (X, τ) is a k-space (or a compactly
generated space) if and only if the following condition holds:

(a) A ⊂ X is open in (X, τ) if and only if A ∩K is open in (K, τK) for each
compact set K in (X, τ).

The k-spaces are important to our discussion of I-convergence of continuous
functions on compacta because, in these spaces, the continuous functions are
precisely those which behave well on compact subsets. The proof of the following
lemma, which says this more precisely, follows easily in applying the definition
of a k-space.


���� 2.10 ([18])� If X is a k-space and Y is a topological space, then f :X→Y
is continuous if and only if f |K is continuous for each compact K ⊂ X.

Using this result and Theorems 2.8 and 2.9, which describes I-convergence
on compacta as being precisely uniform I-convergence on each compact subset,
the following theorem holds good.

	
����� 2.11� If X is a k-space and (Y,U) is an ideal complete uniform
space, then C(X, Y ) is ideal complete in the uniformity of uniform convergence
on compacta.

P r o o f. At first, from Theorem 2.9 we know that if {fλ : λ ∈ Λ} is an I-Cauchy
net in (Y X,Uk) where Uk is the uniformity of uniform convergence on compacta,
then we have {fλ|K : λ ∈ Λ} is uniformly I-Cauchy in (Y K,Uu) for each compact
subset K ⊂ X, where Uu is the uniformity of uniform convergence on Y K and I
is a non-trivial ideal of Λ. On the other hand, from Theorem 2.7 we know that
for each compact K ⊂ X, C(K,Y ) is an ideal complete subspace of Y K in the
uniformity of uniform convergence. Now, let {fλ : λ ∈ Λ} be an I-Cauchy net
in
(
C(X, Y ),Uk

)
. Then, {fλ|K : λ ∈ Λ} is uniformly I-Cauchy in

(
C(K,Y ),Uu

)
for each compactK ⊂ X. Since

(
C(K,Y ),Uu

)
is ideal complete, so, a continuous

uniform I-limit fK : K → Y exists for each compact K ⊂ X. It can be seen
easily that if K1 ⊂ K2 ⊂ X, then fK2

|K1
= fK1

, and from this it follows that
the function f : X → Y defined by f(x) = fK(x) for x ∈ K, is well defined.
It is continuous by above Lemma 2.10, and since {fλ|K : λ ∈ Λ} is uniformly
I-convergent to f |K in (Y K, τUu

) for each compact K ⊂ X, so, by Theorem 2.8
it follows that {fλ : λ ∈ Λ} is I-convergent to f in (Y X,Uk). Hence, we get that
{fλ : λ ∈ Λ} is I-convergent to f in

(
C(X, Y ),Uk

)
. Thus,

(
C(X, Y ),Uk

)
is ideal

complete. �
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