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STRICTLY INCREASING ADDITIVE GENERATORS

OF THE SECOND KIND

OF ASSOCIATIVE BINARY OPERATIONS
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ABSTRACT. The class of strictly increasing additive generators of the second

kind is defined and analyzed. Necessary and sufficient conditions for a binary op-
eration generated by a strictly increasing additive generator of the second kind
to be associative are introduced. The relation between the class of strictly increas-
ing additive generators of the second kind of associative binary operations and
the class of discrete upper additive generators of associative binary operations is
revealed.

1. Introduction

We define a new class of non-continuous additive generators, namely the class
of additive generators of the second kind.

In the first part, we introduce conditions under which additive generators
of the second kind generate associative operations. As we will see, these condi-
tions lead to discrete upper additive generators of associative operations.

In the second part, we analyze a relation between the classes of additive gen-
erators of the second kind of associative operations and discrete upper additive
generators of associative operations.

In literature there are many examples of strictly increasing non-continuous
additive generators which are left-continuous and generate associative operations
but that is not the case of strictly increasing non-continuous additive generators
which are right-continuous and generate associative operations. As we will see
in the paper, all the strictly increasing additive generators of the second kind
are right-continuous.
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The definition of an additive generator of the first kind [11] and the definition
of an additive generator of the second kind are analogous. Although there are
some similarities, there are also many differences between the classes of additive
generators of the second kind and additive generators of the first kind. It was
showed [11] that conditions under which additive generators of the first kind
generate associative operations lead to discrete additive generators of associa-
tive operations, and that the classes of additive generators of the first kind of
associative operations and discrete additive generators of associative operations
are closely related.

Although the resulting associative operations generated by additive genera-
tors of the second kind are not triangular conorms, a slight modification of the
resulting associative operations leads to triangular conorms. Triangular conorms
and their dual operations triangular norms are important classes of aggregation
operations which play an important role in the theory of fuzzy sets and fuzzy
logics. A detailed treatment of triangular norms and triangular conorms can
be found in monographs [1] and [2]. Triangular norms on discrete settings are
studied, for instance, in work [6].

2. Upper additively generated operations

Before we define an upper additively generated operation, we recall some
basic definitions. The set of all non-negative integers is denoted by N ∪ {0}.
The symbol ≤ denotes the standard linear order on R ∪ {−∞,∞}. The same
symbol also denotes the restriction of ≤ to a non-empty set X ⊆ R∪ {−∞,∞}.
���������� 2.1� Let X, Y ⊆ R∪ {−∞,∞} be non-empty linearly ordered sets
with the usual linear order ≤ .

(i) A binary operation � : X2 → X is non-decreasing if x� y ≤ u� v for all
x, y, u, v ∈ X, x ≤ u, y ≤ v.

(ii) The non-decreasing binary operations � : X2 → X and ⊕ : Y 2 → Y are
isomorphic if there exists a strictly increasing bijection f : X → Y such
that x� y = f−1

(
f(x) ⊕ f(y)

)
for all x, y ∈ X where f−1 is the standard

inverse of f. The function f is an isomorphism of � and ⊕.

(iii) Suppose that there exists a minimum minX of X. A binary operation � :
X2 → X is a t-conorm if it is non-decreasing, commutative, associative,
and minX is its neutral element.

Let F denote the family of all strictly increasing functions f : X → [0,∞]
where X ⊆ R ∪ {−∞,∞} is either the closed unit interval [0, 1] or a non-
empty finite set or an infinite countable set which can be expressed in the form
of
{
xl | l ∈ N∪{0}}∪{x}, where xl < xl+1 for all l ∈ N∪{0} and liml→∞ xl = x.
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���������� 2.2� A binary operation F : X2 → X is upper additively generated
if there exists f ∈ F with the domain X such that

F (x, y) = f (−1)
(
f(x) + f(y)

)
, (1)

where f (−1) : [0,∞] → X is the pseudo-inverse of f given by

f (−1)(t) = inf{z ∈ X | f(z) ≥ t}, inf ∅ = maxX. (2)

We say that F is upper additively generated by f and that f is a strictly
increasing upper additive generator (briefly, upper additive generator) of F.
If X is finite, we say that f and F are discrete.

Remark 1� Let F be an upper additively generated operation. Then, F is
always non-decreasing, commutative and F (x, y) ≥ max{x, y} for all x, y ∈ X.
In general, F need not be associative, and minX need not be a neutral element
of F. Further, F has a neutral element minX if and only if f(minX) = 0 or
X = {x0}.
Example. (i) The function f : [0, 1] → [0,∞], f(x) = x is an upper additive
generator of �Lukasiewicz t-conorm F : [0, 1]2 → [0, 1], F (x, y) = min{x + y, 1}.
(ii) Let X =

{
l
n | l ∈ {0, 1, . . . , n}}, n ∈ N. The function f : X → [0,∞],

f( l
n ) = l

n is a discrete upper additive generator of a discrete �Lukasiewicz t-

-conorm F : X2 → X, F ( i
n ,

j
n) = min{ i

n + j
n , 1}.

3. Upper additively generated operations and additively
generated operations

Before we look at the relation between an upper additively generated opera-
tion and an additively generated operation both generated by the same function,
we recall the definition of an additively generated operation.

The next definition covers the definition of a discrete additive generator [5]
and is a slight generalization of the definition of an additive generator used
by V i c e n ı́ k [11, Definition 1] where only additive generators acting on finite
sets or the unit closed interval [0, 1] were considered.

���������� 3.1� A binary operation F : X2 → X is additively generated if
there exists f ∈ F with the domain X such that

F (x, y) = f∗(f(x) + f(y)
)
, (3)

where f∗ : [0,∞] → X is the pseudo-inverse of f given by

f∗(t) = sup{z ∈ X | f(z) ≤ t}, sup ∅ = minX. (4)
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We say that F is additively generated by f and that f is a strictly increasing
additive generator (briefly, additive generator) of F. If X is finite, we say that
f and F are discrete.

Note that discrete additive generators of discrete associative operations are
studied in works [3] – [5], and non-continuous additive generators acting on the
closed unit interval [0, 1] of associative operations are studied in works [7] – [10].

Let the symbol R(f) denote the range of a function f in the paper.

	�

� 3.2� Let X be the domain of f ∈ F and let the pseudo-inverses f (−1)

and f∗ of f be given by (2) and (4), respectively. Then, the following hold:

(i) f (−1)(t) ≥ f∗(t) for all t ∈ [0,∞].

(ii) Suppose X = [0, 1]. Then, f (−1)(t) = f∗(t) for all t ∈ [0,∞].

(iii) Suppose X �= [0, 1]. For all t ∈ [0,∞], f (−1)(t) > f∗(t) if and only if
t ∈ [minR(f),maxR(f)] and t /∈ R(f).

P r o o f. Let t ∈ [0,∞]. Write X−(t) = {x ∈ X | f(x) ≤ t} and X+(t) = {x ∈
X | f(x) ≥ t}.
(i) We will consider the following four cases: Suppose that t ∈ [0,minR(f)[.
On the one hand, X−(t) = ∅ and f∗(t) = minX by convention. On the other
hand, X+(t) = X, and so f (−1)(t) = minX.

Suppose that t ∈] maxR(f),∞]. On the one hand, X−(t) = X, and so f∗(t) =
maxX. On the other hand, X+(t) = ∅ and f (−1)(t) = maxX by convention.

Suppose that t ∈ [minR(f),maxR(f)] and t ∈ R(f). Then, there is one and
only one point p ∈ X such that f(p) = t. On the one hand, p is a maximum
of the set X−(t), and so f∗(t) = p. On the other hand, p is a minimum of the
set X+(t), and so f (−1)(t) = p.

Suppose that t ∈ [minR(f),maxR(f)] and t /∈ R(f). Then, both sets X−(t)
and X+(t) are non-empty, X−(t) ∩ X+(t) = ∅ and X−(t) ∪ X+(t) = X.
For arbitrary x1 ∈ X−(t) and x2 ∈ X+(t) it is f(x1) < f(x2) implying x1 < x2.
Hence, f∗(t) ≤ f (−1)(t).

(ii) Suppose that X = [0, 1]. With respect to the proof of (i), it is sufficient
to show that f∗(t) = f (−1)(t) for all t ∈ [minR(f),maxR(f)], t /∈ R(f).
The proof is by contradiction. Suppose that f∗(t) < f (−1)(t) for some t ∈
[minR(f),maxR(f)], t /∈ R(f). Fix q ∈]f∗(t), f (−1)(t)[⊆ [0, 1]. Obviously, q /∈
X−(t) ∪X+(t) which is a contradiction to X−(t) ∪X+(t) = [0, 1].

(iii) Suppose that X �= [0, 1], that is, X is finite or X = {xl | l ∈ N ∪
{0}} ∪ {x} where xl < xl+1 for all l ∈ N ∪ {0} and liml→∞ xl = x. With
respect to the proof of (i), it is sufficient to show that f∗(t) < f (−1)(t) for
all t ∈ [minR(f),maxR(f)], t /∈ R(f). Fix t ∈ [minR(f),maxR(f)], t /∈ R(f).
Obviously, there exists a maximum maxX−(t) of X−(t) and maxX−(t) = f∗(t),
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and similarly, there exists a minimum minX+(t) of X+(t) and minX+(t) =
f (−1)(t). Further, for arbitrary x1 ∈ X−(t) and x2 ∈ X+(t) it is x1 < x2. Hence,
f∗(t) < f (−1)(t). �

�
��������� 3.3� Let X be the domain of f ∈ F and let F be upper additively
generated by f , and G be additively generated by f. Then, the following hold:

(i) F (x, y) ≥ G(x, y) for all x, y ∈ X.

(ii) Suppose X = [0, 1]. Then, F (x, y) = G(x, y) for all x, y ∈ X.

(iii) Suppose X �= [0, 1]. For all x, y ∈ X, F (x, y) > G(x, y) if and only if
f(x) + f(y) ≤ maxR(f) and f(x) + f(y) /∈ R(f).

P r o o f. Our assertion follows from Lemma 3.2 and Definitions 2.2 and 3.1. �

Remark 2� We have shown that f ∈ F whose domain is the interval [0, 1] leads
via the formulas (1) and (3) to an upper additively generated operation and an
additively generated operation which are identical, and therefore, in this case, we
can say an additively generated operation instead of an upper additively generated
operation and an additive generator instead of an upper additive generator.

Example. The function f ∈ F with the domain X = {0, 12 , 1} defined by

f(0) = 1 and f(1
2
) = 3 and f(1) = 5 leads to the upper additively generated

operation F (x, y) = 1 for all (x, y) ∈ X2 \ {(0, 0)} and F (0, 0) = 1
2 , and the

additively generated operation G(x, y) = 1 if (x, y) ∈ X2 \ {(0, 0), (0, 12 )(12 , 0)}
and G(0, 12 ) = G(12 , 0) = 1

2 and G(0, 0) = 0.

4. Upper additions

We begin by defining upper additions which are, as we will see in Section 6,
closely related to upper additively generated operations.

Let us denote by R the family of all sets X ⊆ [0,∞] such that there exists
a maximum maxX of X and inf{x ∈ X | x ≥ t} ∈ X for all t ∈ [0,maxX].
Obviously, if X ∈ R then there exists a minimum minX of X.

���������� 4.1� Let X ∈ R. A binary operation ⊕ : X2 → X is an upper
addition on X if x⊕y=S(x+y), where S : [0,∞] → X, S(t)=inf{z ∈ X | z ≥ t},
inf ∅ = maxX. The function S is the upper function determined by X.

The next remark describes the basic properties of upper functions and upper
additions. Their proofs are straightforward.
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Remark 3� Let X ∈ R, S be the upper function determined by X, and ⊕ be
the upper addition on X.

(i) Then, S(t) = min{x ∈ X | x ≥ t} ≥ t for all t ∈ [0,maxX]. Observe that
S(t) = maxX < t for all t∈] maxX,∞]. Obviously, S(t)=min{x∈X | x≥ t}≥ t
for all t ∈ [0,∞] if and only if ∞ ∈ X. Further, for all t ∈ [0,∞], S(t) = t if and
only if t ∈ X. Furthermore, S is non-decreasing on [0,∞]. Note that the upper
function determined by X is uniquely determined by X.

(ii) Then, x⊕y = min{z ∈ X | z ≥ x+y} ≥ x+y for all x, y ∈ X, x+y ≤ maxX.
Observe that x⊕y = maxX < x+y for all x, y ∈ X, x+y > maxX. Obviously,
x ⊕ y = min{z ∈ X | z ≥ x + y} ≥ x + y for all x, y ∈ X if and only if either
∞ ∈ X or X = {0}. Further, for all x, y ∈ X, x⊕y = x+y if and only if x+y ∈ X.
Furthermore, ⊕ is non-decreasing, commutative and max{x, y} ≤ x ⊕ y for all
x, y ∈ X. In general, ⊕ need not be associative, and minX need not be a neutral
element of ⊕. The operation ⊕ on X has a neutral element minX if and only if
0 ∈ X or X = {x0}. Note that the upper addition on X is uniquely determined
by X.

(iii) Then, for all x ∈ X if minX < x < maxX, then x < x⊕ x.

Example. The upper addition ⊕ on [0,∞] coincides with the usual addition
+ on [0,∞], that is, x ⊕ y = x + y for all x, y ∈ [0,∞]. The upper addition ⊕
on [0, 1] is given by x⊕ y = min{x + y, 1} for all x, y ∈ [0, 1].

Let X, Y ⊆ R ∪ {−∞,∞} be non-empty sets and X ⊆ Y. Suppose that
f : Y → R∪{−∞,∞} is a function. The restriction of f from Y to X is denoted
by f/X, that is, f/X : X → R ∪ {−∞,∞}, f/X(x) = f(x) for all x ∈ X.
Suppose that F : Y 2 → Y is a binary operation on Y. If F (x, y) ∈ X for all
x, y ∈ X, then F can be restricted from Y to X and this restriction is denoted
by F/X2, that is, F/X2 : X2 → X, F/X2(x, y) = F (x, y) for all x, y ∈ X.

�
��������� 4.2� Let X, Y ∈ R and let X ⊆ Y. If the upper addition on Y can
be restricted to X then this restriction coincides with the upper addition on X.

P r o o f. Let � and ⊕ be the upper additions on X and Y, respectively. Suppose
that the upper addition on Y can be restricted to X, that is, x⊕ y ∈ X for all
x, y ∈ X. Let us denote the restriction of ⊕ to X by ⊕/X2. We can write
x⊕ y = x(⊕/X2)y for all x, y ∈ X.

First, we will prove that if X �= {0}, then maxX = maxY. Suppose that
X �= {0}. Since X, Y ∈ R then there exists a maximum maxX of X and
a maximum maxY of Y, and since X ⊆ Y, it is maxX ≤ maxY. Moreover,
0 < maxX since X �= {0}. The proof is by contradiction. Suppose that maxX <
maxY. Then, maxX < maxX ⊕ maxX by definition of ⊕, and so, maxX ⊕
maxX /∈ X, which would be a contradiction. Thus, maxX = maxY.
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Now, we will prove that ⊕/X2 coincides with the upper addition � on X.
If X = {0}, the assertion is obviously true. Suppose that X �= {0}. We have
already proved that maxX = maxY = m. We will consider the following two
cases.

Suppose that x, y ∈ X, x + y > m. Then, {z ∈ X | z ≥ x + y} = ∅ and
{z ∈ Y | z ≥ x + y} = ∅ implying x� y = m = x⊕ y by definition.

Suppose that x, y ∈ X, x+y ≤ m. On the one hand, x�y = min{z ∈ X | z ≥
x + y} ≥ min{z ∈ Y | z ≥ x + y} = x⊕ y. On the other hand, since x⊕ y ∈ X
and x ⊕ y ≥ x + y, it is x ⊕ y ∈ {z ∈ X | z ≥ x + y} implying x ⊕ y ≥ x � y.
Hence, x� y = x⊕ y.

Finally, for all x, y ∈ X, we have x� y = x⊕ y, and since x⊕ y = x(⊕/X2)y,
we obtain x� y = x(⊕/X2)y. �

Remark 4� (i) Let us recall the definition of a lower addition [11, Definition 3]:
Assuming that there exists a minimum minX of X ⊆ [0,∞] and sup{z ∈ X |
z ≤ t} ∈ X for all t ∈ [minX,∞], the lower addition ⊕ : X2 → X is defined by
x⊕ y = sup{z ∈ X | z ≤ x + y} for all x, y ∈ X.

(ii) Additions [7, Definition 6] were defined on sets X ∈ M where M denotes the
family of all sets X ⊆ [0,∞] such that there exists a strictly increasing function
f : [0, 1] → [0,∞] with the range R(f) = X. Note that the upper addition and
the addition coincide on every set X ∈ M∩R.

Example. Let X =
{

2l + 1 | l ∈ N ∪ {0,∞}}.
(i) The upper addition ⊕ on X is defined by (2i+ 1)⊕ (2j+ 1) = 2(i+ j+ 1) + 1
for all i, j ∈ N ∪ {0,∞}.
(ii) The lower addition ⊕ on X is defined by (2i+ 1)⊕ (2j+ 1) = 2(i+ j + 1)− 1
for all i, j ∈ N ∪ {0,∞}.

Note that the lower addition and the upper addition on X in the example
above are not isomorphic.

5. Upper additions on intervals’ sets of the second kind

Suppose that a set M ⊆ [0,∞] is in the form of

M =

(⋃
l∈L

[al, bl[

)
∪ {∞}, L = {0, 1, . . . , n}, n ∈ N ∪ {0} (5)

or

M =

(⋃
l∈L

[al, bl[

)
∪ {∞}, L = N ∪ {0}, lim

l→∞
al = ∞, (6)
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where al, bl ∈ [0,∞], al < bl for all l ∈ L, and bl < al+1 for all l, l + 1 ∈ L.
Suppose that for all i, j, k ∈ L, if ([ai, bi[+[aj , bj [) ∩ [ak, bk[�= ∅, then

max{ai + bj , bi + aj} ≤ ak and bi + bj ≤ bk. (7)

���������� 5.1�

(i) A set M ⊆ [0,∞] is given by a sequence of intervals {[al, bl[}l∈L if it is
in the form of (5) or (6). Writing A = {al | l ∈ L} the set A ∪ {∞} is a
gap-point set of M.

(ii) A set M ⊆ [0,∞] is an intervals’ set of the second kind if it is in the form
of (5) and satisfies (7).

(iii) A strictly increasing function f : [0, 1] → [0,∞] is a strictly increasing
additive generator of the second kind (briefly, additive generator of the
second kind) if its range is an intervals’ set of the second kind.

Every intervals’ set of the second kind is an element of R and every additive
generator of the second kind is an element of F.
Example. The set M = (

⋃
l∈N∪{0}[2l + 1, 2l+ 2[)∪ {∞} is given by a sequence

of intervals {[2l + 1, 2l + 2[}l∈N∪{0} and satisfies (7).

Remark 5� Let us recall the definition of an additive generator of the first
kind [11, Definition 4]: A strictly increasing function f : [0, 1] → [0,∞] is a
strictly increasing additive generator of the first kind (briefly, additive generator
of the first kind) if its range R(f) = M is in the form of

M =

(⋃
l∈L

]al, bl]

)
∪ {0}, L = {0, 1, . . . , n}, n ∈ N ∪ {0},

where al, bl ∈ [0,∞], al < bl for all l ∈ L, and bl < al+1 for all l, l + 1 ∈ L, and
the following is satisfied: for all i, j, k ∈ L, if (]ai, bi]+]aj , bj ])∩]ak, bk] �= ∅, then

ak ≤ ai + aj and bk ≤ min{ai + bj , bi + aj}.
	�

� 5.2� Let M ⊆ [0,∞] be given by a sequence of intervals {[al, bl[}l∈L and
satisfy (7). Then, al, bl ∈]0,∞[, bl − al ≤ a0 for all l ∈ L, and in particular,
b0 ≤ 2a0.

P r o o f. First, we will prove that bl − al ≤ a0 for all l ∈ L. The proof is by
contradiction. Suppose that bl − al > a0 for some l ∈ L. Then, al ≤ a0 + al < bl
implying that ([a0, b0[+[al, bl[) ∩ [al, bl[�= ∅. By (7), it is a0 + bl ≤ max{a0 +
bl, b0 + al} ≤ al, and consequently, bl ≤ al which contradicts to al < bl.

Now, we will prove that b0 ≤ 2a0. From bl − al ≤ a0 for all l ∈ L, we have
b0 − a0 ≤ a0, or equivalently, b0 ≤ 2a0.

Finally, we will prove that al, bl ∈]0,∞[. Since 0 < b0, from b0 ≤ 2a0 it is
0 < a0 implying al, bl ∈]0,∞]. It remains to prove that bl < ∞ for all l ∈ L.
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The proof is by contradiction. Suppose that bl = ∞ for some l ∈ L. Then,
([al, bl[+[al, bl[) ∩ [al, bl[�= ∅, and by (7), ∞ = max{al + bl, bl + al} ≤ al, that is,
bl ≤ al which contradicts to al < bl. �

The next lemma describes some specific properties of upper additions acting
on the sets which are given by a sequence of intervals and satisfy (7).

Let M ⊆ [0,∞] be given by a sequence of intervals {[al, bl[}l∈L, satisfy (7),
and let ⊕ be the upper addition on M. Put

c0 = 0, cl = bl−1 for all l ∈ L \ {0}, and c∞ = bn if n = maxL. (8)

Write a∞ = ∞. Observe that for arbitrary x, y ∈ M with x + y /∈ M, there
exists an index l ∈ L ∪ {∞} such that x + y ∈ [cl, al]. Since [cl, al] ∩M = {al},
we obtain x⊕ y = min{z ∈ M | z ≥ x + y} = al.

	�

� 5.3� Let M be given by a sequence of intervals {[al, bl[}l∈L and let
satisfy (7). Let ⊕ be the upper addition on M and let numbers cl be given by (8).
Suppose that i, j ∈ L, x ∈ [ai, bi[ and y ∈ [aj , bj [. Write a∞ = b∞ = ∞ and
ak = min

{
al | al ≥ ai + aj , l ∈ L ∪ {∞}}. Then

(i) ck ≤ ai + aj < max{ai + bj , bi + aj} ≤ ak and bi + bj ≤ bk,

(ii) if k ∈ L, then x⊕ y ∈ [ak, bk[, and if k = ∞ then x⊕ y = ∞,

(iii) if x + y /∈ ∪l∈L[al, bl[, then x⊕ y = ai ⊕ aj = ak,

(iv) if x = ai or y = aj, then x⊕ y = ai ⊕ aj = ak.

P r o o f. Let i, j ∈ L, x ∈ [ai, bi[, y ∈ [aj , bj [ and ak = min{al | al ≥ ai + aj , l ∈
L ∪ {∞}} Recall al, bl ∈]0,∞[ for all l ∈ L by Lemma 5.2.

(i) Clearly, ai + aj < max{ai + bj , bi + aj}. Recall that ai + aj ≤ ak by defi-
nition of ak. We will prove that max{ai + bj , bi + aj} ≤ ak and bi + bj ≤ bk.
We will consider the following two cases:

Suppose that k ∈ L. Then, max{ai + bj , bi + aj} ≤ ak and bi + bj ≤ bk,
since if max{ai + bj , bi + aj} > ak or bk < bi + bj , then we would have k ∈ L
and ([ai, bi[+[aj , bj [) ∩ [ak, bk[�= ∅, and by (7), max{ai + bj , bi + aj} ≤ ak and
bi + bj ≤ bk, which would be a contradiction.

Suppose that k = ∞. Then, a∞ = b∞ = ∞, and obviously,

max{ai + bj , bi + aj} ≤ a∞ and bi + bj ≤ b∞.

It remains to prove that ck ≤ ai+aj . We will consider the following two cases:

Suppose that k ∈ L. Then, k �= 0, since if k = 0 then from ai + aj ≤ a0 we
would have i = j = 0 and a0 = 0, which would contradict to a0 > 0. Thus,
k ∈ L\ {0}, and ak−1 < ai +aj by definition of ak. Further, bk−1 ≤ ai +aj since
if ai + aj < bk−1, then ([ai, bi[+[aj , bj [) ∩ [ak−1, bk−1[�= ∅, and by (7), it would
be ai + aj ≤ max{ai + bj , bi + aj} ≤ ak−1, which would be a contradiction.
Thus, ck = bk−1 ≤ ai + aj .
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Suppose that k = ∞. Then, a∞ = ∞ and al < ai + aj < a∞ for all l ∈ L
by definition of ak = a∞. Further, the non-empty set L is finite since if L = N∪
{0}, then liml→∞ al = ∞ > ai + aj which would contradict to al < ai + aj < ∞
for all l ∈ L. So, there exists maxL = n and an < ai + aj . Further, bn ≤ ai + aj
since if ai + aj < bn, then ([ai, bi[+[aj , bj [)∩ [an, bn[�= ∅, and by (7), it would be
ai + aj ≤ max{ai + bj , bi + aj} ≤ an, which would be a contradiction. Hence,
c∞ = bn ≤ ai + aj .

(ii) Clearly, ai + aj ≤ x + y < bi + bj . By (i), x + y ∈ [ck, bk[. We will consider
the following two cases:

Suppose that k ∈ L. Then, x+y ∈ [ck, ak[ or x+y ∈ [ak, bk[. If x+y ∈ [ck, ak[,
then x ⊕ y = ak because of [ck, ak] ∩ M = {ak}, and if x + y ∈ [ak, bk[, then
x⊕ y = x + y. Hence, x⊕ y ∈ [ak, bk[.

Suppose that k = ∞. Then, a∞ = ∞ and x+ y ∈ [c∞,∞[, and so, x⊕ y = ∞
because of [c∞,∞] ∩M = {∞}.
(iii) Let x + y /∈ ∪l∈L[al, bl[. By (i), x + y ∈ [ck, bk[. Hence, x + y ∈ [ck, ak[.
By (i), ai + aj ∈ [ck, ak[. Hence, x ⊕ y = ai ⊕ aj = ak because of [ck, ak] ∩
M = {ak}.
(vi) Suppose that x = ai or y = aj. By (i), ck ≤ ai+aj ≤ x+y < max{ai+bj , bi+
aj} ≤ ak, and so, x+y ∈ [ck, ak[ and ai+aj ∈ [ck, ak[. Hence, x⊕y = ai⊕aj = ak
because of [ck, ak] ∩M = {ak}. �

6. The relation between upper additions and
upper additively generated operations

First, we look at the relation between R and {R(f) | f ∈ F}. Observe that
[0, 1] ∪ [2, 3] ∈ R but [0, 1] ∪ [2, 3] /∈ {R(f) | f ∈ F}, and that [0, 1]∪]2, 3] /∈ R
but [0, 1]∪]2, 3] ∈ {R(f) | f ∈ F}. It is clear that if X is the domain of f ∈ F
and X �= [0, 1], then R(f) ∈ R.

	�

� 6.1� Let [0, 1] be the domain of f ∈ F . Then, R(f) ∈ R if and only if
f is right-continuous.

P r o o f. (⇒) The proof is by a contradiction. Suppose that R(f) ∈ R and that
there exists p ∈ [0, 1[ such that limx→p+ f(x) = l > f(p). Obviously, l /∈ R(f).
Choose t ∈]f(p), l]. Then, inf{x ∈ R(f) | x ≥ t} = l /∈ R(f), which contradicts
to R(f) ∈ R.

(⇐) The proof is by contradiction. Suppose that f is right-continuous and that
there exists t ∈ [0,∞] such that inf{x ∈ R(f) | x ≥ t} = i /∈ R(f). The set
{x ∈ R(f) | x ≥ t} is non-empty, since if it is empty, then i = maxR(f) ∈ R(f),
which would be a contradiction. Obviously, i is an accumulation point of R(f)
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from the right. Write p = inf{x ∈ [0, 1] | f(x) ≥ i}. Obviously, p ∈ [0, 1[ and
limx→p+ f(x) = i > f(p), which contradicts to the right-continuity of f. �

����
�
 6.2� Let X be the domain of f ∈ F and R(f) ∈ R. Let F : X2 → X
be upper additively generated by f and let ⊕ : R(f)2 → R(f) be the upper
addition on R(f). Then, the strictly increasing bijection f : X → R(f) is an
isomorphism of F and ⊕, that is, F (x, y) = f−1(f(x) ⊕ f(y)) for all x, y ∈ X.

P r o o f. First, we will prove that f−1
(
S(t)

)
= f (−1)(t) for all t ∈ [0,∞],

where S is the upper function determined by R(f). If t ∈] maxR(f),∞], then
f−1

(
S(t)

)
= maxX = f (−1)(t) by definitions. Fix t ∈ [0,maxR(f)]. Since

R(f) ∈ R, it is S(t) = inf{x ∈ R(f) | x ≥ t} ∈ R(f), that is, there exists one
and only one p ∈ X such that S(t) = f(p), and f−1

(
S(t)

)
= p. It remains to

proof that f (−1)(t) = p. On the one hand, S(t) ≥ t, that is, f(p) ≥ t imply-
ing p ∈ {x ∈ X | f(x) ≥ t}, and so, f (−1)(t) = inf{x ∈ X | f(x) ≥ t} ≤ p.
On the other hand, for all x ∈ X, x < p, it is f(x) < t since if f(x) ≥ t,
for some x ∈ X, x < p, we would have f(p) > f(x) ≥ S(t) which would
contradict to f(p) = S(t). Thus, {x ∈ X | f(x) ≥ t} ⊆ [p,∞], and so,
f (−1)(t) = inf{x ∈ X | f(x) ≥ t} ≥ p. We have already proved f (−1)(t) = p.

For all x, y ∈ X, it is F (x, y) = f (−1)
(
f(x) + f(y)

)
= f−1

(
S(f(x) + f(y))

)
=

f−1
(
f(x) ⊕ f(y)

)
by the definitions of F and ⊕. �

Let D denote the set of all non-empty sets X ⊆ [0,∞], where X is a finite
set or it is an infinite countable set which can be expressed in the form of
{xl | l ∈ N ∪ {0}} ∪ {x} where xl < xl+1 for all l ∈ N ∪ {0} and limn→∞ xl = x.
Clearly, D ⊆ R.

�
��������� 6.3� Let X be the domain of f ∈ F and let R(f) ∈ R. If the
upper addition on R(f) can be restricted to a set Z ⊆ R(f) and Z ∈ D, then the
operation F upper additively generated by f can be restricted to Y = f−1(Z),
and this restriction F/Y 2 : Y 2 → Y is upper additively generated by f/Y.

P r o o f. By Theorem 6.2, the strictly increasing bijection f : X → R(f) is an
isomorphism of the operation F : X2 → X upper additively generated by f and
the upper addition ⊕ : R(f)2 → R(f) on R(f) and F (x, y) = f−1

(
f(x) ⊕ f(y)

)
for all x, y ∈ X. If the upper addition on R(f) can be restricted to a non-
empty set Z ⊆ R(f), then F can be restricted to Y = f−1(Z), and the strictly
increasing bijection f/Y : Y → Z is an isomorphism of F/Y 2 : Y 2 → Y and
⊕/Z2 : Z2 → Z such that F/Y 2(x, y) = (f/Y )−1

(
f/Y (x)(⊕/Z2)f/Y (y)

)
for all

x, y ∈ Y. Clearly, Z ∈ R because Z ∈ D ⊆ R. By Proposition 4.2, ⊕/Z2 coincides
with the upper addition ⊕Z : Z2 → Z on Z, that is, f/Y (x)(⊕/Z2)f/Y (y) =
f/Y (x) ⊕Z f/Y (y) for all x, y ∈ Y. Hence, F/Y 2(x, y) = (f/Y )−1(f/Y (x) ⊕Z

f/Y (y)) for all x, y ∈ Y. Obviously, Y is the domain of a strictly increasing
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function f/Y and R(f/Y ) = Z ∈ R. If f/Y ∈ F , then, by Theorem 6.2, F/Y 2

is upper additively generated by f/Y. It remains to prove that f/Y ∈ F . We will
consider the following two cases.

Suppose that a non-empty set Z is finite. Then, the set Y is non-empty and
finite, and obviously, f/Y ∈ F .

Suppose that Z =
{
zl | l ∈ N∪{0}} ∪ {z}, zl < zl+1 for all l∈N∪{0},

liml→∞ zl = z. Write f−1(zl) = yl for all l ∈ N ∪ {0} and f−1(z) = y. Then,
Y =

{
yl | l ∈ N ∪ {0}} ∪ {y}, yl < yl+1 for all l ∈ N ∪ {0} and liml→∞ yl ≤ y.

In order to complete the proof, we should show that liml→∞ yl = y. Because
Y ⊆ X, the domain X of f can be either {xl | l ∈ N∪{0}}∪{x}, xl < xl+1 for all
l ∈ N∪{0}, liml→∞ xl = x or [0, 1]. In the former case, the sequence {yl} is a sub-
sequence of {xl}, and so, liml→∞ yl =liml→∞ xl =x. Since liml→∞ yl≤y≤x, it is
liml→∞ yl = y. In the latter case, it is liml→∞ yl =y since if liml→∞ yl<y, then
for an arbitrary w ∈] liml→∞ yl, y[, we would have z=liml→∞ zl =liml→∞ f(yl)≤
f(w)<f(y) which would contradict to z = f(y). �

7. Restrictions of additive generators of the second kind
to discrete upper additive generators

We will show that every additive generator of the second kind of an associative
operation can always be restricted to a discrete upper additive generator of a
discrete associative operation.

	�

� 7.1� Let M be given by a sequence of intervals {[al, bl[}l∈L, satisfy (7),
and let A ∪ {∞} be its gap-point set where A = {al | l ∈ L}. Then, the upper
addition on M can be restricted to A ∪ {∞} and this restriction coincides with
the upper addition on A∪{∞}. Moreover, the upper addition on M is associative
if and only if the upper addition on A ∪ {∞} is associative.

P r o o f. Put a∞ = ∞. Then, A∪{∞} =
{
al | l ∈ L∪{∞}}. It is obvious that

M,A ∪ {∞} ∈ R. Let us denote the upper addition on M by ⊕. From Lem-
ma 5.3 (iv) and from the fact that a∞⊕x=x⊕a∞=a∞ for all x ∈ M , it follows
that ai ⊕ aj ∈ A ∪ {∞} for all i, j ∈ L ∪ {∞}, that is, the upper addition on M
can be restricted to A ∪ {∞}, and moreover, this restriction coincides with the
upper addition on A∪{∞} by Proposition 4.2. Obviously, if the upper addition
on M is associative then so is the upper addition on A ∪ {∞}.

Suppose that the upper addition on A ∪ {∞} is associative. Since the upper
addition on A ∪ {∞} coincides with the restriction of the upper addition ⊕
from M to A ∪ {∞}, we can write (ai ⊕ aj) ⊕ ak = ai ⊕ (aj ⊕ ak) for all
i, j, k ∈ L ∪ {∞}. We will prove that the upper addition ⊕ on M is associative,
that is, (x⊕y)⊕z = x⊕ (y⊕z) for all x, y, z ∈ M. The last equality is obviously
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true if x or y or z is ∞. Suppose that x ∈ [ai, bi[, y ∈ [aj , bj [, z ∈ [ak, bk[ for
some i, j, k ∈ L. Let S be the upper function determined by M. We will consider
the following three cases:

Suppose that x + y, y + z ∈ ⋃l∈L[al, bl[. Obviously, x ⊕ y = x + y, and so
(x⊕ y)⊕ z = S((x⊕ y) + z) = S(x+ y+ z). Similarly, x⊕ (y⊕ z) = S(x+ y+ z).

Suppose that x+y, y+z /∈ ⋃l∈L[al, bl[. By Lemma 5.3 (iii), x⊕y = ai⊕aj = am
where am = min{al ∈ A∪{∞} | al ≥ ai +aj}, and by Lemma 5.3 (iv), am⊕ z =
am⊕ak. Hence, (x⊕y)⊕z = (ai⊕aj)⊕ak. Similarly, x⊕(y⊕z) = ai⊕(aj⊕ak).

Suppose that x+ y ∈ ⋃l∈L[al, bl[ and y+ z /∈ ⋃l∈L[al, bl[. As in the first case,
(x⊕y)⊕z = S(x+y+z), and as in the second case, x⊕ (y⊕z) = ai⊕ (aj ⊕ak).
Recall that (ai⊕ aj)⊕ ak = ai ⊕ (aj ⊕ ak). On the one hand, x ≥ ai, y ≥ aj and
z ≥ ak, and because of the monotonicity of ⊕,

(x⊕ y) ⊕ z ≥ (ai ⊕ aj) ⊕ ak = x⊕ (y ⊕ z).

On the other hand, since ∞ ∈ M, it is y⊕ z = min{w ∈ M | w ≥ y+ z} ≥ y+ z,
and because of the monotonicity of S,

x⊕ (y ⊕ z) = S
(
x + (y ⊕ z)

) ≥ S(x + y + z) = (x⊕ y) ⊕ z. �

Example. (i) The set M =
(⋃

l∈N∪{0}[2l+1, 2l+2[
)∪{∞} is given by a sequence

of intervals {[2l + 1, 2l + 2[}l∈N∪{0} and satisfies (7). By Lemma 7.1, the upper
addition on M is associative since the upper addition ⊕ on the gap-point set{

2l+1 | l ∈ N∪{0,∞}} given by (2i+1)⊕(2j+1) = 2(i+j+1)+1 is associative.

In fact, for all i, j, k ∈ N∪{0,∞}, on the one hand,
(
(2i+1)⊕(2j+1)

)⊕(2k+1) =

2(i + j + k + 2) + 1 and on the other hand, (2i + 1) ⊕ ((2j + 1) ⊕ (2k + 1)
)

=
2(i + j + k + 2) + 1.

(ii) The set M =
(⋃

l∈{0,1,...,n}[2l+ 1, 2l+ 2[
)∪{∞}, n ∈ N∪{0} is an intervals’

set of the second kind. By Lemma 7.1, the upper addition on M is associative
since the upper addition ⊕ on the gap-point set

{
2l+1 | l ∈ {0, 1, . . . , n}∪{∞}}

given by

(2i + 1) ⊕ (2j + 1) =

{
2(i + j + 1) + 1 if 2(i + j + 1) + 1 ≤ 2n + 1.

∞ if 2(i + j + 1) + 1 > 2n + 1.

is associative.

����
�
 7.2� Let f : [0, 1] → [0,∞] be an additive generator of the second
kind of an associative operation F with the gap-point set A ∪ {∞} of the range
R(f). Then, F can be restricted to X = f−1(A ∪ {∞}), and this restriction
F/X2 : X2 → X is a discrete associative operation upper additively generated
by f/X.
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P r o o f. By Theorem 6.2, the strictly increasing bijection f : [0, 1] → R(f) is
an isomorphism of F and ⊕ where ⊕ is the upper addition on R(f). Since F
is associative, so is ⊕. By Lemma 7.1, the upper addition ⊕ can be restricted
to A ∪ {∞} and this restriction ⊕/(A ∪ {∞})2, which is obviously associative,
coincides with the upper addition on A ∪ {∞}. By Proposition 6.3, the oper-
ation F can be restricted to X = f−1(A ∪ {∞}) and this restriction F/X2 is
upper additively generated by the restriction f/X of f to X. Since f/X is an
isomorphism of F/X2 and ⊕/(A∪ {∞})2 by Theorem 6.2, the operation F/X2

is associative. �

Example. Let L = {0, 1, . . . , n}, n ∈ N and let f : [0, 1] → [0,∞], f(x) =
n(x − l

n ) + (2l + 1) for all x ∈ [ l
n ,

l+1
n [ and l ∈ L \ {n}, and f(1) = ∞.

Observe that R(f) =
(⋃

l∈L\{n}[2l + 1, 2l + 2[
) ∪ {∞}. Clearly, the function f is

a strictly increasing additive generator of the second kind of F. The upper addi-
tion on R(f) is associative, and by Theorem 6.2, so is the operation F additively
generated by f. Write X = f−1

({
2l + 1 | l ∈ L \ {n}} ∪ {∞}) = { l

n | l ∈ L}.
The restriction f/X of f to X is a discrete upper additive generator of an
associative operation G = F/X2 by Theorem 7.2.

8. Extensions of discrete upper additive generators
to additive generators of the second kind

We introduce conditions under which a discrete upper additive generator of a
discrete associative operation can be extended to an additive generator of the
second kind of an associative operation. The construction is based on construct-
ing of an intervals’ set of the second kind from a non-empty finite set X ⊆]0,∞[
of the certain properties.

Suppose that a set X ⊆ [0,∞[ is in the form of

X = {xl ∈ [0,∞[| l ∈ L}, xl < xl+1 for all l, l + 1 ∈ L,

where L = {0, 1, . . . , n}, n ∈ N ∪ {0} or L = N ∪ {0}. Write

δ(X) =

{
inf P if P �= ∅,
∞ if P = ∅, (9)

where P = {xl − xl−1 | l ∈ L \ {0}}, and

ε(X) =

{
inf Q if Q �= ∅,
∞ if Q = ∅, (10)

where Q = {|xi + xj − xk| | xi + xj − xk �= 0, i, j, k ∈ L}. Clearly, δ(X) ≥ 0
and ε(X) ≥ 0. If a non-empty set X is finite, then δ(X) > 0 and ε(X) > 0. It is
obvious that δ(X) = ∞ if and only if X = {x0}, and ε(X) = ∞ if and only if
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X = {0}. If a non-empty set X is finite and X �= {x0}, then δ(X) = minP > 0
and ε(X) = minQ > 0.

���������� 8.1� A non-empty set X ⊆ [0,∞] is anti-additive if x + y /∈ X for
all x, y ∈ X.

	�

� 8.2� Let M be given by a sequence of intervals {[al, bl[}l∈L and let
satisfy (7). Then, the set A = {al | l ∈ L} is anti-additive.

P r o o f. Recall that A ⊆]0,∞[ by Lemma 5.2. The proof is by contradiction.
Suppose that ai+aj = ak for some i, j, k ∈ L. Then, ([ai, bi[+[aj , bj [)∩[ak, bk[�= ∅,
and by (7), max{ai + bj , bi + aj} ≤ ak implying ai + aj < ak which is a contra-
diction. �

The next lemma is crucial for our construction.

	�

� 8.3� Let A = {al ∈]0,∞[| l ∈ L}, al < al+1 for all l, l + 1 ∈ L where
L = {0, 1, . . . , n}, n ∈ N ∪ {0} or L = N ∪ {0}. Let δ = δ(A) and ε = ε(A) be
given by (9) and (10), respectively. Suppose that A is anti-additive and δ > 0
and ε > 0. Then, the set

M =

(⋃
l∈L

[al, al + dl[

)
∪ {∞},

where {dl}l∈L is a non-decreasing sequence of positive real numbers such that
dl < δ and dl ≤ ε for all l ∈ L, is given by a sequence of intervals {[al, bl[}l∈L,
satisfies (7), and A ∪ {∞} is its gap-point set.

P r o o f. In order to show that M is given by a sequence of intervals {[al, bl[}l∈L,
satisfies (7), and A ∪ {∞} is its gap-point set, we should prove the following:
ai−1 + di−1 < ai for all i ∈ L \ {0}, and that for all i, j, k ∈ L, if ([ai, ai +
di[+[aj , aj + dj [) ∩ [ak, ak + dk[�= ∅, then max{ai + di + aj , ai + aj + dj} ≤ ak
and ai + di + aj + dj ≤ ak + dk.

For all i ∈ L \ {0}, from 0 < di−1 < δ ≤ ai − ai−1 we obtain ai−1 + di−1 < ai.
Suppose that ([ai, ai + di[+[aj , aj + dj [) ∩ [ak, ak + dk[�= ∅ for some i, j, k ∈ L
for the rest of the proof.

First, we will prove that ai +aj < ak. Clearly, ai +aj �= ak because A is anti-
additive. If ak < ai+aj , from dk ≤ ε ≤ |ai+aj−ak| = ai+aj−ak, we would have
ak +dk ≤ ai +aj , and consequently, ([ai, ai +di[+[aj , aj +dj [)∩ [ak, ak +dk[= ∅,
which would be a contradiction. Thus, ai + aj < ak, and consequently, i < k
and j < k.

We will prove that max{ai + di + aj , ai + aj + dj} ≤ ak. From max{di, dj} ≤
ε ≤ |ai + aj − ak| = ak − (ai + aj), we obtain max{ai + di + aj , ai + aj + dj} =
ai + aj + max{di, dj} ≤ ak.
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Finally, we will prove that ai+di+aj+dj ≤ ak+dk. Since i < k and j < k, it is
di ≤ dk and dj ≤ dk. Thus, from ai+di+aj ≤ max{ai+di+aj , ai+aj+dj} ≤ ak,
it is ai + di + aj + dj ≤ ak + dk. �

Example. Let A =
{

2l + 1 | l ∈ N ∪ {0}}. The set A is anti-additive and
δ(A) = 2 and ε(A) = 1. The upper addition on A ∪ {∞} is associative.

(i) By Lemma 8.3, the set M = (
⋃

l∈N∪{0}[2l + 1, 2l + 2[) ∪ {∞} is given by a

sequence of intervals, satisfies (7), and A∪{∞} is its gap-point set, and moreover,
by Lemma 7.1, the upper addition on M is associative.

(ii) By Lemma 8.3, the set M = (
⋃

l∈N∪{0}[2l+1, 2l+2− 1
2l+1 [)∪{∞} is given by

a sequence of intervals {[2l+ 1, 2l+ 2− 1
2l+1 [}l∈N∪{0}, satisfies (7), and A∪{∞}

is its gap-point set, and moreover, by Lemma 7.1, the upper addition on M is
associative.

��
����
� 8.4� Let A ⊆]0,∞[ be a non-empty finite set. Then, the following
two assertions are equivalent:

(i) There exists an intervals’ set M of the second kind with the gap-point set
A ∪ {∞} such that the upper addition on M is associative.

(ii) The set A is anti-additive and the upper addition on A∪{∞} is associative.

P r o o f. (⇒) Suppose that (i) holds. Then, A is anti-additive by Lemma 8.2,
and the upper addition on A ∪ {∞} is associative by Lemma 7.1.

(⇐) Suppose that (ii) holds. An existence of an intervals’ set M of the second
kind with the gap-point set A ∪ {∞} follows from Lemma 8.3, and the associa-
tivity of the upper addition on M follows from Lemma 7.1. �
����
�
 8.5� Let X ⊆ [0, 1] be a finite set and 0, 1 ∈ X. If g : X → [0,∞],
g(1) = ∞ is a discrete upper additive generator of a discrete associative operation
G with an anti-additive set R(g) \ {∞}, then there exists an additive generator
f : [0, 1] → [0,∞] of the second kind of an associative operation F such that
R(f) has the gap-point set R(g), f/X = g and F/X2 = G.

P r o o f. Suppose that g : X → [0,∞], g(1) = ∞ is a discrete upper addi-
tive generator of a discrete associative operation G with an anti-additive set
R(g)\{∞}. Write X = {xl | l ∈ L}, L = {0, 1, . . . , n}, n ∈ N , where xl < xl+1

for all l, l + 1 ∈ L.

First, we will describe the construction of f. As in Lemma 8.3, we construct
an intervals’ set M =

(⋃
l∈L\{n}[al, al + dl[

) ∪ {∞} of the second kind with the

gap-point set A ∪ {∞} = R(g) = {al | al = g(xl), l ∈ L} where 0 < d0 ≤ · · · ≤
dn−1 < δ(A) and dn−1 ≤ ε(A) and A =

{
al | al = g(xl), l ∈ L \ {n}}. Then, we

choose an arbitrary strictly increasing bijection f : [0, 1] → M with f(xl) = al
for all l ∈ L, for instance, f(x) = dl

(xl+1−xl)
(x− xl) + al for all x ∈ [xl, xl+1[ and

l ∈ L \ {n} and f(1) = ∞.
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Now, we will prove that F is an associative operation. Since the strictly in-
creasing bijection g : X → A ∪ {∞} upper additively generates an associative
operation G, by Theorem 6.2, the upper addition on A ∪ {∞} is associative,
and by Lemma 7.1, so is the upper addition on M. Thus, by Theorem 6.2,
the strictly increasing bijection f : [0, 1] → M additively generates an associa-
tive operation F.

Finally, we will show that f/X = g and F/X2 = G. By construction of f , it is
obvious that f/X = g. Since the upper addition on M can be restricted to A ∪
{∞} by Lemma 7.1, the operation F can be restricted to X = f−1(A∪{∞}), and
this restriction F/X2 is upper additively generated by f/X by Proposition 6.3.
Clearly, F/X2 = G since f/X = g. �
Example. Let A = {5, 7, 15, 19, 25, 27, 29}. First, we will show that the upper
addition ⊕ on A∪{∞} is associative. Since (5⊕5)⊕15 = ∞ and 5⊕(5⊕15) = ∞,
the monotonicity and the commutativity of ⊕ imply that for all x, y, z ∈ A∪{∞},
if max{x, y, z} ≥ 15, then (x ⊕ y) ⊕ z = (x ⊕ (y ⊕ z) = ∞. For instance,
(19 ⊕ 7) ⊕ 5 ≥ (15 ⊕ 5) ⊕ 5 = 5 ⊕ (15 ⊕ 5) = 5 ⊕ (5 ⊕ 15) = ∞, and so
(19⊕7)⊕5 = ∞. Since (5⊕5)⊕5 = 25 and (7⊕7)⊕7 = 25, the monotonicity and
the commutativity of ⊕ imply that for all x, y, z ∈ A∪{∞}, if max{x, y, z} < 15
then (x⊕ y) ⊕ z = x⊕ (y ⊕ z) = 25. Thus, ⊕ on A ∪ {∞} is associative.

The set A is anti-additive, δ(A) = 2 and ε(A) = 1. By Lemma 8.3, the set
M = [5, 6[∪[7, 8[∪[15, 16[∪[19, 20[∪[25, 26[∪[27, 28[∪[29, 30[∪{∞} is an intervals’
set of the second kind and A ∪ {∞} is its gap-point set. By Lemma 7.1, the
upper addition on M is associative.

Let X =
{

l
7 | l ∈ {0, 1, . . . , 7}}. By Theorem 6.2, Lemma 7.1, and Proposi-

tion 6.3, the strictly increasing bijection g : X → A ∪ {∞} is a discrete upper
additive generator of an associative operation G, and an arbitrary strictly in-
creasing bijection f : [0, 1] → M with f/X = g is an additive generator of the
second kind of an associative operation F. Moreover, F/X2 = G.

Remark 6� It is a matter of straightforward verification to show that if f : X →
[0,∞] is an upper additive generator of an associative operation F : X2 → X,
then the function g : X → [0,∞] given by

g(x) =

{
f(x) if x ∈ X \ {minX},
0 if x = minX,

is an upper additive generator of t-conorm G : X2 → X such that

G(x, y) =

{
F (x, y) if (x, y) ∈ (X \ {minX})2,

max{x, y} if min{x, y} = minX.

With respect to Remark 6 from every upper additive generator of an as-
sociative operation, we can easily construct an upper additive generator of a
t-conorm.
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