On Everything Is Necessarily What It Is

Alex Blum*

Received: 26 June 2023 / Revised: 18 August 2023 / Accepted: 26 August 2023

Abstract: It is argued that if everything is necessarily what it is, then given the equivalence ‘p≡[a= (∀x)(x=a⋅p)]’, it follows that whatever happens or is the case, had to happen or had to be the case.

Keywords: Fatalism; Identity; Necessity; The sole object; (x) (□ x=x)

If we grant the equivalence

\[(1) \ p \equiv [a = (∀x)(x = a\cdot p)], \]

that every sentence is equivalent to an identity sentence\(^1\), and grant that (2) if a sentence is (necessarily) true then what it says is (necessarily) the case; then unless fatalism is true (3) the thesis of the necessity of identity,\(^2\) is false, and thus so is the thesis that (4) everything is necessarily what it is\(^3\).

\(^1\) Commonly assumed in one form or another by Church, Davidson, Gödel and Quine. See Yaroslav Shranko and Heinrich Wansing (2020). See Neale (2001: esp. 170-171).

\(^2\) See, Kripke (1971,136).

\(^3\) The argument for the thesis of the necessity of identity rests on the formula ‘(x) (□ x=x)’. See Wiggins (1965:41) and Kripke (1971, 136). And is in fact equivalent
Suppose

(1) \(p \equiv [a = (\exists x)(x = a \& p)] \)

is logically true, then given (2), so is,

(2') \(p \) is the case if and only if \(a = (\exists x)(x = a \& p) \)

Hence given the necessity of identity, it follows that

(5) \(p \) is the case if and only if necessarily \([a = (\exists x)(x = a \& p)]\)\(^4\).

And thus,

(6) \(\text{if } p \text{ is the case, then necessarily } [a = (\exists x)(x = a \& p)]. \)

But if

(7) necessarily \([a = (\exists x)(x = a \& p)]\) then,

(8) necessarily \(p \).

And thus,

(9) \(\text{If } p \text{ then necessarily } p. \)

Hence, given that (1) is a logical truth and (2) is analytic, the thesis of the necessity of identity or the thesis that everything is necessarily what it is, implies fatalism.\(^5\)

to it (Blum:x). We rendition the reflexivity of identity as ‘everything is what it is’. See Leibniz (1996, 362).

\(^4\) The argument for the necessity of identity is immune to whether the terms in an identity are expressed as ‘\(a\)’ or as ‘\((\exists x)(x = a \& p)\)’. Thus the argument will go through for:

\(a = (\exists x)(x = a \& p) \supset [F \supset F(\exists x)(x = a \& p)]. \) Let ‘\(F\)’ = ‘\(\square \);\’.

We then have:

\(a = (\exists x)(x = a \& p) \supset [\square a = a \supset a = (\exists x)(x = a \& p)]. \)

And thus:

\(a = (\exists x)(x = a \& p) \supset \square a = (\exists x)(x = a \& p). \)

\(^5\) I am deeply grateful to Yehuda Gellman and to the reviewer for their comments.
References

