

DOI: 10.2478/tmmp.2020.0019

DOI: 10.2478/tmmp-2020-0018 Tatra Mt. Math. Publ. **76** (2020), 63–70

ON IDEALS GENERATED BY PARTITIONS INTO MEAGER AND NULL SETS

Andrzej Nowik

Institute of Mathematics, University of Gdańsk, Gdańsk, POLAND

ABSTRACT. We examine the σ -ideal generated by complements of sums of sets from partitions into meager and null sets. We prove some characterizations of this σ -ideal.

1. Definitions

Throughout this paper, we consider sets of real numbers and subsets of the Cantor space 2^{ω} equipped with "+" — the usual modulo 2 coordinate-wise addition in 2^{ω} .

By \mathcal{N} , $\mathcal{M}GR$ we denote the σ -ideals of sets of Lebesgue measure zero (null sets) and sets of first category (meager) in \mathbf{R} (or in the Cantor space 2^{ω}), respectively. By \mathcal{E} we denote the σ -ideal generated by all F_{σ} sets of measure zero.

If $X, Y \subseteq G$ are subsets of a topological group (typically $G = 2^{\omega}$ or $G = \mathbf{R}$), then we define $X \pm Y = \{x \pm y \colon x \in X, y \in Y\}$. If $X \subseteq \mathbf{R}$ and $r \in \mathbf{R}$, then define $r \cdot X = \{r \cdot x \colon x \in X\}$.

Define: $\mathcal{M}GR^* = \{X \subseteq G : \forall_{M \in \mathcal{M}GR}X + M \in \mathcal{M}GR\}.$

If \mathcal{I} and \mathcal{J} are two σ -ideals of subsets of a fixed space G (typically $G=2^{\omega}$ or $G=\mathbf{R}$), then we write $\mathcal{I}\perp\mathcal{J}$ if and only if there exist $A\in\mathcal{I}$ and $B\in\mathcal{J}$ such that $A\cup B=X$ and $A\cap B=\emptyset$.

For any family \mathcal{F} of subsets of the real line (or the Cantor set), we say that \mathcal{F} is transitive invariant if and only if $\forall_{x \in \mathbb{R}} \forall_{F \in \mathcal{F}} x + F \in \mathcal{F}$.

For $A \subseteq G$ (where G is a fixed topological group, typically $G = 2^{\omega}$ or $G = \mathbb{R}$), $\langle A \rangle$ will denote a subgroup of G generated by A.

Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

^{© 2020} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: Primary: 03E15; Secondary: 03E20, 28E15.

Keywords: meager sets, null sets, partitions into meager and null sets, additive properties of small subsets of the real line.

ANDRZEJ NOWIK

If $H \subseteq G$ is a subgroup of the topological group G (again, typically $G = 2^{\omega}$ or $G = \mathbb{R}$), then we write $H \triangleleft G$.

 \triangle denotes the symmetric difference of sets.

Quantifiers \forall^{∞} and \exists^{∞} denote "for all except finitely many" and "for infinitely many", respectively.

Suppose that $\theta \in [0, \pi)$. By $\rho_{\theta} \colon \mathbf{R}^2 \to \mathbf{R}$ we denote "the projection in the direction θ ", i.e., $\rho_{\theta}(x, y) = x \cdot \cos(\theta) + y \cdot \sin(\theta)$.

If $Z \subset \mathbf{R}^2$, then for $y \in \mathbf{R}$ define the horizontal section:

$$Z^{(y)} = \{ x \in \mathbf{R} \colon \langle x, y \rangle \in Z \}.$$

We will need the following characterization of meager sets in 2^{ω} :

Characterization ([BJS, Prop. 9]). $F \subseteq 2^{\omega}$ is meager if and only if there exist $z \in 2^{\omega}$ and a partition of ω into finite intervals (I_n) such that $F \subseteq \{x : \forall_n^{\infty} x \mid I_n \neq z \mid I_n\}$.

Also, we will use the following definition:

DEFINITION 1.1 ([BJ, Def. 2.5.3]). A set $G \subseteq 2^{\omega}$ is called *small* if there exist a partition of ω into finite intervals (I_n) and a sequence $H_n \subseteq 2^{I_n}$ such that $\sum_n \frac{|H_n|}{2^{|I_n|}} < \infty$ and $G \subseteq \{x : \exists_n^{\infty} x \upharpoonright I_n \in H_n\}$.

Recall that every small set is a null set (i.e., Lebesgue measure zero) and every null set is a union of two small sets (see in [BJ, Theorem 2.5.7]).

Also, we have:

CHARACTERIZATION ([BJ]). A set $E \subseteq 2^{\omega}$ is in \mathcal{E} if and only if there exist a partition of ω into finite intervals (I_n) and a sequence $H_n \subseteq 2^{I_n}$ such that $\sum_n \frac{|H_n|}{2^{|I_n|}} < \infty$ and $E \subseteq \{x : \forall_n^{\infty} x \upharpoonright I_n \in H_n\}$.

2. Introduction

It is a classical result that the real line may be partitioned into two sets M and N where N is a Lebesgue measure null set $(N \in \mathcal{N})$ and its complement $M = N^c$ is a meager set $(M \in \mathcal{M}GR)$ (see, for example, [Oxt]). It is well-known that by the theorems of Steinhaus and Picard, respectively, we have $M+M=\mathbf{R}$ and $N+N=\mathbf{R}$. However, it is also well-known that we can construct a partition $\mathbf{R} = M \cup N$ into meager and measure null sets such that M+N is a "small" set in a special sense (for example, $\operatorname{int}(M+N)=\emptyset$). So, it is natural to investigate properties of the family of such a kind of sets. To simplify the investigations, it is good to consider a σ -ideal generated by relevant sets. Therefore, in our article we introduce new σ -ideals $\mathcal{I}_{M,N}$ and $\mathcal{I}_{M,N}^{(A)}$. Another motivation of this article is given by the following (open) problem from [N] (see [N], Problem 3.8]):

PROBLEM 2.1. Suppose that $\langle \theta_i, \mu_i \in [0, \pi), i \in \mathbb{N} \rangle$ are pairwise distinct and $M \in \mathcal{M}GR, N \in \mathcal{N}$. Is it true that $\bigcup_{i \in \mathbb{N}} \rho_{\theta_i}^{-1}[M] \cup \bigcup_{i \in \mathbb{N}} \rho_{\mu_i}^{-1}[N] \neq \mathbf{R}^2$?

Notice that if $\mathbf{R} = M \cup N$ is a partition into measure null sets, then $\mathbf{R} \setminus (M+N) = \{x \in \mathbf{R} \colon (x-M) \cup N = \mathbf{R}\} = \{y \in \mathbf{R} \colon Z^{(y)} = \mathbf{R}\}$, where $Z = \rho_0^{-1}[N] \cup \rho_{\frac{3\pi}{4}}^{-1}[-\sqrt{2} \cdot M]$, which shows that these two topics are related to each other.

3. Results

Let us define:

DEFINITION 3.1. $\mathcal{I}_{M,N}$ denotes the σ - generated by the family

$$\{\mathbf{R} \setminus (M+N) : M \cup N = \mathbf{R} \wedge M \cap N = \emptyset \wedge M \in \mathcal{M}GR \wedge N \in \mathcal{N}\},\$$

and

DEFINITION 3.2. $\mathcal{I}_{MN}^{(A)}$ denotes the σ - generated by the family

$$\{\mathbf{R}\setminus (M+N)\colon M\cup N=\mathbf{R}\wedge M\cap N=\emptyset \wedge M\in \mathcal{M}GR\wedge N\in \mathcal{N}\wedge M\in F_{\sigma}\wedge N\in G_{\delta}\}.$$

Notice that we can define these σ ideals in the same way for the Cantor set. Obviously, $\mathcal{I}_{M,N}^{(A)} \subseteq \mathcal{I}_{M,N} \subseteq \mathcal{M}GR \cap \mathcal{N}$, and $\mathcal{I}_{M,N}^{(A)}$ is a σ -ideal generated by coanalytic sets. We have:

Remark. If $X \in \mathcal{I}_{M,N}$ ($\mathcal{I}_{M,N}^{(A)}$ respectively) and $r \in \mathbf{R}$, then

$$X + r, rX \in \mathcal{I}_{M,N} \quad (\mathcal{I}_{M,N}^{(A)}, \text{ respectively}).$$

Proof. Clear, since

$$(N+r) + (M+r) = N + M + 2r$$
 and $(rN) + (rM) = r(N+M)$. \square

Theorem 3.3. $\mathcal{M}GR^* \subseteq \mathcal{I}_{M,N}$.

Proof. Suppose that $X \in \mathcal{M}GR^*$. Let us fix a partition $\mathbf{R} = N \cup M$ into sets of measure zero and meager, respectively. Assume that -M = M, M is an F_{σ} set and N is a G_{δ} . Let us define: $M_1 = M + \langle X \rangle$, and $N_1 = M_1^c$. We check that $X \subseteq (M_1 + N_1)^c$. Suppose, on the contrary, that there is an $x \in X$ such that $x \in M_1 + N_1$. Then, we have $x = m_1 + n_1$, where $m_1 \in M_1$ and $n_1 \in N_1$, and then, $m_1 = m + y$ for some $m \in M$ and $y \in \langle X \rangle$. Hence,

$$n_1 = (m_1 + n_1) - m_1 = (m_1 + n_1) - (m + y) = (m_1 + n_1) - y - m \in \langle X \rangle + M,$$

which is a contradiction, since $n_1 \notin M_1$.

3.1. The Ξ operator

Thoroughout this paper, we use the following abbreviation: $\Xi(X) = (X + X^c)^c$. Let us define for $X \subseteq \mathbf{R}$: $\mathrm{Sym}(X) = \{x_0 : \forall_{x \in \mathbf{R}} x \in X \Leftrightarrow 2x_0 - x \in X\}$ (this symbol was used by K. C. Ciesielski). We have:

Observation. $2 \cdot \text{Sym}(X) = \Xi(X)$.

Proof. Suppose that $x_0 \in 2 \cdot \operatorname{Sym}(X)$ and $x_0 \notin \Xi(X)$. Then, $x_0 \in (X + X^c)$, so $x_0 = x + y$ for some $x \in X$ and $y \in \mathbf{R} \setminus X$. We have $2\frac{x_0}{2} - x \in X$ but $x_0 - x = y$, a contradiction. On the other hand, suppose that $x_0 \in \Xi(X)$ and $x_0 \notin 2 \cdot \operatorname{Sym}(X)$. Let $x \in \mathbf{R}$ be such that $\neg(x \in X \Leftrightarrow 2 \cdot \frac{x_0}{2} - x \in X)$. Suppose that $x \notin X \land 2 \cdot \frac{x_0}{2} - x \in X$ (the second case is similar). Then,

$$x \notin X \land x_0 - x \in X$$
, so $x_0 = (x_0 - x) + x \in X + X^c$, a contradiction. \square

We now give several elementary lemmas concerning the previously defined σ -ideals.

Lemma 3.4. Suppose that $X, Y \subseteq \mathbf{R}$. Then

$$z \in (X+Y)^c \iff [\forall_{x \in X} z - x \in Y^c].$$

Proof.

" \Rightarrow " Suppose that $z \in (X+Y)^c$ and assume the contrary. Then, $z-x \in Y$ for some $x \in X$, hence $z=x+(z-x) \in X+Y$, which is a contradiction.

" \Leftarrow " Assume that $\left[\forall_{x\in X}z-x\in Y^c\right]$ and assume that $z\in X+Y$. Then, $z=x+y, x\in X, y\in Y$, hence $z-x=y\in Y$, contrary to the assumption.

Lemma 3.5. Suppose that $X \subseteq \mathbf{R}$. Let $x_1, x_2, x_3 \in \Xi(X)$. Then, $x_1 + x_2 - x_3 \in \Xi(X)$.

Proof. We use Lemma 3.4. Let $x \in X$. Then, $x_1 - x \in X$, so $x_3 - x_1 + x \in X$. Finally, $x_2 - x_3 + x_1 - x \in X$, which proves that $x_1 + x_2 - x_3 \in \Xi(X)$.

LEMMA 3.6. Suppose that $X \subseteq \mathbf{R}$ is such that $\Xi(X) \neq \emptyset$. Let b_0 be an arbitrary element of $\Xi(X)$. Then, the set $H = \{b - b_0 : b \in \Xi(X)\}$ is an additive subgroup of \mathbf{R} .

Proof. Suppose that $b_1, b_2 \in H$, then $h_1 = b_1 - b_0$ and $h_2 = b_2 - b_0$ for some $b_1, b_2 \in \Xi(X)$. Then, by Lemma 3.5 we have $b_1 + b_2 - b_0 \in \Xi(X)$. Hence, $b_1 + b_2 - 2b_0 \in H$ and therefore $(b_1 - b_0) + (b_2 - b_0) \in H$, and this gives us that $h_1 + h_2 \in H$. Next, let $h \in H$, then there exists $b \in \Xi(X)$ such that $h = b - b_0$. Let us define $b' = 2b_0 - b$. Again, by Lemma 3.5 we obtain that $b' \in \Xi(X)$. Since we have $b' - b_0 = -(b - b_0)$, we conclude that $-h \in H$.

3.2. The Fix operator

Recall the following definition from [CJKS]:

DEFINITION 3.7 ([CJKS]). Suppose that J is a transitive invariant ideal of subsets of \mathbf{R} . For $X \subseteq \mathbf{R}$ define $\mathrm{Fix}(X,J) = \{x \in \mathbf{R} \colon (X+x) \triangle X \in J\}$.

Notice that (see [CJKS]) Fix(X, J) is an additive subgroup of **R**. Denote $Fix(X) = Fix(X, \{\emptyset\})$.

Suppose that $\mathcal{F} \subseteq P(\mathbf{R}) \setminus \{\emptyset\}$ is a family of nonempty subsets of the real line. By IFix(\mathcal{F}) let us denote the σ -ideal generated by the family $\{\Xi(X) \colon X \in \mathcal{F}\}$. It is easy to see that we have $\mathcal{I}_{M,N} = \text{IFix}(\mathcal{F})$ for the family

$$\mathcal{F} = \{ X \in \mathcal{M} \colon X^c \in \mathcal{N} \}.$$

We obtain:

THEOREM 3.8. Suppose that $\mathcal{F} \subseteq P(\mathbf{R})$ is a transitive invariant family of nonempty subsets of the real line. Assume that $\forall_{F \in \mathcal{F}} F \cup -F \in \mathcal{F}$. Then, the ideal $IFin(\mathcal{F})$ is the same as the ideal generated by $\{Fix(F) + x \colon F \in \mathcal{F}, x \in \mathbf{R}\}$.

Proof. First, let us notice that $X = -X \iff 0 \in \Xi(X)$ and if X = -X, then Fix $(X) = \Xi(X)$. Indeed, the first is evident and if $g \in \text{Fix}(X)$, then, if g = x + y, $x \in X, y \in X^c$, we would have g - x = y, which is impossible. On the other hand, if $g \in \Xi(X)$ and $x \in X$, then $g + x \in X$ (otherwise, $g = -x + (g + x) \in X + X^c$). The same argument shows that $x - g \in X$.

Let $F \in \mathcal{F}$ and assume that $(F + F^c)^c \neq \emptyset$. Pick any $r_0 \in (F + F^c)^c$. Then, $F - \frac{r_0}{2} \in \mathcal{F}$ and $0 \in \left((F - \frac{r_0}{2}) + (F - \frac{r_0}{2})^c\right)^c$, so $(F + F^c)^c = \operatorname{Fix}(F - \frac{r_0}{2}) + r_0$. On the other hand, it suffices to show that for any $F \in \mathcal{F}$, $\operatorname{Fix}(F) \subseteq (H + H^c)^c$ for some $H \in \mathcal{F}$. Put $H = F \cup -F$. Let $x \in \operatorname{Fix}(F)$ and suppose that $x = h_1 + h_2$ for $h_1 \in H$ and $h_2 \in H^c$. If $h_1 \in F$, then, since $x + (-h_2) = h_1$, we have $-h_2 \in F$, which is impossible. If $h_1 \in -F$, then $h_2 = x + (-h_1) \in F$, which is again impossible.

This is an easy corollary from Theorem 3.8:

COROLLARY 3.9. If \mathcal{I} is a transitive invariant σ -ideal of subsets of the real line such that $A \in \mathcal{I} \Rightarrow -A \in \mathcal{I}$, then the σ -ideal IFix $(\mathcal{I} \setminus \{\emptyset\})$ is the σ -ideal generated by the family $\{G + x : G \triangleleft \mathbf{R} \land G \in \mathcal{I}\}.$

Proof. This follows from the observation that if $A \in \mathcal{I}$ and $x_0 \in A$, then $x_0 + \operatorname{Fix}(A) \subseteq A$ and if $G \triangleleft \mathbf{R}$, $G \in \mathcal{I}$, then $\operatorname{Fix}(G) = G$.

Let us recall the following result:

ANDRZEJ NOWIK

THEOREM 3.10 (See [MZ, Lemma 2.6]). There exist a comeager null set $R \subseteq \mathbf{R}$ and a perfect nowhere dense null set $P \subseteq \mathbf{R}$ such that $R + P \subseteq R$.

Let us notice that from the proof of this theorem one can deduce something more, namely we may require that moreover, $R-P\subseteq R$. So, $P\subseteq \operatorname{Fix}(R)$ (indeed, if $x_0\in P$ and $r\in R$, then $x_0+r\in R$ and $r-x_0\in R$, thus $x_0+R=R$, so $x_0\in \operatorname{Fix}(R)$), hence, by virtue of Theorem 3.8, we obtain that $P\in \mathcal{I}_{M,N}$. Therefore, we obtain the conclusion that the σ -ideal $\mathcal{I}_{M,N}$ contains a perfect sets.

Now, let us go to the case of the Cantor space. Recall (see Lemma 3.6) that in the case of the real line, the set $\Xi(X)$ (if it is nonempty) is a coset of some addivite subgroup. However, in the case of the Cantor space, the situation is different, namely we have:

THEOREM 3.11. If $X \subseteq 2^{\omega}$ is such that $X \neq \emptyset$ and $X \neq 2^{\omega}$, then the set $\Xi(X)$ is a subgroup of 2^{ω} .

Proof. Obviously, $0 \in \Xi(X)$. Suppose that $x_1, x_2 \in \Xi(X)$ and aiming for a contradiction suppose that $x_1 + x_2 \in X + X^c$. Then, $x_1 + x_2 = x + x'$, where $x \in X$ and $x' \notin X$. Since $x_1 \in \Xi$, we obtain that $x_1 + x \in X$ (otherwise, $x_1 = x + (x_1 + x) \in X + X^c$), and in the same way, we obtain that $x' = x_2 + x_1 + x \in X$, which is a contradiction.

We have the following result:

THEOREM 3.12. Suppose that (I_n) is a partition of ω into finite intervals and $H_n \subseteq 2^{I_n}$ a sequence such that

$$\sum_{n} \frac{|H_n|}{2^{|I_n|}} < \infty,\tag{1}$$

and H_n is a subgroup of the group 2^{I_n} . Then, the group $E = \{x : \forall_n^{\infty} x \upharpoonright I_n \in H_n\} \subseteq 2^{\omega}$ belongs to the ideal $\mathcal{I}_{M,N}^{(A)}$ (on the Cantor space 2^{ω}).

Proof. Define

$$N = \{x \in 2^{\omega} : \exists_n^{\infty} x \upharpoonright I_n \in H_n\},$$

$$M = \{x \in 2^{\omega} : \forall_n^{\infty} x \upharpoonright I_n \notin H_n\}$$

and

$$M_1 = \{ x \in 2^{\omega} : \forall_n^{\infty} x \upharpoonright I_n \neq \underline{0} \upharpoonright I_n \},$$

where $\underline{0} \in 2^{\omega}$ denotes the sequence $(0,0,\ldots)$. By Characterization 1 and Definition 1.1, $N \in \mathcal{N}$ and $M_1 \in \mathcal{M}GR$. Moreover, M is a F_{σ} set and since $M \subseteq M_1$, $M \in \mathcal{M}GR$. We have

$$M + N = \{ x \in 2^{\omega} : \forall_n^{\infty} x \upharpoonright I_n \notin H_n \}$$
$$+ \{ y \in 2^{\omega} : \exists_n^{\infty} x \upharpoonright I_n \in H_n \}$$
$$\subseteq \{ z \in 2^{\omega} : \exists_n^{\infty} x \upharpoonright I_n \notin H_n \}.$$

On the other hand, suppose that $z \in 2^{\omega}$ is such that $\exists_n^{\infty} z \upharpoonright I_n \notin H_n$. Denote $B = \{n \in \omega \colon z \upharpoonright I_n \notin H_n\}$ and define

$$x \upharpoonright I_n = \begin{cases} z \upharpoonright I_n & \text{if} \quad n \in B, \\ \text{any element of } 2^{I_n} \setminus H_n & \text{if} \quad n \not\in B \wedge H_n \neq 2^{I_n}, \\ \underline{0} \upharpoonright I_n & \text{if} \quad H_n = 2^{I_n} \end{cases}$$

and

$$y \upharpoonright I_n = \begin{cases} \underline{0} \upharpoonright I_n & \text{if } n \in B, \\ (x+z) \upharpoonright I_n & \text{if } n \notin B \land H_n \neq 2^{I_n}, \\ z \upharpoonright I_n & \text{if } H_n = 2^{I_n}. \end{cases}$$

Then, $x \in M$, $y \in N$ and x + y = z. Finally, $E \subseteq (M + N)^c \in \mathcal{I}_{M,N}^{(A)}$.

4. Open problems

PROBLEM 4.1. We know that the σ -ideal $\mathcal{I}_{M,N}^{(A)}$ is generated by coanalytic sets. This follows from the fact that if $E \subseteq \mathbf{R}$ is an F_{σ} set, then $\Xi(E)$ is coanalytic. However, we do not know whether this set is always Borel.

Suppose that the answer is yes. Then, by the following theorem from [L]:

THEOREM 4.2 ([L, Theorem 1]). If G is an additive proper analytic subgroup of \mathbf{R} , then $G \in \mathcal{E}$, and by Lemma 3.6 we would obtain that $\mathcal{I}_{M,N}^{(A)} \in \mathcal{E}$.

Compare this with a problem due to Taras Banakh whether every subgroup G of 2^{ω} such that $G \in \mathcal{M}GR \cap \mathcal{N}$ belongs to \mathcal{E} (oral communication).

PROBLEM 4.3. Is it true that $\mathcal{M}GR^* \subseteq \mathcal{I}_{M,N}^{(A)}$?

Notice that if $M \cap N = \emptyset$, $M \cup N = \mathbf{R}$, then $\mathbf{R} \setminus (M + N) = \{x \in \mathbf{R} : (x - N) \cap M = \emptyset\} = \{x \in \mathbf{R} : (x - M) \cup N = \mathbf{R}\}$. Since $\mathbf{R} \setminus (M + N) \in \mathcal{I}_{M,N}$ and $\{x \in \mathbf{R} : (x - M) \cup N = \mathbf{R}\} \subseteq \{x : (x - M) \cup N \cup (M + x) = \mathbf{R}\}$, it is natural to ask the following problem:

PROBLEM 4.4. Suppose that M and N are meager and null set, respectively, such that $M \cup N = \mathbf{R}$ and $M \cap N = \emptyset$. Is it true that the set $\{x : (x - M) \cup N \cup (M + x) = \mathbf{R}\}$ belongs to the σ – ideal $\mathcal{I}_{M,N}$?

ANDRZEJ NOWIK

REFERENCES

- [BJ] BARTOSZYŃSKI, T.—JUDAH, H.: Set Theory: On the Structure of the Real Line, A. K. Peters, Wellesley, Massachusetts, 1995.
- [BJS] BARTOSZYŃSKI, T.—JUST, W.—SCHEEPERS, M.: Covering games and the Banach-Mazur game: k-tactics, Canad. J. Math. 45 (1993), no. 5, 897–929.
- [CJKS] CICHOŃ, J.—JASIŃSKI, A.—KAMBURELIS, A.—SZCZEPANIAK, P.: On translations of subsets of the real line. Proc. Amer. Math. Soc. 130 (2001), no. 6, 1833–1842.
- [L] LACZKOVICH, M.: Analytic subgroups of the reals, Proc. Amer. Math. Soc. 126 (1998), no. 6, 1783–1790.
- [MZ] MICHALSKI, M.—ZEBERSKI, S.: Luzin and Sierpiński sets, some nonmeasurable subsets of the plane (preprint).
- [N] NOWIK, A.: On some properties of squares of Sierpinski sets, Colloq. Math. 99 (2004), 221–229.
- [Oxt] OXTOBY, J. C.: Measure and Category. A survey of the analogies between topological and measure spaces (Second edition). In: Graduate Texts in Mathematics Vol. 2. Springer-Verlag, Berlin, 1980.

Received November 11, 2020

Institute of Mathematics University of Gdańsk Wita Stwosza 57 80–952 Gdańsk POLAND

E-mail: andrzej.nowik@ug.edu.pl