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REAL FUNCTIONS, COVERS AND BORNOLOGIES

Lev Bukovský

Institute of Mathematics, P. J. Šafárik University, Košice, SLOVAKIA

ABSTRACT. The paper tries to survey the recent results about relationships

between covering properties of a topological space X and the space USC(X)
of upper semicontinuous functions on X with the topology of pointwise conver-
gence. Dealing with properties of continuous functions C(X), we need shrinkable
covers. The results are extended for A-measurable and upper A-semimeasurable
functions where A is a family of subsets of X. Similar results for covers respecting
a bornology and spaces USC(X) or C(X) endowed by a topology defined by using

the bornology are presented. Some of them seem to be new.

1. Introdution

The paper is a part of the lecture I intended to read at 34th International
Summer Conference on Real Functions Theory. The paper tries to give a sur-
vey of recent results about the relationships of the properties of some covers
of a topological space X and the properties of the families of real functions
on X. We tried to extend the known results also for covers respecting a bornol-
ogy on X and families of real functions with the corresponding topology defined
by the bornology.

We indicate which results are already known and give credits to authors.
We suppose that the results with no indication of an author are new.
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2. Covers and bornology

A topological space 〈X,ϑ〉 is always an infinite Hausdorff topological space,
ϑ is the family of open subsets of X. Unexplained notions and terminology are
those of R. Engelking [6].

A family U of subsets of X is a cover of X if
⋃U = X. For some technical

reasons, a cover will be called also o-cover . A cover V ⊆ U is said to be a subcover
of U . If we deal with a countable cover of X, we can consider it a sequence
of subsets. A cover is open if every element of the cover is an open set.

We say that a family V ⊆ P(X) is a refinement of the family U ⊆ P(X) if

(∀V ∈ V)(∃U ∈ U)V ⊆ U.

A bornology B on a topological space X is a proper ideal1 of subsets of X such
that

⋃B = X. This notion should be a generalization of the notion of a bounded
subset. A subset B0 ⊆ B is a base of the bornology B if for every B ∈ B there
exists a B0 ∈ B0 such that B ⊆ B0. Note that a bornology B has a closed base
if and only if for every B ∈ B also B ∈ B. The smallest bornology on X is the
ideal Fin = Fin(X) of all finite subsets of X.

We shall use the following convention. If the lower case letters ϕ or ψ denote
one of the symbols o, λ, ω or γ, then the capital letters Φ or Ψ denote the
corresponding symbol O, Λ, Ω or Γ, respectively, and vice versa.

Let B be a bornology on a topological space X. We shall consider covers
respecting this bornology. We assume that a bornological cover, briefly B-o-cover,
is identical with an o-cover. Similarly, a large bornological cover U , briefly B-λ-
cover, is simply a large cover, i.e., for every x ∈ X the set {U ∈ U : x ∈ U}
is infinite. A cover U is a bornological ω-cover, briefly B-ω-cover2, if X /∈ U
and for every B ∈ B there exists U ∈ U such that B ⊆ U . A cover U is
a bornological γ-cover, briefly B-γ-cover, if U is infinite and for every B ∈ B the
set {U ∈ U : B � U} is finite. If U is a B-γ-cover, then U \ {X} is a B-γ-cover
as well. So, we can assume that X does not belong to a B-γ-cover. We denote
by ΦB(X) the family of all open B-ϕ-covers of X for ϕ = o, λ, ω, γ.

If B = Fin(X), then a B-ϕ-cover is the classical ϕ-cover and

ΓFin(X) = Γ(X), ΩFin(X) = Ω(X).
Evidently,

ΓB(X) ⊆ ΩB(X) ⊆ ΛB(X) = Λ(X) ⊆ OB(X) = O(X).

1Sometimes the authors ask that the empty set does not belong to a bornology.
2In [9], the authors call such a cover simply B-cover. We respect the case B = Fin(X). Similarly

for a Bs-cover, see also [5]

200



REAL FUNCTIONS, COVERS AND BORNOLOGIES

Let the family V ⊆ P(X) be a refinement of the family U ⊆ P(X). If V
is an B-o- or an B-ω-cover, then U is such a cover as well. This is not true
for B-λ- and B-γ-covers. If we add finitely many subsets of X to a B-γ-cover, we
obtain a B-γ-cover. Moreover, each infinite subset of a B-γ-cover is a B-γ-cover
as well. Omitting finitely many elements of an B-λ- or an B-ω-cover, we obtain
a cover of same type. This is not true for B-o-cover.

A B-ϕ-cover U is shrinkable if there exists an open B-ϕ-cover V such that

(∀V ∈ V)(∃UV ∈ U \ {X})V ⊆ UV . (1)

The family {UV : V ∈ V} ⊆ U is a B-ϕ-cover as well. The family of all open
shrinkable B-ϕ-covers of X will be denoted by Φsh

B (X), or simply Φsh
B .

Similarly to F. Gerlits and Z. Nagy [7], we define: X has the property (εB) if
every open B-ω-cover contains a countable B-ω-subcover3.

G. Beer and S. Levy in [1] introduced the notion of a strong B-cover of a metric
space. It is easy to define that notion for a uniform space. So, let 〈X, υ〉 be
a uniform space. We recall just some notions. The ball about B ⊆ X and radius
V ∈ υ is the set

B(B, V ) = {x ∈ X : (∃y ∈ B) 〈x, y〉 ∈ V }.

If B = {x}, we write simply B(x, V ).
The topology ϑυ generated on X by the uniformity υ is defined by

U ∈ ϑυ ≡ (∀x ∈ U )(∃V ∈ υ)B(x, V ) ⊆ U.

Let B be a bornology on X. An open cover U is a strong B-ω-cover, briefly
a B-ωs-cover, if X /∈ U and for every B ∈ B there exist a U ∈ U and a V ∈ υ such
that B(B, V ) ⊆ U . An open cover U is a strong B-γ-cover, briefly a B-γs-cover,
if U is infinite and for every B ∈ B the set {U ∈ U : ¬(∃V ∈ υ)B(B, V ) ⊆ U}
is finite. As above, we can assume that X does not belong to a B-γs-cover.
We denote by Ωs

B(X) and Γs
B(X) the family of all open B-ωs-covers and open

B-γs-covers of X, respectively. Then, we have

Γs
B(X) ⊆ Ωs

B(X) ⊆ O(X).

Similarly as above, we have

Γs
Fin(X) = Γ(X), Ωs

Fin(X) = Ω(X).

One can easily see that for Φ = Ω,Γ we have

Φs
B(X) ⊆ ΦB(X) ⊆ Φ(X).

3X has the property (ε) = (εFin) if and only if Xn is Lindelöf for every n > 0.
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Both types of covers suggest to introduce corresponding topology on XR.
The topology τB is defined by typical neighborhoods of a function h ∈XR of the
form

NB,ε(h) =
{
f ∈ XR : (∀x ∈ B) |h(x)− f(x)| < ε

}
(2)

for a set B ∈ B and ε > 0.
The product topology τp on XR is actually the topology τFin.
For a uniform space 〈X, υ〉, the topology4 related to B-ϕs-covers τ sB defined

by typical neighborhoods of a function h ∈ XR of the form

N s
B,ε(h) =

{
f ∈ XR : (∃V ∈ υ)

(∀x ∈ B(B, V )
) |h(x)− f(x)| < ε

}
(3)

for B ∈ B and ε > 0.
One can easily see that

τp ⊆ τB ⊆ τ sB.

3. Families of real functions

If F ⊆ XR, then we denote

F+ = {f ∈ F : (∀x ∈ X) f(x) ≥ 0}, F ∗ = {f ∈ F : f is bounded}.
Instead of Cp(X)

∗
and USCp(X)

∗
, we shall write C∗

p(X) and USC∗
p(X), respec-

tively. If c ∈ R is a real, then c denotes the constant function on X with the
value c.

Let B be a bornology on X. We shall consider three properties of an infinite
family F ⊆ XR of real functions and a function h ∈ XR.

(Oh)B h(x) ∈ {f(x) : f ∈ F} for every x ∈ X.

(Ωh)B h /∈ F and h ∈ F in the topology τB.
(Γh)B F is infinite, for every ε > 0 and for every B ∈ B

the set {f ∈ F : (∃x ∈ B) |f(x)− h(x)| ≥ ε} is finite.
Omitting h from a set F with (Γh)B, we obtain

(Γh)B → (Ωh)B → (Oh)B.

One can easily see that for Φ = O,Ω,Γ we have

If 〈F,+〉, F ⊆XR is a group, then F has the property (Φh)B
if and only if F has the property (Φh+f )B for every f ∈ F .

4The referee of the paper suggested the notation τsB instead of τBs used in [1] and [5]. I agree

since the notation τBs suggests that Bs is a bornology. The same for the notion of a B-ϕs-cover.
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Let Φ be one of the symbols O,Ω,Γ. If F ⊆ XR is a set of real functions,
we set

Φh,B(F ) = {H ⊆ F : H has the property (Φh)B}.
If f ∈ XR, ε > 0, we denote

U ε
f = {x ∈ X : |f(x)| < ε}.

If F ⊆ XR, we set Uε(F ) = {U ε
f : f ∈ F}.

In our consideration we must be careful, since it may happen that

U ε1
f1

= U ε2
f2

for f1 �= f2 or ε1 �= ε2.

If f is a continuous function or a non-negative upper semicontinuous function,
then U ε

f is an open set.

The following rather simple generalization of Theorem 4.1 of the author [2]
will play a crucial role. Note that for B = Fin we obtain Theorem 4.1 of [2].

������� 1� Let B be a bornology on a topological space X. We assume that
F ⊆ XR is an infinite family of real functions.

a) The family F has the property (O0) if and only if for every ε > 0 the
family Uε(F ) is an o-cover of X.

b) The family F has the property (Ω0)B if and only if 0 /∈ F and either there
exists a subsequence of F uniformly converging to 0 or there exists δ > 0
such that for every ε < δ the family Uε(F ) is a B-ω-cover of X.

c) The family F has the property (Γ0)B if and only if either F is countable
and F ⇒ 0 or there exists δ > 0 such that for every ε < δ the family
Uε(F ) is a B-γ-cover of X and for every f ∈ F , such that U ε

f �= X, the set

{g ∈ F : U ε
g = U ε

f} is finite.

P r o o f. The part a) is the part 1) of [2, Theorem 4.1].
Let F be an infinite family of real functions on X.
We set

η = inf{ε : X ∈ Uε(F ) ∨ ε = 1}. (4)

Let F possess the property (Ω0)B.
Assume that η = 0. Then, for every ε > 0 we have X ∈ Uε(F ). Let εn = 2−n.

Then, for every n there exists a function hn ∈ F such that X = U εn
hn

. Since

(∀x ∈ X) |hn(x)| < 2−n, we obtain hn ⇒ 0.
Let η be positive. We set δ = η. Let ε < δ. Since 0 ∈ F in the topology τB,

for any set B ∈ B there exists an f ∈ F such that f ∈ NB,ε(0). Then, B ⊆ U ε
f .

Since X /∈ Uε(F ), the family Uε(F ) is a B-ω-cover.
The proof of opposite implication is similar. Either there exists a sequence

〈fn : n ∈ ω〉 of members of F such that fn ⇒ 0. Then F trivially has the
property (Ω0)B. Or for any ε < δ and B ∈ B there exists f ∈ F such that
B ⊆ U ε

f . Then, f ∈ NB,ε(0). Consequently, 0 ∈ F in the topology τB.
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Assume now that the family F has the property (Γ0)B.
Assume η > 0. Then, we set δ = η. Let ε < δ. Then, X /∈ Uε(F ). Given

h ∈ F only for finitely many g ∈ F , it may happen that U ε
g = U ε

h. Indeed,
since U ε

h �= X, there exists an x /∈ U ε
h. If U

ε
g = U ε

h, then g is in the finite set
{f ∈ F : |f(x)| ≥ ε}. So, Uε(F ) is infinite. By (Γ0)B, for any B ∈ B the set
{f ∈ F : B � U ε

f} is finite, and therefore, Uε(F ) is a B-γ-cover.
Assume now η = 0. For a positive real β we denote Fβ = {f ∈ F : Uβ

f �= X}.
Evidently, Fβ1

⊆ Fβ2
for any β2 < β1. If there exists a β > 0 such that Fβ is

infinite, set δ = β. By the same argument as above, we obtain that for every
ε < δ and for every f ∈ Fε the set {g ∈ Fε : U ε

g = U ε
f} is finite. Therefore, the

family Uε(Fε) is infinite. As above, it is easy to see that for any ε < δ the family
Uε(F ) is a B-γ-cover.

Assume now that for every β > 0 the set Fβ is finite. One can easily show
that F \ {0} =

⋃
n F2−n . Hence, F is countable. Let F = {fn : n ∈ ω}. We show

that fn ⇒ 0. Indeed, if ε > 0, then there exists a k such that 2−k < ε. Since
F2−k is finite, there exists an n0 such that for any n > n0 we have fn /∈ F2−k ,
i.e., |fn(x)| < ε for every x ∈ X.

We prove the opposite implication for Γ.
If F is countable and F ⇒ 0, then F satisfies (Γ0)B.
If for every ε < δ the family Uε(F ) is a B-γ-cover and for every f ∈ F , such

that U ε
f �= X, the set {g ∈ F : U ε

g = U ε
f} is finite, then for every ε < δ and

every B ∈ B the set {f ∈ F : B � U ε
f} is finite. Hence, F satisfies the condition

(Γ0)B. �

Lemma 6.1 of [2] may be easily generalized as follows.

����	 2� Assume that 〈εn : n ∈ ω〉 is a sequence of positive reals converging
to 0, and fn ∈ XR for n ∈ ω. If {U εn

fn
: n ∈ ω} is a B-λ-, a B-ω- or a B-γ-cover,

then there exists either an increasing sequence 〈nk : k ∈ ω〉 of integers such that
fnk

⇒ 0 or there exists a δ > 0 such that for every positive ε < δ, the family
Uε({fn : n ∈ ω}) is a B-o-, a B-ω- or a B-γ-cover, respectively.

4. Selections from sequence of covers

We recall the definition and some basic properties of selections from seuqences
of covers important for our work, compare M. Scheepers [15] and W. Just,
A.W. Miller, M. Scheepers, and P. J. Szeptycki [10].

If A,B ⊆ P(Y ) are sets of subsets of a set Y , then S1(A,B) means the
following: for every sequence 〈Un : n ∈ ω〉 of elements of A and for every n ∈ ω
there exists a Un ∈ Un such that {Un : n ∈ ω} ∈ B. Sfin(A,B) means that
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for every sequence 〈Un : n ∈ ω〉 of elements of A and for every n ∈ ω there exists
a finite set Vn ⊆ Un such that

⋃
n Vn ∈ B.

If Y = P(X) for some set X, Ufin(A,B) means that for every sequence
〈Un : n ∈ ω〉 of elements ofA and for every n ∈ ω there exists a finite set Vn ⊆ Un

such that {⋃Vn : n ∈ ω} ∈ B. Evidently,
S1(A,B) → Sfin(A,B) → Ufin(A,B),

where the latter implication supposes that
⋃

n Vn ∈ B → {⋃Vn : n ∈ ω} ∈ B for
finite Vn.

If Y ⊆ XR for some X, then U∗
fin(A,B) means that for every sequence

〈Un : n ∈ ω〉 of elements ofA and for every n ∈ ω there exists a finite set Vn ⊆ Un

such that5 {minVn : n ∈ ω} ∈ B.
If Y = P(X), whereX is a topological space, then S1(A,B) is called a covering

property and the topological space possessing the property S1(A,B) is called
S1(A,B)-space. If Y ⊆ XR, then S1(A,B) is called a sequence selection property.
Similarly, for Sfin(A,B), Ufin(A,B) and U∗

fin(A,B).
Let Φ,Ψ be one of the symbols O,Λ,Ω,Γ, F ⊆ XR. If S1

(
Φh,B(F ),Ψh,B(F )

)
holds true, we say that the set F satisfies the selection principle S1(Φh,B,Ψh,B).
Similarly for Sfin and U∗

fin.
No topological space is a S1(OB,ΨB)-space, neither Ufin(Osh

B ,ΨB)-space
for Ψ=Λ,Ω,Γ, compare [15] or [2]. By Theorem 17, (3)→(1) of [15], we have

S1(O,O) ≡ S1(Ω,O), S1(Osh,O) ≡ S1(Ω
sh,O). (5)

Thus, we do not need to investigate S1 with the first argument O or Osh. We do
not know similar results for bornological covers.

The proof of the equivalence (6) in [2] can be easily modified to a proof of 6

S1
(
(ΩB)ctbl,O

) ≡ S1
(
(ΩB)ctbl,Λ

)
, S1(ΓB,O) ≡ S1(ΓB,Λ). (6)

As a consequence, we obtain

If X has the property (εB), then S1(ΩB,O) ≡ S1(ΩB,Λ). (7)

Similarly for Sfin and Ufin, see, e.g., [3].
We shall need the following result, see, e.g., [2] and [3].

����	 3 (Folklore)� If Φ = Ω,Γ, then S1(Φ,Γ) is equivalent to the following:
for any sequence 〈Un : n ∈ ω〉 of B-ϕ-covers for every n ∈ ω there exists a set
Un ∈ Un such that

(∀B ∈ B)(∃n0)(∀n ≥ n0)B ⊆ Un.

Similarly for Sfin and Ufin.

5By definition, min ∅ = 1.
6If A is a family of sets, then Actbl is the family of all countable sets from A.
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5. Measurable and Semimeasurable Functions

Let A ⊆ P(X) be a family of subsets of X. For simplicity, we assume that
∅, X ∈ A. A real function f ∈ XR is A-measurable if for every open interval
(a, b), including a = −∞ and b = +∞, we have f−1((a, b)) ∈ A. A real function
f ∈ XR is upper A-semimeasurable if f−1((−∞, b)) ∈ A for every b ∈ R. One can
easily see that if A is a σ-algebra, then every upper A-semimeasurable function is
A-measurable. We denote by M(X,A) the set of all A-measurable real functions
defined onX and by USM(X,A) the set of all upper A-semimeasurable functions
defined onX. If the sets M(X,A) and USM(X,A) are endowed with the subspace
topology τp of XR, we write Mp(X,A) and USMp(X,A), respectively. Note that

Cp(X) = Mp(X,ϑ), USCp(X) = USMp(X,ϑ).

As above, we say that the pair 〈X,A〉 satisfies the covering property S1(Φ,Ψ)
if S1

(
Φ(A),Ψ(A)

)
holds true. Similarly for Sfin and Ufin.

In [3], we have proved

������� 4 (L.B. [3])� Assume that Φ is one of the symbols Ω, Γ and Ψ is one
of the symbols O, Ω, Γ. Let A be a family of subsets of a set X. If Ψ = Γ, we
assume that A is closed under finite intersections. In part c), we assume that A
is closed under finite unions. Assume that 〈Φ,Ψ〉 �= 〈Ω,O〉.

a) Then, the pair 〈X,A〉 possesses the covering property S1(Φ,Ψ) if and only

if the set USMp(X,A)+ satisfies the selection principle S1(Φ0,Ψ0).

b) Similarly for Sfin.

c) The pair 〈X,A〉 possesses the covering property Ufin(Φ,Ψ) if and only if

the set USMp(X,A)
+

satisfies the selection principle U∗
fin(Φ0,Ψ0).

If A is a σ-algebra of sets, then USM(X,A)
+

may be replaced by M(X,A).

If B is a bornology on X, for Φ = Ω,Γ, we set

ΦB(A) = {U : U ⊆ A∧ U is B-ϕ-cover}.
As above, we say that the pair 〈X,A〉 possesses the covering property S1(ΦB,ΨB)
if S1

(
ΦB(A),ΨB(A)

)
holds true. Then

������� 5� Let B be a bornology on a topological space X. Assume that Φ is
one of the symbols Ω and Γ, and Ψ is one of the symbols O, Ω, and Γ. Let A be
a family of subsets of a set X. If Ψ = Γ, we assume that A is also closed under
finite intersections. In part c), we assume that A is closed under finite unions.
Assume that 〈Φ,Ψ〉 �= 〈Ω,O〉.

a) Then, the pair 〈X,A〉 possesses the covering property S1(ΦB,ΨB) if and

only if 〈USM(X,A)
+
, τB〉 satisfies the selection principle S1(Φ0,B,Ψ0,B).
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b) Similarly for Sfin.

c) Let A be closed under finite unions. Then, the pair 〈X,A〉 possesses the

covering property Ufin(ΦB,ΨB) if and only if the set 〈USM(X,A)
+
, τB〉

satisfies the selection principle U∗
fin(Φ0,B,Ψ0,B).

If A is a σ-algebra of sets, then USM(X,A)
+

may be replaced by M(X,A).

P r o o f. Let 〈X,A〉 satisfy S1(ΦB,ΨB). Assume that 〈Fn : n ∈ ω〉 is a sequence
of sets of non-negative real upper A-semimeasurable functions and each set Fn

has the property (Φ0)B. Each family Uε(Fn) is a subset of A.
If Φ = Ω, then, by Theorem 1, for every n there exists either a subsequence

of Fn uniformly converging to 0 or a δn > 0 such that for every ε < δn the family
Uε(Fn) is a B-ϕ-cover.

If Φ = Γ, then, by Theorem 1, for every n either the family Fn is countable and
Fn ⇒ 0 or there exists a δn > 0 such that for every ε < δn the family Uε(Fn) is
a B-γ-cover and for every f ∈ Fn such that U ε

f �= X, the set {g ∈ Fn : U ε
g = U ε

f}
is finite.

In both cases, Φ = Ω or Φ = Γ, let A be the set of those n ∈ ω for which there
exists a δn > 0 such that for every ε < δn the family Uε(Fn) is a B-ϕ-cover.

If A is finite, one can find a sequence 〈fn ∈ Fn : n ∈ ω \A〉 such that fn ⇒ 0.
The family {fn : n ∈ ω \ A} has the property (Γ0)B. For n ∈ A take fn ∈ Fn,
fn �= 0 arbitrary. Then, the family {fn : n ∈ ω} has the property (Γ0)B as well.
If Ψ = Ω, then fn �= 0 for every n. Hence, the family {fn : n ∈ ω} has the
property (Ω0)B.

So, let A be infinite. We set εn = min{δn/2, 2−n} for n ∈ A.
If Ψ = Ω, we apply S1(ΦB,ΩB) to the sequence {Uεn(Fn) : n ∈ A}. We obtain

sets Un ∈ Uεn(Fn), n ∈ A such that {Un : n ∈ A} is a B-ω-cover. For every
n ∈ A there exists a function fn ∈ Fn such that Un = U εn

fn
. By Lemma 2, there

exists either a subsequence uniformly converging to 0 or there exists a δ > 0 such
that the family {U ε

fn
: n ∈ A} is a B-ω-cover for each positive ε < δ. Therefore,

the family {fn : n ∈ A} has the property (Ω0)B.
Now, let Ψ = Γ. Since for every n ∈ A the family {Uεn(Fn) is a B-γ-cover,

by Lemma 3, for every n ∈ A there exists Un ∈ Uεn(Fn) such that

(∀B ∈ B)(∃n0)(∀n ≥ n0, n ∈ A)B ⊆ Un.

For every n ∈ A there exists a function fn ∈ Fn such that Un = U εn
fn

. Let B ∈ B.
Since εn → 0, we obtain that there exists an integer n1 such that εn ≤ ε for each
n ≥ n1, n ∈ A. If n ≥ max{n0, n1}, n ∈ A, then fn(x) < ε for each x ∈ B. Thus,
the family {fn : n ∈ A} possesses the property (Γ0)B.

If Ψ = O, then Φ = Γ, and by (6), we have S1(ΓB,O) ≡ S1(ΓB,Λ). Applying
S1(ΓB,Λ) to the sequence {Uεn(Fn) : n ∈ A}, we obtain sets Un ∈ Uεn(Fn),
n ∈ A such that the family {Un : n ∈ A} is a λ-cover. We apply Lemma 2 to the
family {Un : n ∈ A} and continue as above.
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If Ψ is O or Ω, for n /∈ A take fn ∈ Fn, fn �= 0 arbitrary. Then, the family
{fn : n ∈ ω} has the property (Ψ0)B as well.

Assume that Ψ = Γ. If ω \ A is finite, similarly as above, take fn ∈ Fn

for n ∈ ω \A arbitrary. Then, {fn : n ∈ ω} has the property (Γ0)B. So, let ω \A
be infinite. Then, one can easily construct a sequence 〈fn ∈ Fn : n ∈ ω \A〉 such
that fn ⇒ 0, n ∈ ω \A. Then, the family {fn : n ∈ ω} has the property (Γ0)B.

For Sfin and Ufin, the proof works equally.
Now, we show the opposite implication for Ufin. So, assume that the family

USM(X,A)
+

satisfies the selection principle U∗
fin(Φ0,B,Ψ0,B). Let 〈Un : n ∈ ω〉

be a sequence of B-ϕ-covers, each a subset of A. If ϕ = γ, we may assume that
each Un is countable and X /∈ Un.

For any U ∈ Un, n ∈ ω set

fU (x) =

{
0 if x ∈ U,

1 otherwise.
(8)

If we set

Fn = {fU : U ∈ Un},
then Fn is a family of non-negative upper A-semimeasirable functions.

For any ε ≤ 1, any n ∈ ω and any U ∈ Un we have U ε
fU

= U . Hence, for any

n and any ε ≤ 1 the cover Uε(Fn) equals to the cover Un. Thus, every Uε(Fn) is
a B-ϕ-cover.

By Theorem 1, every set Fn has the property (Φ0)B. By the selection prin-
ciple U∗

fin

(
Φ0,B(USM+),Ψ0,B(USM+)

)
for every n ∈ ω there exists a finite set

Hn ⊆ Fn such that {minHn : n ∈ ω} has the property (Ψ0)B. For every n ∈ ω
and for every f ∈ Hn there exists a set Un,f ∈ Un such that f = fUn,f

. Since
X /∈ Un for each n, neither Un = X for each n. So, by Theorem 1, for any ε ≤ 1
the family Uε({minHn : n ∈ ω}) is a B-ψ-cover. However,

Uε({minHn : n ∈ ω}) =
{⋃

{Un,f : f ∈ Hn} : n ∈ ω
}
. �

If X is a topological space, then we denote by Borel the σ-algebra of Borel
subsets of X.


�����	�� 6� Let B be a bornology on a topological space X. Assume that Φ is
one of the symbols Ω and Γ, and Ψ is one of the symbols O, Ω, and Γ. Assume
that 〈Φ,Ψ〉 �= 〈Ω,O〉.

Then, the pair 〈X,Borel〉 possesses the covering property S1(ΦB,ΨB) if
and only if 〈M(X,Borel), τB〉 satisfies the selection principle S1(Φ0,B,Ψ0,B).
Similarly for Sfin.

The pair 〈X,Borel〉 possesses the covering property Ufin(ΦB,ΨB) if and only
if 〈M(X,Borel), τB〉 satisfies the selection principle U∗

fin(Φ0,B,Ψ0,B).
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A special case A = ϑ of Theorem 5 is a generalization of the main results
of the author, Theorems 6.2, 6.3, 7.4 in [2], and Theorems 4.1 and 4.2 in [3].


�����	�� 7� Let B be a bornology on a topological space X. Assume that Φ is
one of symbols Ω,Γ, and Ψ is one of symbols O,Ω,Γ, and 〈Φ,Ψ〉 �= 〈Ω,O〉.

a) Then, X is an S1(ΦB,ΨB)-space if and only if 〈USC(X)
+
, τB〉 satisfies the

selection principle S1(Φ0,B,Ψ0,B).

b) Similarly for Sfin.

c) Then, X is a Ufin(Φ0,B),Ψ0,B)-space if and only if 〈USM(X,A)
+
, τB〉 sat-

isfies the selection principle U∗
fin(Φ0,B,Ψ0,B).

If X has the property (εB), then the equivalences hold true for the pair 〈Ω,O〉
as well.

6. Bornological covers and families of continuous real
functions

Similarly as above, we generalize Theorems 6.2, 6.3 and 7.4 of [2], and The-
orems 4.1 and 4.2 of [3] for bornological covers. We recommend to a reader to
follow the proofs of corresponding results in [2] and [3].

������� 8� Let B be a bornology on a normal topological space X. Assume
that Φ is one of the symbols Ω, Γ, that Ψ is one of the symbols O, Ω, Γ, and
〈Φ,Ψ〉 �= 〈Ω,O〉.

a) The topological space X is an S1(Φ
sh
B ,ΨB)-space if and only if 〈C(X), τB〉

satisfies the selection principle S1(Φ0,B,Ψ0,B).

b) Similarly for Sfin.

c) The topological space X is a Ufin(Φ
sh
B ,ΨB)-space if and only if 〈C(X), τB〉

satisfies the selection principle U∗
fin(Φ0,B,Ψ0,B).

If X has the property (εB), then the equivalences hold true for the pair 〈Ω,O〉
as well.

P r o o f. The implications from left to right may be proved equally as in Theo-
rem 5, just note that if F ⊆ C∗

p(X) has property (Φ0)B, then U ε(F ) is a shrink-
able B-ϕ-cover.

We prove the implications from right to left for Ufin. Assume that 〈C(X), τB〉
satisfies the selection principle U∗

fin(Φ0,B,Ψ0,B). Let 〈Un : n ∈ ω〉 be a sequence
of covers from Φsh

B . Since Un is an open shrinkable B-ϕ-cover, then there exists
an open B-ϕ-cover Vn such that for each V ∈ Vn there exists a UV ∈ Un such that
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V ⊆ UV . For V ∈ Vn take a continuous functions fV such that rng(fV ) ⊆ [0, 1],
fV (x) = 1 if x ∈ X \ UV and fV (x) = 0 if x ∈ V . Set

Fn = {fV : V ∈ Vn}.
It is easy to see that Fn ∈ Φ0,B. E.g., let Φ = Ω. Then for a set B ∈ B, there
exists V ∈ Vn such that B ⊆ V . Then, fV (x) = 0 for x ∈ B. Thus, we can apply
the selection principle U∗

fin(Φ0,B,Ψ0,B) and we obtain finite sets Hn ⊆ Fn such
that {minHn : n ∈ ω} ∈ Ψ0,B. Let Wn = {V ∈ Vn : fV ∈ Hn}. Then, the family
{⋃Wn : n ∈ ω} is a B-ψ-cover. �

������� 9� Let B be a bornology with a closed base on a normal topological
space X. Assume that Ψ is one of the symbols O,Ω,Γ. Then, the following are
equivalent:

a) X is an S1(ΩB,ΨB)-space.

b) 〈USC∗(X)
+
, τB〉 satisfies the selection principle S1(Ω0,B,Ψ0,B).

c) 〈C∗(X), τB〉 satisfies the selection principle S1(Ω0,B,Ψ0,B).

P r o o f. The implication a) → b) is a case of Corollary 7. The implication
b) → c) is trivial. We show c) → a).

Let 〈Un : n ∈ ω〉 be a sequence of B-ω-covers. For every closed B ∈ B there
exists an open set Un

B ∈ Un such that B ⊆ Un
B . Since X is normal, for each

closed B ∈ B there exists a continuous function fnB : X −→ [0, 1] such that
fnB(x) = 1 for x ∈ X \ Un

B and fnB(x) = 0 for x ∈ B. Set

Fn = {fnB : B ∈ B ∧B is closed}.
One can easily see that Fn has the property (Ω0)B. By S1

(
(Ω0)B, (Ψ0)B

)
,

for every n there exists fn ∈ Fn such that the set {fn : n ∈ ω} has the prop-
erty (Ψ0)B. Every fn is fnBn

for some Bn ∈ B.
If Ψ = O, then for every x ∈ X there exists an fn such that fn(x) < 1/2.

Then, x ∈ Un
Bn

. Thus, {Un
Bn

: n ∈ ω} is an open B-o-cover.
If Ψ = Ω, then for every B ∈ B there exists an fn = fnBn

∈ NB,1/2. Thus,
B ⊆ Un

Bn
. Hence, {Un

Bn
: n ∈ ω} is an open B-ω-cover.

Finally, if Ψ = Γ, then for every B ∈ B the set {fn : (∃x ∈ B) fn(x) > 1/2}
is finite. Hence, the set {n : B � Un

Bn
} is finite as well. Thus, {Un

Bn
: n ∈ ω} is

an open B-γ-cover. �

7. Topological properties of a family of real functions and
selection principles

The following theorem is a generalization of a result by Arhangel’skîı and
Pytkeeff, see, e.g., M. Sakai [14, p. 199].
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������� 10 (A. Caserta, G. Di Maio and L’. Holá [5])� Let B be a bornology
with a closed base on a normal uniform space 〈X, υ〉. Then, the following are
equivalent:

a) 〈C(X), τ sB〉 has countable tightness.

b) Every open B-ωs-cover has a countable B-ωs-subcover.

The following theorem is a generalization of a result by F. Gerlits and
Z.Nagy [7].

������� 11 (A. Caserta, G. Di Maio and L’. Holá [5])� Let B be a bornology
with a closed base on a normal uniform space 〈X, υ〉. Then, the following are
equivalent:

a) 〈C(X), τ sB〉 is Fréchet.

b) Every open B-ωs-cover has a countable B-γs-subcover.
Both theorems remain true for any normal topological space X if we re-

place ωs, γs and τ sB by ω, γ and τB, respectively.
Following the proof of γ → γ′ by J. Gerlits and Zs. Nagy in [7], we obtain

������� 12� Let B be a bornology on a topological space X with a closed base,
ϕ being one of the symbols ω, γ. Then, the following are equivalent:

a) X is an S1(ΩB,ΦB)-space.
b) Every open B-ω-cover has a countable B-ϕ-subcover.

If X is a uniform space, then similar equivalence holds true for B-ϕs-covers.

P r o o f. Evidently a) → b). We show b) → a).
Assume that [X]ℵ0 ⊆ B. Since the bornology B is a proper ideal, X is un-

countable. Then, there is no countable B-ω-cover and both a) and b) are trivially
false, hence equivalent.

So, assume that [X]ℵ0 � B. Let {xn : n ∈ ω} ∈ [X]ℵ0 \B, xn �= xm for n �= m.
Assume that 〈Un : n ∈ ω〉 is a sequence of open B-ω-covers. We can assume that
each Un+1 is a refinement of Un. Then

U = {U \ {xn} : U ∈ Un ∧ n ∈ ω}
is an open B-ω-cover. By b), there exists a B-ϕ-subcover {Vk : k ∈ ω} ⊆ U .
Let nk be such that Vk = Unk

\ {xnk
} for a Unk

∈ Unk
.

If {x0, . . . , xn} ⊆ Vk, then nk > n. Thus, the set {nk : k ∈ ω} is infinite.
So, there exists an infinite set A ⊆ ω such that 〈nk : k ∈ A〉 is increasing.
For k ∈ A we set Wnk

= Unk
. For m smaller than the minimal nk, k ∈ A

(if any) take Wm ∈ Um arbitrary. If nk < m < nl, k, l ∈ A and there exists
no p ∈ A, k < p < l, take Wm ∈ Um such that Unl

⊆ Wm. One can easily see
that {Wm : m ∈ ω} is a B-ϕ-cover. �
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�����	�� 13� Let B be a bornology with a closed base on a normal topological
space X. Then, the following are equivalent:

a) 〈C(X), τB〉 has countable tightness.

b) Every open B-ω-cover has a countable B-ω-subcover.
c) X is an S1(ΩB,ΩB)-space.

If X is a uniform space, then similar equivalences hold true for the topology τ sB
and B-ωs-covers.

P r o o f. The proof of a) ≡ b) is a slight modification of the proof of Theorem 10
in A. Caserta, G. Di Maio and L’. Holá [5]. The equivalence b) ≡ c) is Theorem 12.

�


�����	�� 14� Let B be a bornology with a closed base on a normal topological
space X. Then, the following are equivalent:

a) 〈C(X), τB〉 is Fréchet.

b) Every open B-ω-cover has a countable B-γ-subcover.
c) X is an S1(ΩB,ΓB)-space.

d) 〈C(X), τB〉 is strictly Fréchet.

If X is a uniform space, then similar equivalences hold true for the topology τ sB
and B-ωs- and B-γs-covers, respectively.
P r o o f. As above, the proof of a) ≡ b) is a slight modification of the proof
of Theorem 11 in A. Caserta, G. Di Maio and L’. Holá [5]. The equivalence b) ≡ c)
is Theorem 12. By definition, 〈C(X), τB〉 is strictly Fréchet when 〈C(X), τB〉
satisfies the selection principle S1(Ω0,B,Γ0,B). Thus, the equivalence c) ≡ d)
follows by Theorem 8. �

������� 15� Let B be a bornology with a closed base on a topological space X.
Then, the following are equivalent:

a) 〈USC(X)+, τB〉 is Fréchet.

b) every open B-ω-cover has a countable B-γ-subcover.
c) X is an S1(ΩB,ΓB) space.

d) 〈USC(X)+, τB〉 is strictly Fréchet.

P r o o f. In the proof of Theorem 9 we define the upper semicontinuous functions

fnB(x) =

{
0 if x ∈ Un

B,

1, otherwise.

�
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�����	�� 16� Let B be a bornology with a closed base on a normal topological
space 〈X,ϑ〉. Then

a) 〈USC(X)+, τB〉 has countable tightness if and only 〈C(X), τB〉 is such.

b) 〈USC(X)+, τB〉 is Fréchet if and only if 〈C(X), τB〉 is such.

Remarks

Many special cases of presented results are known. I will mention all those
of them that I know. I am sorry if I omit any other known result. The only
reason for such an omitting is the fact that I do not know the result.

Some special cases of Theorems 7 and 8 were already known. Theorem 7
for Φ = Ψ = Γ was proved by the author [3] and for Φ = Γ and Ψ = Ω
by M. Sakai [14]. Theorem 8 for Φ = Ψ = Γ was proved by the author and
J. Haleš [4]. A theorem close to the case Φ = Γ and Ψ = Ω of Theorem 8 was
proved by A.V. Osipov [12].

Two equivalences (i) ≡ (iii) of Theorem 9 for B = Fin are well-known.
One is the already mentioned classical result by F. Gerlits and Z. Nagy [7]:

X has S1(Ω,Γ) ≡ Cp(X) is strictly Fréchet.

For a Tychonoff topological space X we obtain a result of M. Sakai [13]:

X has S1(Ω,Ω) ≡ Cp(X) has countable strong fan tightness.

The equivalence a) ≡ b) of Corollary 13 is a special case of Theorem 3.5
by L’. Holá and B. Novotný [9].

H. Ohta and M. Sakai [11] investigated the property (USC) of a topologi-
cal space: for every sequence 〈fn : n ∈ ω〉 of non-negative upper semicontinuous
functions such that fn → 0, there exists a sequence 〈gn : n ∈ ω〉 of continuous
functions such that gn → 0 and fn ≤ gn for each n. One can easily see that
for a topological space X with the property (USC), S1(Γ0,Ψ0) for continuous
functions implies S1(Γ0,Ψ0) for non-negative upper semicontinuous functions
for any Ψ = Λ,Ω,Γ. Therefore, if X is a normal topological space with the prop-
erty (USC), then S1(Γ

sh,Ψ) ≡ S1(Γ,Ψ). Moreover, they show that a subset X
of the real line satisfies the property (USC) if and only if X is a σ-space, i.e., if
Fσ(X) = Gδ(X). In this case, by J. Haleš [8], the property S1(Γ,Γ) is hereditary,
i.e., S1

(
Γ(A),Γ(A)

)
holds true for any subset A ⊆ X.
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the presentation of the article and, as I hope, probably the notations in this top-
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gence on bornologies, Topology Appl. 371 (2010), 384–392.

[6] ENGELKING, R.: General Topology. In:Monografie Matematyczne Vol. 60, PWN-Polish
Scientific Publishers, Warszaw 1977. (Revised edition Heldermann Verlag, Berlin 1989.)

[7] GERLITS, F.—NAGY, Z.: Some properties of C(X), Part I, Topology Appl. 14 (1982),
151–161.
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