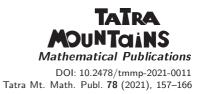
💲 sciendo



ON STAR-K-I-HUREWICZ PROPERTY

Sumit $Singh^{*1}$ — Harsh V. S. Chauhan¹ — Vikesh Kumar¹

¹Department of Mathematics, University of Delhi, New Delhi, INDIA

ABSTRACT. A space X is said to have the star-K- \mathcal{I} -Hurewicz property (SK \mathcal{I} H) [TYAGI, B. K.—SINGH, S.—BHARDWAJ, M. *Ideal analogues of some variants of Hurewicz property*, Filomat **33** (2019), no. 9, 2725–2734] if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there is a sequence $(K_n : n \in \mathbb{N})$ of compact subsets of X such that for each $x \in X$, $\{n \in \mathbb{N} : x \notin St(K_n, \mathcal{U}_n)\} \in \mathcal{I}$, where \mathcal{I} is the proper admissible ideal of \mathbb{N} . In this paper, we continue to investigate the relationship between the SK \mathcal{I} H property and other related properties and study the topological properties of the SK \mathcal{I} H property.

1. Introduction

Scheepers [16] and Just, Miller and Szeptycki in [9] initiated the systematic study of selection principles in topology and their relations to game theory and Ramsey theory. Kočinac and Scheepers [12] studied the Hurewicz property in detail and found its relations with function spaces, game theory, and Ramsey theory. Di Maio and Kočinac [14] introduced the statistical analogues of certain types of open covers and selection principles using actually the ideal of asymptotic density zero sets of \mathbb{N} . Das, Kočinac and Chandra [2,3] extended this study to the arbitrary ideal of \mathbb{N} . Using the notions of ideals, they started a more general approach to study certain results of open covers and selection principles. Further, Das et al. [4] studied the ideal analogues of the Hurewicz, the star-Hurewicz, and the strongly star-Hurewicz properties called them the

^{© 2021} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 54D20, 54A35.

Keywords: Hurewicz, star-K-
 Hurewicz, star-K-Hurewicz, ideal, covering, star-covering, topological space.

^{*}Corresponding author.

The third author is supported by CSIR-JRF Sr. No.: DEC19C06467, Ref. No.: 15/12/2019(ii) EU-V, File No.: 09/045(1814)/2020-EMR-I, for carrying out this research work.

COSC Licensed under the Creative Commons BY-NC-ND 4.0 International Public License.

 \mathcal{I} -Hurewicz (see [1–3, 17, 19, 24]), the star- \mathcal{I} -Hurewicz and the strongly star- \mathcal{I} -Hurewicz properties, respectively, where \mathcal{I} is the proper admissible ideal of \mathbb{N} . In [18, 25], Singh et al. introduced the ideal versions of the star-K-Hurewicz and the star-C-Hurewicz properties called the star-K- \mathcal{I} -Hurewicz (SK \mathcal{I} H) and the star-C- \mathcal{I} -Hurewicz properties, respectively.

The purpose of this paper is to investigate the relationships between the $SK\mathcal{I}H$ property and other related properties by giving some suitable examples and to study the topological properties of the $SK\mathcal{I}H$ property.

Throughout the paper, X and Y stand for topological spaces and \mathbb{N} denotes the set of all positive integers. Let A be a subset of X and \mathcal{P} be a collection of subsets of X, then $\operatorname{St}(A, \mathcal{P}) = \bigcup \{ U \in \mathcal{P} : U \cap A \neq \emptyset \}$. We usually write

$$\operatorname{St}(x, \mathcal{P}) = \operatorname{St}(\{x\}, \mathcal{P}).$$

We first recall some basic definitions.

A space X is said to have the Hurewicz property [8] if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each $x \in X$, $x \in \bigcup \mathcal{V}_n$ for all but finitely many n.

A space X is said to have the star-Hurewicz property [10, 11] if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each $x \in X$, $x \in \mathrm{St}(\cup \mathcal{V}_n, \mathcal{U}_n)$ for all but finitely many n.

A space X is said to have the strongly star-Hurewicz property [10, 11] if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, there is a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of X such that for each $x \in X$, $x \in \text{St}(F_n, \mathcal{U}_n)$ for all but finitely many n.

A space X is said to have the star-K-Hurewicz property [10,11,20] if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, there is a sequence $(K_n : n \in \mathbb{N})$ of compact subsets of X such that for each $x \in X$, $x \in \text{St}(K_n, \mathcal{U}_n)$ for all but finitely many n.

A family $\mathcal{I} \subset 2^Y$ of subsets of a non-empty set Y is said to be an ideal in Y if i) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$,

ii) $A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I},$

while an ideal is said to be admissible ideal or free ideal \mathcal{I} of Y if $\{y\} \in \mathcal{I}$ for each $y \in Y$. If \mathcal{I} is a proper ideal in Y (that is, $Y \notin \mathcal{I}, \mathcal{I} \neq \{\emptyset\}$), then the family of sets $\mathcal{F}(\mathcal{I}) = \{M \subset Y : \text{there exists } A \in \mathcal{I} : M = Y \setminus A\}$ is a filter in Y, that is, the family of all subsets of Y outside \mathcal{I} . Throughout the paper \mathcal{I} , will stand for proper admissible ideal of N. We denote the ideals of all finite subsets of N by \mathcal{I}_{fin} . A space X is said to have the \mathcal{I} -Hurewicz [2, 4] property (in short, \mathcal{I} H) if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each $x \in X$, $\{n \in \mathbb{N} : x \notin \bigcup \mathcal{V}_n\} \in \mathcal{I}$.

A space X is said to have the star- \mathcal{I} -Hurewicz [4] property (in short, S \mathcal{I} H) if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and for each $x \in X$, $\{n \in \mathbb{N} : x \notin \operatorname{St}(\cup \mathcal{V}_n, \mathcal{U}_n)\} \in \mathcal{I}$.

A space X is said to have the strongly star- \mathcal{I} -Hurewicz [4] property (in short, SS \mathcal{I} H) if for each sequence ($\mathcal{U}_n : n \in \mathbb{N}$) of open covers of X, there is a sequence ($F_n : n \in \mathbb{N}$) of finite subsets of X such that for each $x \in X$, $\{n \in \mathbb{N} : x \notin \operatorname{St}(F_n, \mathcal{U}_n)\} \in \mathcal{I}$.

A space X is said to have the star-K- \mathcal{I} -Hurewicz [25] property (in short, SK \mathcal{I} H) if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, there is a sequence $(K_n : n \in \mathbb{N})$ of compact subsets of X such that for each $x \in X$, $\{n \in \mathbb{N} : x \notin \operatorname{St}(K_n, \mathcal{U}_n)\} \in \mathcal{I}$.

A space X is said to be starcompact [5,13] (resp., \mathcal{K} -starcompact [23]) if for each open cover \mathcal{U} of X, there exists a finite subset \mathcal{V} of \mathcal{U} (resp., a compact subset K of X) such that $\mathrm{St}(\cup \mathcal{V}, \mathcal{U}) = X$ (resp., $\mathrm{St}(K, \mathcal{U}) = X$).

Recall that a collection $\mathcal{A} \subset P(\omega)$ is said to be almost disjoint if each set $A \in \mathcal{A}$ is infinite and the sets $A \cap B$ are finite for all distinct elements $A, B \in \mathcal{A}$. For an almost disjoint family \mathcal{A} , put $\psi(\mathcal{A}) = \mathcal{A} \bigcup \omega$ and topologize $\psi(\mathcal{A})$ as follows: for each element $A \in \mathcal{A}$ and each finite set $F \subset \omega$, $\{A\} \bigcup (A \setminus F)$ is a basic open neighbourhood of A and the natural numbers are isolated. The spaces of this type are called Isbell-Mrówka ψ -spaces [15] or $\psi(\mathcal{A})$ spaces.

Throughout the paper, let ω denote the first infinite cardinal, ω_1 the first uncountable cardinal, \mathfrak{c} the cardinality of the set of all real numbers. For a cardinal κ , let κ^+ be the smallest cardinal greater than κ . For each pair of ordinals α , β with $\alpha < \beta$, we write

$$\begin{split} & [\alpha,\beta) = \{\gamma : \alpha \le \gamma < \beta\}, \\ & (\alpha,\beta] = \{\gamma : \alpha < \gamma \le \beta\}, \\ & (\alpha,\beta) = \{\gamma : \alpha < \gamma < \beta\}, \\ & [\alpha,\beta] = \{\gamma : \alpha \le \gamma \le \beta\}. \end{split}$$

As usual, a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. A cardinal is often viewed as a space with the usual order topology. Other terms and symbols follow [6]. The extent e(X) denotes the minimal cardinal number κ such that $|A| \leq \kappa$, where A is any discrete closed subset of a space X.

2. The star-K-*I*-Hurewicz property

In this section, we study the topological properties of spaces having the $SK\mathcal{I}H$ property. We divide this section into four subsections, that is, subspaces, Alexandorff duplicate, images-preimages, and the products.

2.1. Subspaces

In the following example, we show that SK*I*H property is not preserved under closed subspaces.

EXAMPLE. Assume $\omega_1 < \mathfrak{b}(\mathcal{I}) = \mathfrak{c}$. Let $X = \psi(\mathcal{A}) = \omega \cup \mathcal{A}$ be the Isbell--Mrówka ψ -space, where \mathcal{A} is the almost disjoint family with $|\mathcal{A}| = \omega_1$. Then by [4, Theorem 4.4], X has the SSZH property, hence SKZH property. Since \mathcal{A} is a closed discrete space with $|\mathcal{A}| = \omega_1$, \mathcal{A} does not have the SKZH property.

Now, we will see that the regular-closed subspace of a Tychonoff space with the SK \mathcal{I} H property need not have the SK \mathcal{I} H property. By a minor modification in the proof of [21, Example 3.1], we obtain the following example.

EXAMPLE. There exists a Tychonoff space with the SK \mathcal{I} H property having a regular-closed subspace which does not have the SK \mathcal{I} H property.

Now, in the following example, we show that the regular-closed G_{δ} -subspace of a Tychonoff space with the SK \mathcal{I} H property does not have the SK \mathcal{I} H property.

By a minor modification in the proof of [22, Example 2.6], we obtain the following example.

EXAMPLE. Assume $\omega_1 < \mathfrak{b}(\mathcal{I}) = \mathfrak{c}$, there exists a Tychonoff space with the SK \mathcal{I} H property having regular closed G_{δ} -subspace which does not have the SK \mathcal{I} H property.

In [25], Tyagi et al. give positive result on $SK\mathcal{I}H$ property:

THEOREM 2.1 ([25]). The SKIH property is preserved under clopen subspaces.

The following result generalized Theorem 2.1.

THEOREM 2.2. The SKIH property is preserved under open F_{σ} -subsets.

Proof. Let X be a space having the SK \mathcal{I} H property, let $Y = \bigcup \{H_n : n \in \mathbb{N}\}$ be an open F_{σ} -subset of X, where H_n is closed in X for each $n \in \mathbb{N}$. Without loss of generality, we can assume that $H_n \subseteq H_{n+1}$ for each $n \in \mathbb{N}$. To show that Y has SK \mathcal{I} H property, let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of Y. We have to find a sequence $(K_n : n \in \mathbb{N})$ of compact subsets of Y such that for each $y \in Y$, $\{n \in \mathbb{N} : y \notin St(K_n, \mathcal{U}_n)\} \in \mathcal{I}$. For each $n \in \mathbb{N}$, let

$$\mathcal{V}_n = \mathcal{U}_n \bigcup \{X \setminus H_n\}.$$

Then, $(\mathcal{V}_n : n \in \mathbb{N})$ is a sequence of open covers of X and by the SKZH property of X, there exists a sequence $(K'_n : n \in \mathbb{N})$ of compact subsets of X such that for each $x \in X$, $\{n \in \mathbb{N} : x \notin \operatorname{St}(K'_n, \mathcal{V}_n)\} \in \mathcal{I}$. Consequently,

$$\{n \in \mathbb{N} : x \in \operatorname{St}(K'_n, \mathcal{V}_n)\} \in \mathcal{F}(\mathcal{I}).$$

For each $n \in \mathbb{N}$, let $K_n = K'_n \cap Y$. Thus, $(K_n : n \in \mathbb{N})$ is a sequence of compact subsets of Y. Let $y \in Y$. If $y \in St(K'_n, \mathcal{V}_n)$ for some n. By the construction of \mathcal{V}_n , choose $U \in \mathcal{U}_n$ such that $y \in U$ and $U \cap K'_n \cap Y \neq \emptyset$, which implies $U \cap K_n \neq \emptyset$. Therefore, for each $y \in Y$,

$$\{n \in \mathbb{N} : y \in \operatorname{St}(K'_n, \mathcal{V}_n)\} \subset \{n \in \mathbb{N} : y \in \operatorname{St}(K_n, \mathcal{U}_n)\}.$$

This completes the proof.

A cozero-set in a space X is a set of form $f^{-1}(\mathbb{R} \setminus \{0\})$ for some real-valued continuous function f on X. Since a cozero-set is an open F_{σ} -subset, the following corollary follows.

COROLLARY 2.3. The SKIH property is preserved under cozero-subsets.

2.2. Alexandorff Duplicate

Now, we consider Alexandorff duplicate $AD(X) = X \times \{0,1\}$ of a space X. The basic neighbourhood of a point $\langle x, 0 \rangle \in X \times \{0\}$ is of the form

 $(U\times \{0\}) \Big(\int (U\times \{1\}\setminus \{\langle x,1\rangle\}),$

where U is a neighbourhood of x in X and all points $\langle x, 1 \rangle \in X \times \{1\}$ are isolated points.

LEMMA 2.4. Let $D = \{d_{\alpha} : \alpha < \mathfrak{c}\}$ be the discrete space of cardinality \mathfrak{c} . Then, the subspace $X = (\beta D \times \mathfrak{c}^+) \cup (D \times \{\mathfrak{c}^+\})$

of the product space $\beta D \times (\mathfrak{c}^+ + 1)$ is K-starcompact (hence, it has the SKIH property).

Proof. The proof follows form [22, Lemma 2.9].

EXAMPLE. There exists a Tychonoff space X having the SKZH property such that AD(X) does not have the SK*I*H property.

Proof. Let X be the space in Lemma 2.4. Then, X is a Tychonoff space X having the SK \mathcal{I} H property. Now, we have to show that AD(X) does not have the SKI property. Since $D \times \{\mathfrak{c}^+\}$ is a discrete closed subset of X with $|D \times \{\mathfrak{c}^+\}| = \mathfrak{c}$ and each point $\langle \langle d_{\alpha}, \mathfrak{c}^+ \rangle, 1 \rangle$ is isolated for each $\alpha < \mathfrak{c}, (D \times \{\mathfrak{c}^+\}) \times \{1\}$ does not have the SKIH property. Since the SKIH property is preserved under clopen subsets, AD(X) does not have the SK*I*H property.

LEMMA 2.5 ([22]). For T_1 -space, e(X) = e(AD(X)).

Recall a space X is said to have star-K-Menger property [21, 22] if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there is a sequence $(K_n : n \in \mathbb{N})$ compact subsets of X such that

$$X = \bigcup_{n \in \mathbb{N}} \operatorname{St}(K_n, \mathcal{U}_n).$$

THEOREM 2.6. If X has the SKIH property with $e(X) < \omega_1$, then AD(X) has the star-K-Menger property.

Proof. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of AD(X). For each $n \in \mathbb{N}$ and each $x \in X$, choose an open neighbourhood $W_{n_x} = (V_{n_x} \times \{0, 1\}) \setminus \{\langle x, 1 \rangle\}$ of $\langle x, 0 \rangle$ satisfying that there exists some $U \in \mathcal{U}_n$ such that $W_{n_x} \subseteq U$, where V_{n_x} is an open subset of X containing x. For each $n \in \mathbb{N}$, let $\mathcal{V}_n = \{V_{n_x} : x \in X\}$, then \mathcal{V}_n is an open cover of X. Applying the SK \mathcal{I} H property to the sequence $(\mathcal{V}_n : n \in \mathbb{N})$, thus there exists a sequence $(K_n : n \in \mathbb{N})$ of compact subsets of X such that for each $x \in X$,

$$\{n \in \mathbb{N} : x \notin \operatorname{St}(K_n, \mathcal{V}_n)\} \in \mathcal{I}.$$

For each $n \in \mathbb{N}$, let $K'_n = \mathsf{AD}(K_n)$. Then, K'_n is a compact subset of $\mathsf{AD}(\mathsf{X})$. Thus, we get a sequence $(K'_n : n \in \mathbb{N})$ of compact subsets of $\mathsf{AD}(\mathsf{X})$ and for each $x \in X$, $\{n \in \mathbb{N} : \langle x, 0 \rangle \notin \mathrm{St}(K'_n, \mathcal{U}_n)\} \in \mathcal{I}$. Hence,

$$X \times \{0\} \subset \bigcup_{n \in \mathbb{N}} \operatorname{St}(K'_n, \mathcal{U}_n).$$

Let

$$A = \mathsf{AD}(\mathsf{X}) \setminus \bigcup_{n \in \mathbb{N}} \operatorname{St}(K'_n, \mathcal{U}_n).$$

Then, A is a discrete closed subset of AD(X). By Lemma 2.5, the set A is countable, we can enumerate A as $\{a_n : n \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, let $K''_n = K'_n \cup \{a_1, \ldots, a_n\}$. Then, K''_n is a compact subset of AD(X) and hence, for each $y \in AD(X)$, $y \in St(K''_n, \mathcal{U}_n)$ for some n. This shows that AD(X) has star-K-Menger property.

THEOREM 2.7. If X is a T_1 -space and AD(X) has the SKIH property, then $e(X) < \omega_1$.

Proof. Suppose that $e(X) \ge \omega_1$. Then, there exists a discrete closed subset B of X such that $|B| \ge \omega_1$. Hence, $B \times \{1\}$ is an open and closed subset of AD(X) and every point of $B \times \{1\}$ is an isolated point. By Theorem 2.1, AD(X) does not have the SK \mathcal{I} H property, since $B \times \{1\}$ does not have the SK \mathcal{I} H property. \Box

ON STAR-K-I-HUREWICZ PROPERTY

2.3. Images and preimages

Tyagi et al. [25, Theorem 5.3], proved the following theorem.

THEOREM 2.8 ([25]). The SKIH property is preserved under continuous mappings.

Now, we show that preimage of the space having the $SK\mathcal{I}H$ property under closed 2-to-1 continuous map does not have the $SK\mathcal{I}H$ property.

EXAMPLE. There exists a closed 2-to-1 continuous map $f : AD(X) \to X$ such that X has the SKIH property, but AD(X) does not have the SKIH property.

Proof. Let X be the space in Lemma 2.4. Then by Example 2.2, X has the SKIH property, but AD(X) does not have the SKIH property. Define $f : AD(X) \to X$ by $f(\langle x, 0 \rangle) = f(\langle x, 1 \rangle) = x$ for each $x \in X$. Then, f is a closed 2-to-1 continuous map.

In [25], Tyagi et al. give positive result on the preimages of the SK \mathcal{I} H property.

THEOREM 2.9 ([25]). The SKIH property is inverse invariant under perfect open mappings.

2.4. Products

By Theorem 2.9, we have the following corollary.

COROLLARY 2.10 ([25]). Let X have the SKIH property and let Y be a compact space, then $X \times Y$ has the SKIH property.

THEOREM 2.11. The SKIH property closed under countable unions.

Proof. Let $X = \bigcup \{X_k : k \in \mathbb{N}\}$, where $X_k, k \in \mathbb{N}$ has the SK \mathcal{I} H property. Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of open covers of X. For each $k \in \mathbb{N}$, consider the sequence $(\mathcal{U}_n : n \geq k, n \in \mathbb{N})$ of open covers of X_k . Since X_k has the SK \mathcal{I} H property, there is a sequence $(H_{n,k} : n > k, n \in \mathbb{N})$ of compact subsets of X_k and for each $x \in X_k$, $\{n \in \mathbb{N} : x \notin \operatorname{St}(H_{n,k},\mathcal{U}_n)\} \in \mathcal{I}$. For each $n \in \mathbb{N}$, $H_n = \bigcup \{H_{n,k} : k \leq n\}$. Then for each $n \in \mathbb{N}$, H_n is a compact subset of X. Since for each $x \in X = \bigcup \{X_k : k \in \mathbb{N}\}, x \in X_k$ for some $k \in \mathbb{N}$, thus $\{n \in \mathbb{N} : x \notin \operatorname{St}(H_{n,k},\mathcal{U}_n)\} \in \mathcal{I}$. Since $\operatorname{St}(H_{n,k},\mathcal{U}_n) \subset \operatorname{St}(H_n,\mathcal{U}_n)$ for all n > k and hence, $\{n \in \mathbb{N} : x \notin \operatorname{St}(H_n,\mathcal{U}_n)\} \in \mathcal{I}$.

We have the following corollary from Corollary 2.10 and Theorem 2.11.

COROLLARY 2.12. Let X has the SKIH property and Y is a σ -compact space, then $X \times Y$ has the SKIH property.

The following examples show that the σ -compact space in Corollary 2.12, cannot be replaced by countably compact or by Lindelöf space.

EXAMPLE. There exist two countably compact spaces X and Y such that $X \times Y$ does not have the SK \mathcal{I} H property.

Proof. Let $D(\mathfrak{c})$ be the discrete space of cardinality \mathfrak{c} . We can define $X = \bigcup_{\alpha < \omega_1} E_{\alpha}$, $Y = \bigcup_{\alpha < \omega_1} F_{\alpha}$, where E_{α} and F_{α} are subsets of $\beta D(\mathfrak{c})$ defined inductively so that the following three conditions are satisfied:

- 1) $E_{\alpha} \cap F_{\beta} = D(\mathfrak{c}) \ if \ \alpha \neq \beta;$
- 2) $|E_{\alpha}| \leq \mathfrak{c}$ and $|F_{\alpha}| \leq \mathfrak{c};$
- 3) every infinite subset of E_{α} (resp., F_{α}) has an accumulation point in $E_{\alpha+1}$ (resp., $F_{\alpha+1}$).

Those sets E_{α} and F_{α} are well-defined since every infinite closed set in $\beta D(\mathfrak{c})$ has the cardinality $2^{\mathfrak{c}}$ (see [26]). The diagonal $\{\langle d, d \rangle : d \in D(\mathfrak{c})\}$ is a discrete open and closed subset of $X \times Y$ of cardinality \mathfrak{c} so that it does not have the SK \mathcal{I} H property. Thus, $X \times Y$ does not have the SK \mathcal{I} H property, since by Theorem 2.1, the SK \mathcal{I} H property is preserved under clopen subsets.

EXAMPLE. There exist a countably compact (hence, it has the SK \mathcal{I} H property) space X and a Lindelöf space Y such that $X \times Y$ does not have the SK \mathcal{I} H property.

Proof. Let $X = [0, \omega_1)$ be equipped with the order topology and $Y = [0, \omega_1]$ with the following topology. Each point $\alpha < \omega_1$ is isolated, and a set U containing ω_1 is open if and only if $Y \setminus U$ is countable. Then, X is countably compact and Y is Lindelöf. By a simple modification in [21, Example 3.7], we can show that $X \times Y$ does not have the SK \mathcal{I} H property.

REFERENCES

- BHARDWAJ, M.—TYAGI, B. K.—SINGH, S.: Star-Hurewicz modulo an ideal property property in topological spaces, J. Indian Math. Soc. (N.S.) 88 (2021), no. 1-2, 33–45.
- [2] DAS, P.: Certain types of open covers and selection principles using ideals, Houston J. Math. 39 (2013), no. 2, 637–650.
- [3] DAS, P.—KOČINAC, LJ.D.R.—CHANDRA, D.: Some remarks on open covers and selection principles using ideals, Topol. Appl. 202 (2016), 183–193.

- [4] DAS, P.—CHANDRA, D.—SAMANTA, U.: On certain variations *I*-Hurewicz space, Topol. Appl. 241 (2018), 363–376.
- [5] DOUWEN, E. K. VAN.—REED, G. K.—ROSCOE, A. W.—TREE, I. J.: Star covering properties, Topol. Appl. 39 (1991), 71–103.
- [6] ENGELKING, E.: General Topology. PWN, Warszawa, 1977.
- [7] FARKAS, B.—SOUKUP, L.: More on cardinal invariants of analytic P-ideals, Comment. Math. Univ. Carolin. 50 (2009), no. 2, 281–295.
- [8] HUREWICZ, W.: Uber die Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), no. 1, 401–425.
- JUST, W.—MILLER, A. W.—SCHEEPERS, M.—SZEPTYCKI, P. J.: The combinatorics of open covers (II), Topol. Appl. 73 (1996), 241–266.
- [10] KOČINAC LJ. D. R.: Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999), 421–431.
- [11] KOČINAC LJ. D. R.: Star-Menger and related spaces II, Filomat 13 (1999), 129–140.
- [12] KOČINAC, LJ.D.R.—SCHEEPERS, M.: Combinatorics of open covers (VII): Groupability, Fund. Math. 179 (2003), no. 2, 131–155.
- [13] MATVEEV, M. V.: A survey on star-covering properties, Topology Atlas, preprint no. 330, 1998.
- [14] DI MAIO, G.—KOČINAC, LJ.D.R.: Statistical convergence in topology, Topol. Appl. 156 (2008), 28–45.
- [15] MRÓWKA S.: On completely regular spaces, Fund. Math. 41 (1954), 105–106.
- [16] SCHEEPERS, M.: The combinatorics of open covers (I): Ramsey theory, Topol. Appl. 69 (1996), 31–62.
- [17] SINGH, S.—TYAGI, B.K.—BHARDWAJ, M.: The absolutely strongly star-Hurewicz property with respect to an ideal, Tatra Mt. Math. Publ. 76 (2020), 81–94.
- [18] SINGH, S.—TYAGI, B.K.—BHARDWAJ, M.: An ideal version of star-C-Hurewicz covering property, Filomat 33 (2019), no. 19, 6385–6393.
- [19] SINGH, S.—TYAGI, B. K.—BHARDWAJ, M.: The almost *I*-Hurewicz covering property, Filomat (2021) (to appear).
- [20] SONG, Y.K.: On star-K-Hurewicz spaces, Filomat **31** (2017), no. 5, 1279–1285.
- [21] SONG, Y.K.: On star-K-Menger spaces, Hacet. J. Math. Stat. 43 (2014), no. 5, 769–778.
- [22] SONG, Y.K.: Remarks on star-K-Menger spaces, Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 5, 697–706.
- [23] SONG, Y.K.: On K-starcompact spaces, Bull. Malays. Math. Sci. Soc. (2) 30 (2007), no. 1, 59–64.
- [24] TYAGI, B.K.—BHARDWAJ, M.—SINGH, S.: On SIH property and SSIH-property in topological spaces, Khayyam J. Math. 7(2021), no. 1, 65–76.

SUMIT SINGH—HARSH V.S CHUAHAN—VIKESH KUMAR

- [25] TYAGI, B.K.—SINGH, S.—BHARDWAJ, M.: Ideal analogues of some variants of Hurewicz property, Filomat 33 (2019), no. 9, 2725–2734.
- [26] WALKER, R.C.: The Stone-Čech Compactification. In: Ergebnisse der Mathematik und ihrer Grenzgebiete Vol. 83, Springer-Verlag Berlin, 1974.

Received December 10, 2020

Department of Mathematics University of Delhi New Delhi-110007 INDIA E-mail: sumitkumar405@gmail.com harsh.chauhan111@gmail.com vkmath94@gmail.com