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Professor Roman Frič has passed away unexpectedly during the last stages
of the editorial process of this article. He was a respected editor and con-

tributor of Tatra Mt. Math. Publ. We will keep in our memory the name
of a distinguished scientist and an excellent colleague.

ABSTRACT. We show that measurable fuzzy sets carrying the multivalued
�Lukasiewicz logic lead to a natural generalization of the classical Kolmogorovian
probability theory. The transition from Boolean logic to �Lukasiewicz logic has
a categorical background and the resulting divisible probability theory possesses

both fuzzy and quantum qualities. Observables of the divisible probability theory
play an analogous role as classical random variables: to convey stochastic infor-
mation from one system to another one. Observables preserving the �Lukasiewicz
logic are called conservative and characterize the “classical core” of divisible prob-
ability theory. They send crisp random events to crisp random events and Dirac

probability measures to Dirac probability measures. The nonconservative observ-
ables send some crisp random events to genuine fuzzy events and some Dirac
probability measures to nondegenerated probability measures. They constitute
the added value of transition from classical to divisible probability theory.

1. Introduction

At previous ISCRFT conferences (International Summer Conference on Real
Functions Theory) we have presented our results related to the transition
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from classical probability space (Ω,A, p), see [10,13], to its fuzzification

(
Ω,M(A),

∫
(·) dp

)
,

where M(A) is the set of all measurable functions into [0,1] and
∫

(·) dp is the
probability integral with respect to p.

In the present contribution, we clarify the role of �Lukasiewicz logic in the
transition. Real functions, measure, and integration play a vital role.

2. Why measurable fuzzy events

L. A. Zadeh [23] proposed to extend classical random events represented
by a σ-field A of crisp subsets of the set Ω of outcomes to the set M(A) of all
measurable functions into the unit interval [0,1], i.e., measurable fuzzy subsets
of Ω. As usual, we identify a subset A of Ω and its indicator function

χA ∈ [0, 1]Ω, χA(ω) = 1 for ω ∈ A and χA(ω) = 0, otherwise.

Both crisp and fuzzy random events can be interpreted as propositional functions
(of the argument ω), the former equipped with the Boolean logic and the latter
equipped with some fuzzy logic. Our choice, supported by deep arguments [12,
16,18–20,22], is the �Lukasiewicz logic. Observe that M(A) is the smallest subset
X of [0, 1]Ω containing A which is divisible and closed with respect to pointwise
sequential limits, where “divisible” means that if u ∈ X , then u/n ∈ X for each
natural number n. The closedness with respect to pointwise sequential limits is
assumed to facilitate limit stochastic constructions. It is known that M(A) is
the smallest subset X of [0, 1]Ω containing A, all constant fuzzy subsets of Ω
and closed with respect to pointwise limits of sequences. The transition from
crisp random events (represented by A) to divisible random events (represented
by M(A)) is, in some sense, as advantageous as the transition from integers
to rational (and real) numbers (cf. [1,6,7]). Another advantage of the extension
of crisp sets to measurable fuzzy sets is the fact that the values in the unit
interval [0,1], the range of probability measures, can be viewed as measurable
fuzzy sets. Indeed, if Ω is the singleton set {ω}, then A reduces to the trivial
σ-field T = {∅,Ω} and [0, 1] can be viewed as M(T); note that we identify
r ∈ [0, 1] and the function rχ{ω} ∈ M(T). Consequently, in a categorical
approach to probability theory, [0, 1] ≡ M(T) becomes an object and the
probability integral becomes a morphism of M(A) to M(T).

More detailed information on the extension of classical probability theory
[10,13] to divisible probability theory can be found in [6].
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3. Why �Lukasiewicz logic

Further, L. A. Zadeh has proposed to replace the classical probability measure
with the probability integral.

In [17], M. Navara observed that no justification to define the probability of a
fuzzy event u ∈ M(A) by the formula

∫
u dp was given by Zadeh, and discussed

two distinct approaches to generalized probability: probability on tribes, and
probability on MV-algebras with products [21], confirming the original proposal
by Zadeh.

In [1], D. Babicová provided another (categorical) argument and character-
ized

∫
(·) dp (mapping M(A) into [0, 1] ≡ M(T)) as a sequentially continuous

additive linearization of M(A). Here, “sequential continuity” is considered with
respect to the pointwise convergence of sequences, “additivity” means that if

u, v ∈ M(A) and u ≤ 1 − v,

then ∫
(u + v) dp =

∫
u dp +

∫
v dp,

and “linearization” refers to an order preserving map from the lattice M(A)
to the linearly (totally) ordered set [0, 1]. Further, she proved that the embed-
ding of A into M(A) and the extension of p into

∫
(·) dp can be viewed as an

epireflection. Observe that the additivity is closely related to the �Lukasiewicz
strong disjunction ⊕ restricted to orthogonal elements. Indeed, for

u, v ∈ M(A), u⊕ v = min{1, u + v} and u + v = u⊕ v

whenever u ≤ 1 − v, hence from
∫
u dp ≤ 1 − ∫

v dp we get∫
(u⊕ v) dp =

∫
u dp ⊕

∫
v dp.

The lattice M(A) of all measurable fuzzy subsets of the set Ω of outcomes
is an accepted model of generalized random events. In the corresponding fuzzi-
fied probability theory (cf. [1–4, 6–9, 14]), M(A) is equipped with one of the
three isomorphic structures: effect algebra, D-poset, A-poset. The structures
are defined via (dual) partial binary operations of sum and difference, respec-
tively [5]. States (generalized probability measures) are suitable sum-preserving
maps of M(A) into [0,1]. Note that the Boolean logic on A coincides with the
�Lukasiewicz logic. Our aim is to show how �Lukasiewicz logic makes the fuzzi-
fied probability theory more “transparent”. Recall that M(A), besides the lat-
tice structure, carries the pointwise convergence of sequences, the �Lukasiewicz
strong disjunction ⊕, the �Lukasiewicz strong conjunction �: for u, v ∈
M(A), u � v = max{0, u + v − 1}, and the �Lukasiewicz negation (·)c:
for u ∈ M(A), uc = 1 − u. Let (Ξ,B) be a measurable space and let M(B)
be the corresponding lattice of all measurable fuzzy subsets of Ξ. According
to [1], a map h : M(B) −→ M(A) is said to be an A-homomorphism provided
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it preserves the partial order, the top and bottom elements, and it is additive:
for u, v ∈ M(B), u ≤ 1 − v, we have h(u + v) = h(u) + h(v). Sequentially
continuous A-homomorphisms are called observables and in the corresponding
categorical probability theory observables serve as morphisms.

For convenience, the �Lukasiewicz operations in the domain and the range of a
mapping h : M(B) −→ M(A) will be denoted by the same symbols ⊕,�, (·)c.
���������� 3.1� Let h : M(B) −→ M(A) be a map such that for all u, v ∈
M(B) we have:

(i) h(uc) =
(
h(u)

)c
,

(ii) h(u⊕ v) = h(u) ⊕ h(v),

(iii) h(u� v) = h(u) � h(v).

Then we say that h preserves the �Lukasiewicz operations.

	�

� 3.2� Let h : M(B) −→ M(A) be a map preserving the �Lukasiewicz
operations. Then, h is an A-homomorphism.

P r o o f. We have to prove that h preserves the partial order, the top and the
bottom elements, and it is additive.

1. h preserves the partial order. Let u, v ∈ M(B), u ≤ v. Put w = v − u. Then,
from v = u + w ≤ 1, we get u + w = u⊕ w and

h(v) = h(u + w) = h(u⊕ w) = h(u) ⊕ h(w) = min{1, h(u) + h(w)}.
Hence, for all ω ∈ Ω we have h(v)(ω) = 1 or h(v)(ω) = h(u)(ω) + h(w)(ω).
Consequently, h(u)(ω) ≤ h(v)(ω) for each ω ∈ Ω, which yields h(u) ≤ h(v).

2. h preserves the top and the bottom elements. From

h(0) = h(0 ⊕ 0) = h(0) ⊕ h(0) = min{1, h(0) + h(0)}
we obtain

h(0) = h(0) + h(0) = 0.

Indeed, from h(0)(ω) = 1 for some ω ∈ Ω we infer that

h(1)(ω) = h(0c)(ω) =
(
h(0)(ω)

)c
= 1 − 1 = 0,

which is impossible since h(0) ≤ h(1). Hence, for all ω ∈ Ω the equality
h(0)(ω) = h(0)(ω) + h(0)(ω) holds. Consequently, h(0) = 0 and h(1) =
h(0c) = 1.

3. h is additive. Let u, v ∈ M(B), u ≤ 1 − v. Then,

u + v = u⊕ v and h(u + v) = h(u⊕ v) = h(u) ⊕ h(v).

From u ≤ 1 − v we get

h(u) ≤ h(1 − v) = 1 − h(v) and h(u) + h(v) ≤ 1.

Thus, h(u) + h(v) = h(u) ⊕ h(v) = h(u + v). �
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���������� 3.3� Let h : M(B) −→ M(A) be a map. Observe that if h pre-
serves the �Lukasiewicz operations, then h preserves also the �Lukasiewicz im-
plication: u → v = min{1, 1 − u + v}. Indeed, u → v = uc ⊕ v and hence,

h(u → v) = h(uc ⊕ v) = h(uc) ⊕ h(v) =
(
h(u)

)c ⊕ h(v) = h(u) → h(v).

Let (Ξ,B) and (Ω,A) be a measurable spaces and let M(B) and M(A)
be the corresponding lattices of all measurable fuzzy subsets. We consider the
elements of A and B as indicator functions, i.e., A ⊂ M(A) and B ⊂ M(B).
Observe that A and B are exactly idempotent elements (with respect to the
�Lukasiewicz strong disjunction) of M(A) and M(B), respectively. It is known
that if h0 is an A-homomorphism of B into A, then h0 preserves the Boolean
set operations. Further, if h0 is a sequentially continuous A-homomorphism of B
into A, resp. into M(A), then h0 can be uniquely extended to a sequentially
continuous A-homomorphism of M(B) into M(A), cf. [1,2].

������
 3.4� Let (Ξ,B) and (Ω,A) be measurable spaces, let M(B) and
M(A) be the corresponding lattices of all measurable fuzzy subsets, and let
h : M(B) −→ M(A) be a sequentially continuous map. Then the following are
equivalent:

(i) h preserves the �Lukasiewicz operations ⊕,�, (·)c;
(ii) h is an A-homomorphism and for each B ∈ B we have h(B) ∈ A.

P r o o f.

(i) implies (ii). By the preceding lemma, h is an A-homomorphism. Assume, for
sake of contradiction, that there exists B ∈ B such that for some ω ∈ Ω we
have 0 <

(
h(B)

)
(ω) < 1. Define g : M(B) −→ [0, 1] ≡ M(T) by putting g(u) =(

h(u)
)
(ω), u ∈ M(B). Then, g is a sequentially continuous A-homomorphism.

Clearly, g preserves ⊕. But from B = B ∪ B = B ⊕ B, it follows that g(B) =
g(B ⊕ B) = g(B) ⊕ g(B), a contradiction with 0 <

(
h(B)

)
(ω) < 1.

(ii) implies (i). Since �Lukasiewicz operations (on M(A)) are defined coordi-
natewise, it suffices to assume that h : M(B) −→ [0, 1] ≡ M(T). It is known
that each sequentially continuous A-homomorphism h : M(B) → [0, 1] is a
probability integral, i.e., h(·) =

∫
(·) dp for some probability measure p on B.

Since every u ∈ M(B) is a limit of an increasing sequence of simple func-
tions (finite linear combinations of elements of B), and since integral preserves
monotone limits and linear combinations, it suffices to show that �Lukasiewicz
operations are preserved by the restriction of h to the lattice B of all crisp events.

It is clear that (·)c, being a linear mapping uc = 1 − u, is preserved by h.
We show that h(u � v) = h(u) � h(v) for u, v ∈ B. Indeed, if h(u) = 0 or
h(v) = 0 then h(u � v) = 0, since u � v = max{0, u + v − 1} = min{u, v} and
h is order-preserving. If h(u) = h(v) = 1, then h(u� v) = h(u) − h(u� vc) = 1
since h(u � vc) ≤ h(vc) = 0. Thus, � is preserved by h. Finally, h preserves ⊕
since u⊕ v = (uc � vc)c. �
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���������� 3.5� Let h : M(B) −→ M(A) be an observable such that for each
B ∈ B we have h(B) ∈ A. Then, h is said to be conservative.

��������� 3.6� An observable h : M(B) −→ M(A) preserves the �Lukasiewicz
operations iff h is conservative.

��������� 3.7� An observable h : M(B) −→ M(T) preserves the �Lukasiewicz
operations iff h is a probability integral

∫
(·) dp with respect to a {0, 1}-valued

probability measure p.

���������� 3.8� Normalized and additive maps on MV-algebras have been
introduced by F. Kôpka and F. Chovanec in [11], and then by D. Mundici under
the name of MV-algebraic states (or simply states) in [15]. As it is shown in [15],
every state s on an MV-algebra M is modular, i.e., for all x, y ∈ M we have
s(x ∨ y) = s(x) + s(y) − s(x ∧ y).

Observe the following interesting fact. Let (Ω,A) be a measurable space and
let M(A) be the corresponding lattice of measurable fuzzy subsets of Ω. Even
though M(A) fails to be a lattice with respect to the �Lukasiewicz operations ⊕
and � each probability integral

∫
(·) dp is “modular”, i.e., for each u, v ∈ M(A)

we have ∫
u⊕ v dp =

∫
u dp +

∫
v dp −

∫
u� v dp. (m)

Indeed, (m) follows directly from u + v = min{1, u + v} + max{0, u + v − 1}.

In the next section, we recall some background stochastic information and
summarize the role of �Lukasiewicz logic in the transition from classical to divis-
ible probability theory.

4. Stochastic background

Probability spaces (Ω,A, p), p ∈ P(A), describe classical random experiments
having the same fixed component (Ω,A), and p ∈ P(A) represents the “choice”
of suitable probability measure, representing the “law of randomness”, one of all
possible probability measures related to the experiment in question.

Let (Ω,A) and (Ξ,B) be measurable spaces and let f : Ω −→ Ξ be a mea-
surable map. The preimage map f←, f←(B) = {ω ∈ Ω; f(ω) ∈ B}, B ∈ B, is
a sequentially continuous (with respect to the pointwise sequential convergence
of indicator functions) Boolean homomorphism of B into A. Further, f← defines
a map Tf← on the set P(A) of all probability measures on A into the set P(B)
of all probability measures on B: Tf←(p) is the composition p ◦ f←, p ∈ P(A).
Then, a choice of p ∈ P(A) determines the choice p ◦ f← ∈ P(B). We say that
f← pushes forward p to p ◦ f← or that f← “conveys the stochastic information
p on A to p ◦ f← on B”.
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In the upgraded probability theory, the notion of random experiment is modi-
fied as follows. Classical random events A are embedded and extended to M(A)
(each A ∈ A is considered as the indicator function χA ∈ M(A)), the set Ω
of outcomes of a classical random experiment is extended to P(A) (each ω ∈ Ω
is considered as the corresponding Dirac measure δω ∈ P(A)), each probabil-
ity measure p ∈ P(A) is extended to the corresponding probability integral
p =

∫
(·) dp on M(A) (p reduced to A can be considered as p). Here, P(A)

and M(A) represent the “hardware” and
∫

(·) dp represents the “stochastics”
of experiment. Observe that, since A and M(A), resp. p and p, are in one-to-
one correspondence, this part of the upgrade is “for free”. The “added value”
of the upgrade comes via the fact that not all observables on M(B) to M(A)
are conservative.

���������� 4.1� Let (Ω,A) be a measurable space and let p ∈ P(A). Then,(
Ω,M(A),

∫
(·) dp

)
is said to be a random experiment.

Let
(
Ω,M(A),

∫
(·) dp

)
be a random experiment and let (Ξ,B) be a measur-

able space. Then, instead of a measurable map f : Ω −→ Ξ and its preimage
map f← : B −→ A, we start with a sequentially continuous A-homomorphism
g : M(B) −→ M(A) (g is an A-homomorphism which preserves sequential lim-
its with respect to pointwise convergence), called observable, and f is replaced
with a map Tg : P(A) −→ P(B), called statistical map. For each probabil-
ity integral s =

∫
(·) ds on M(A), the composition s ◦ g of two observables

is an observable to M(T), hence a probability integral t =
∫

(·) dt on M(B).
This yields the statistical map Tg : P(A) −→ P(B) sending s to Tg(s).
If q = T (p), then for u ∈ M(B) we have

∫
u d

(
Tg(p)

)
=

∫
g(u) dp and,

for p = δω, ω ∈ Ω, we get

(
g(u)

)
(ω) =

∫
g(u) d(δω) =

∫
u d

(
Tg(δω)

)
.

We say that g is an observable on
(
Ξ,M(B),

∫
(·) dq

)
into

(
Ω,M(A),

∫
(·) dp

)
.

Recall [3,8,9] that a big difference is that an observable g : M(B) −→ M(A)
can map a crisp event B ≡ χB ∈ B to a genuine fuzzy random event g(χB) ∈
M(A) \ A and, dually, Tg can map a Dirac probability measure δω, ω ∈ Ω, to
a genuine probability measure q = Tg(δω), 0 < q(B) < 1, for some B ∈ B.
Indeed, for A = T =

{∅, {ω}}, every probability integral
∫

(·) dq, q ∈ P(B),
is an observable to M(A) and, if 0 < q(B) < 1 for some B ∈ B, then the
observable fails to be conservative and Tg(δω) = q.

In the divisible probability theory, an important role is played by “degener-
ated” observables. They capture stochastic independence of one random exper-
iment on another one [2,6].
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Example 4.2. First, recall the notion of a classical degenerated random variable.
Denote R the real line and denote BR the σ-algebra of all Borel measurable
subsets of R. Let (Ω,A, p) be a classical probability space and let r be a real
number. Define f : Ω −→ R as follows: f(ω) = r for all ω ∈ Ω. This defines
a degenerated classical random variable for which the preimage map f← maps
B ∈ BR to Ω whenever r ∈ B and f←(B) = ∅ otherwise. Clearly, Tf←(t) = δr
for all t ∈ P(A). All outcomes ω ∈ Ω are mapped to r, hence f models a
“deterministic” experiment.

Now, let
(
Ω,M(A),

∫
(·) dp

)
and

(
Ξ,M(B),

∫
(·) dq

)
be random experiments.

Define g : M(B) −→ M(A) as follows: for u ∈ M(B), g(u) ∈ M(A) is a
constant function and

(
g(u)

)
(ω) =

∫
u dq, ω ∈ Ω. Clearly, g is an observable

and the corresponding statistical map Tg : P(A) −→ P(B) sends all t ∈ P(A)
to q. Such observables and statistical maps are called degenerated. Observe
that if 0 < q(B) < 1 for some B ∈ B, then g(χB) ∈ M(A) \ A, i.e., g is not
conservative.

��

��� 1� There is a natural extension of the classical probability theory,
CPT for short, called divisible probability theory, DPT for short. Basic notions
and constructions in DPT and the transition from CPT to DPT can be expressed
in terms of elementary category theory. Objects are measurable fuzzy subsets
of classical outcomes. Objects consist of fuzzy random events and are viewed as
fuzzy propositional functions equipped with �Lukasiewicz logic. Classical random
events are exactly the idempotent elements of the objects. Morphisms, called
observables, serve as channels through which a stochastic information is trans-
mitted from one object to another one. Relevant constructions in DPT are de-
scribed in terms of observables and commutative diagrams. Classical probability
measures are replaced by probability integrals and constitute special morphisms
evaluating how probable individual fuzzy random events are. A classical (idem-
potent, crisp) random event can be mapped by an observable to a genuine fuzzy
random event. An observable mapping each classical random event to a classical
event, is called conservative. In fact, conservative observables are stochastic tools
of CPT. This way CPT is embedded into DPT. The embedding (cf. [1,6]) can be
characterized as an epireflection.

��

��� 2� �Lukasiewicz logic plays an important role. First, it extends the
Boolean logic of classical random events in a canonical way and, secondly, it ex-
actly identifies the CPT within DPT. An observable is conservative iff it preserves
the �Lukasiewicz logical operations on random events: conjunction, disjunction,
negation, implication. Observe that a nonconservative observable serves only to
“push forward” probability of individual random events. If

(
Ω,M(A),

∫
(·) dp

)
,(

Ξ,M(B),
∫

(·) dq
)

are random experiments and g : M(B) −→ M(A) is a non-

conservative observable, then
∫
u dq =

∫
g(u) dg for each u ∈ M(B), but g does

not necessarily push forward complex probabilities in terms of logical operations.
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