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ABSTRACT. Egoroff’s classical theorem shows that from a pointwise conver-
gence we can get a uniform convergence outside the set of an arbitrary small
measure. Taylor’s theorem shows the possibility of controlling the convergence
of the sequences of functions on the set of the full measure. Namely, for every
sequence of real-valued measurable fnctions {fn}n∈N pointwise converging to a
function f on a measurable set E, there exist a decreasing sequence {δn}n∈N

of positive reals converging to 0 and a set A ⊆ E such that E \A is a nullset and

limn→+∞ |fn(x)−f(x)|
δn

= 0 for all x ∈ A. Let J(A, {fn}) denote the set of all such
sequences {δn}n∈N. The main results of the paper concern basic properties of sets
of all such sequences for a given set A and a given sequence of functions. A re-
lationship between pointwise convergence, uniform convergence and the Taylor’s
type of convergence is considered.

The well-known Egoroff’s theorem [7] says that if {fn}n∈N is a sequence of mea-
surable functions such that fn(x) → f(x) as n → +∞ for all x ∈ E, where E
is a Lebesgue measurable subset of n-dimensional Euclidean space, then for each
ε > 0 there exists a set A ⊆ E with λ(A) < ε such that {fn}n∈N converges
uniformly to f on E \A (λ denotes the n-dimensional Lebesgue measure).

S. J. Taylor in [8] formulated a new form of Egoroff’s theorem

Theorem 1. Suppose that E is a Lebesgue measurable subset of n-dimensional
Euclidean space and {fn}n∈N is a sequence of measurable functions such that

fn(x) → f(x) as n→ +∞ for all x ∈ E.
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Then, there exist a decreasing sequence {δn}n∈N of positive real numbers tending
to 0 and a subset A⊆E with λ(E \A)=0 such that for all x ∈ A

lim
n→+∞

|fn(x)− f(x)|
δn

= 0.

In the present paper, we discuss some properties of the sequences {δn}n∈N

satisfying conditions from Theorem 1, so we define a family of such sequences.

Definition 2. Let S0 denote the family of sequences of positive numbers
{δn}n∈N tending to 0. For a sequence {fn}n∈N of real-valued functions pointwise
converging to a function f on a set A, let J(A, {fn}) denote the set of sequences
{δn}n∈N ∈ S0 such that for every x ∈ A, limn→+∞

|fn(x)−f(x)|
δn

= 0.

We are mainly interested in the case when the functions fn are measurable
and the set A is measurable of positive measure as in the case of Theorem 1,
which can now be written as follows:

Theorem 1. Suppose that E is a Lebesgue measurable subset of n-dimensional
Euclidean space and {fn}n∈N is a sequence of measurable functions such that
fn(x) → f(x) as n→ +∞ for all x ∈ E. Then, there exists a subset A ⊆ E with
λ(E \A) = 0 such that J(A, {fn}) �= ∅.

The next lemma shows that for a sequence {fn}n∈N of real functions converging
to f on a set A we can equivalently consider the existence of arbitrary or decreas-
ing sequences belonging to J(A, {fn}) or the equal convergence of {fn}n∈N to f
on A (defined in [4] or in [2] under the name “quasi-normal convergence”).

Lemma 3. The following conditions are equivalent:

1) There exists a decreasing sequence {δn} ∈ J(A, {fn}).
2) J(A, {fn}) �= ∅.
3) {fn}n∈N converges equally [4] (or quasi-normally – [2]) to f on A, i.e., there

exists a sequence {δn}n∈N of non-negative numbers tending to zero such that
for every x ∈ A there is an index k such that |fn(x)− f(x)| ≤ δn for n ≥ k.

P r o o f. 1) ⇒ 2) ⇒ 3) are obvious.

3) ⇒ 1): Let {δn}n∈N satisfy (3). For every n ∈ N define

δ′n := max{
√
δk : k ≥ n}+ 2−n.

Then, δn ≤ δ′2n and limn→+∞ δ′n = 0. The sequence {δ′n}n∈N satisfies 1) because
{δ′n}n∈N is decreasing and positive and for every x ∈ A:

lim
n→+∞

|fn(x)− f(x)|
δ′n

≤ lim
n→+∞

δn
δ′n

≤ lim
n→+∞ δ′n = 0.

�
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Observe that for a sequence of Borel functions pointwise convergent on any
uncountable Borel set E it is possible that J(E, {fn}) = ∅.
Example 4. Let E be an uncountable Borel subset of n-dimensional Euclidean
space. Since S0 is uncountable Borel subset of the Polish space R

N, it is Borel
isomorphic to E [6, 15.3 and 15.6]. Hence, there exists a Borel bijective function
F : S0 → E. Explicitly, for every {δn}n∈N ∈ S0 there exists a unique point
x{δn} ∈ E such that F ({δn}) = x{δn}. Define a function fn putting fn(x) := δn,

where x = x{δn}, i.e., fn = projn ◦ F−1, so fn is a Borel function for all n ∈ N.

For a fixed x ∈ E the sequences {fn(x)}n∈N and {δn}n∈N are the same, so

lim
n→+∞ fn(x) = lim

n→+∞ δn = 0.

Thus, {fn}n∈N pointwise converges to 0.

On the other hand, {δn} �∈ J(E, {fn}) for any {δn}n∈N ∈ S0. Take an arbitrary
{δn}n∈N ∈ S0 and consider x{δn}. Then,

lim
n→+∞

|fn(x{δn})− 0|
δn

= lim
n→+∞

δn
δn

= 1.

Let E be a fixed measurable subset of an Euclidean space of positive measure.
All functions that we consider from now on are measurable functions defined
on the set E.

Define 1
f (x) :=

1
f(x) , if f(x) �= 0 and 1

f (x) := 1, if f(x) = 0. Obviously, 1
f is

measurable whenever f is measurable. If f(x) �= 0, then limn→+∞ fn(x) = f(x)
if and only if limn→+∞ 1

fn
(x) = 1

f (x).

Proposition 5. Let fn(x) → f(x) for all x ∈ E.

1) If {αn} ∈ J(E, {fn}), then {aαn} ∈ J(E, {fn}) for all a > 0.

2) If fn = f for all n ∈ N, then J(E, {fn}) = S0.

3) J(E, {afn}) = J(E, {fn}) for every a �= 0.

4) If f(x) �= 0 for all x ∈ E, then J(E, { 1
fn
}) = J(E, {fn}).

P r o o f. The proof of 1), 2) and 3) is obvious.

4) By the assumption, for every x ∈ E for all but finitely many n ∈ N, fn(x) �= 0,
and for all such n and all positive δn we have

|f(x)− fn(x)|
δn

=
| 1
fn
(x)− 1

f (x)|
δn

· |fn(x)f(x)|.

Since limn→+∞ fn(x)f(x) =
(
f(x)

)2 �= 0, then J(E, { 1
fn
}) = J(E, {fn}). �
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Proposition 6. Let fn(x) → f(x) and gn(x) → g(x) for all x ∈ E.
Let {αn} ∈ J(Af , {fn}) and {βn} ∈ J(Ag, {gn}) for some sets Af , Ag ⊆ E
and let {γn} = max{αn, βn} for all n ∈ N. Then

1) {γn} ∈ J(Af ∩Ag, {afn + bgn}) for all a, b ∈ R.

2) {γn} ∈ J(Af ∩Ag, {fn · gn}).
(Obviously, if Af and Ag are complements of null-sets, then also the set Af ∩Ag

is the complement of a null-set.)

P r o o f. Obviously,

γn > 0 for all n ∈ N and lim
n→+∞ γn = 0.

Due to Proposition 5 2) – 3), it suffices to prove the assertion 1) for a = b = 1.

For all x ∈ Af ∩Ag we have

0 ≤ |fn(x) + gn(x)− (f(x) + g(x))|
γn

=
|fn(x)− f(x) + gn(x)− g(x)|

γn

≤ |fn(x)− f(x)| + |gn(x)− g(x)|
γn

=
|fn(x)− f(x)|

γn
+

|gn(x)− g(x)|
γn

≤ |fn(x)− f(x)|
αn

+
|gn(x)− g(x)|

βn
−→

n→+∞ 0.

Hence, using the squeeze theorem, we get that

|fn(x) + gn(x) − (f(x) + g(x))|
γn

−→
n→+∞ 0.

2) For a fixed x ∈ Af ∩ Ag we have

0 ≤ |fn(x) · gn(x)− f(x) · g(x)|
γn

=
|fn(x) · gn(x)− f(x) · g(x)− fn(x) · g(x) + fn(x) · g(x)|

γn

=
|fn(x) · (gn(x)− g(x)) + g(x) · (fn(x)− f(x))|

γn

≤ |fn(x) · (gn(x)− g(x))|+ |g(x) · (fn(x)− f(x))|
γn

=
|fn(x) · (gn(x)− g(x))|

γn
+

|g(x) · (fn(x)−f(x))|
γn

= |fn(x)| · |gn(x)− g(x)|
γn

+ |g(x)| · |fn(x)− f(x)|
γn

≤ |fn(x)| · |gn(x)− g(x)|
αn

+ |g(x)| · |fn(x)− f(x)|
βn

.
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Since fn(x) → f(x) as n→ +∞ for all x ∈ Af∩Ag ⊂ E, then for each x ∈ Af∩Ag

there existsM (x) > 0 such that |fn(x)| ≤M (x) for each x ∈ Af ∩Ag. Therefore,

| fn(x) | · |gn(x)− g(x)|
αn

+ |g(x)| · |fn(x)− f(x)|
βn

≤M (x) · |gn(x)− g(x)|
αn

+ |g(x)| · |fn(x)− f(x)|
βn

−→
n→+∞ 0.

Hence, using the squeeze theorem again, we get that

|fn(x) · gn(x)− (f(x) · g(x))|
γn

−→
n→+∞

0 for all x ∈ Af ∩Ag.

�

Corollary 7. Let fn(x) → f(x) and gn(x) → g(x) for all x ∈ E. Then

1) J(E, {fn}) ∩ J(E, {gn}) = J(E, {fn + gn}) ∩ J(E, {gn}).
2) J(E, {fn}) ∩ J(E, {gn}) ⊆ J(E, {fn · gn}).
3) J(E, {fn}) ∩ J(E, {gn}) = J(E, {fn · gn}) ∩ J(E, {gn})

provided that g(x) �= 0 for all x ∈ E.

P r o o f. Inclusions “⊂” are the straightforward consequence of Proposition 6.
Inclusions “⊃” in 1) and 3) come from the fact that by Proposition 5 3) and 4),
J(E, {−gn}) = J(E, {gn}) and J(E, { 1

gn
}) = J(E, {gn}), and from Proposition 6.

�
Despite the fact that the connection between the uniform and the equal

convergence has already been known (see e.g. [3, Theorem 1.1]), we would like
to formulate an analogous theorem in our setting.

Theorem 8. Let {fn}n∈N be a sequence of functions uniformly convergent
to a function f on a set E. Then, J(E, {fn}) �= ∅.
P r o o f. Let

an := sup
x∈E

|fn(x)− f(x)| for all n ∈ N.

Obviously, an ≥ 0 for all n ∈ N and, by assumption, limn→+∞ an = 0. As in the
proof of Lemma 3, we show that J(E, {fn}) �= ∅. �

The converse form of the above theorem need not be true. To see this, consider
the following example:

Example 9. Let fn(x) = xn, where x ∈ [0, 1]. We know that the sequence
{fn}n∈N is pointwise convergent to the function f(x) which is equal to 0
for x ∈ [0, 1) and is equal to 1 for x = 1 and is not uniformly convergent to this
function on [0, 1]. Let δn = 1

n for n ∈ N. Obviously, {δn}n∈N ∈ S0.
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Now, we show that {δn} ∈ J([0, 1], fn). Indeed, for x ∈ {0, 1} we have

lim
n→+∞

|fn(x)− f(x)|
δn

= lim
n→+∞

0
1
n

= 0.

For x ∈ (0, 1) we have

lim
n→+∞

|fn(x)− f(x)|
δn

= lim
n→+∞

xn

1
n

= lim
n→+∞

n

( 1x )
n
.

Consider f(y) = y and g(y) = ( 1x )
y, where x is a fixed number from (0,1).

By L’Hospital’s rule, we get

lim
y→+∞

f(y)

g(y)
= lim

y→+∞
y

( 1x )
y
= lim

y→+∞
1

( 1x )
y · ln 1

x

= 0.

Hence, limn→+∞
n

( 1x )
n
= 0.

In Example 9, we have a sequence of functions which is not uniformly con-
vergent on the whole interval [0, 1]. However, it is also possible to construct a
sequence of functions for which a suitable sequence {δn}n∈N satisfies condition
J(A, fn) for a certain set A ⊂ [0, 1] of the full measure but is not uniformly
convergent on any subset of A of the full measure.

Example 10. Let C be a Cantor set of positive measure on [0, 1] and let
f : [0, 1] → R be an indicator function of this set. We have

f−1(−∞, a) =

⎧⎪⎨
⎪⎩

C′, if 0 < a ≤ 1,

[0, 1], if a > 1,

∅, if a ≤ 0,

f−1(a,+∞) =

⎧⎪⎨
⎪⎩

∅, if a ≥ 1,

C, if 0 ≤ a < 1,

[0, 1], if a < 0.

The sets ∅, C, C′ and [0, 1] are of Fσ-type. Thus, f is a function of the first Baire
class (see e.g. [1, Section 10.4]), so it can be represented as a limit of a sequence
of continuous functions. By the Taylor’s theorem, there exist a set A ⊂ [0, 1],
λ(A) = 1 and the sequence {δn}n∈N such that δn ∈ J(A, {fn}).

On the other hand, the sequence {fn}n∈N is not uniformly convergent to the
function f on any subset T ⊂ A such that λ(T ) = 1, since f is not continuous
on T . Indeed, there exists x ∈ T ∩ C such that f(x) = 1. Since C is a nowhere
dense set and T is of full measure, there exists a sequence {xn}n∈N ∈ T ∩ C′

such that xn → x and f(xn) = 0 for all n ∈ N. It means that f(xn) � f(x),
so f is not continuous on T.
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Let us come back to the properties of the set J(A, {fn}).
Proposition 11. Let {fn}n∈N be a sequence of measurable functions converg-
ing to f on a set E of positive measure and A ⊆ E. If {δn} ∈ J(A, {fn}) and the

sequence {βn} ∈ S0 is such that limn→+∞ δn
βn

< +∞, then {βn} ∈ J(A, {fn}).

P r o o f. Since limn→+∞ δn
βn

< +∞, then there exists M > 0 such that

δn
βn

≤M for all n ∈ N.

We have, for all x ∈ A

0 ≤ |fn(x)− f(x)|
βn

=
|fn(x)− f(x)|

δn
· δn
βn

≤ |fn(x)− f(x)|
δn

·M −→
n→+∞ 0.

Hence, using the squeeze theorem, we get

lim
n→+∞

|fn(x)− f(x)|
βn

= 0

which means that {βn} ∈ J(A, {fn}). �

Note that Proposition 11 generalizes Proposition 5 1) because it includes every
sequence {βn} defined by βn = a · δn for a > 0.

Proposition 12. Let {fn}n∈N be a sequence of functions uniformly conver-
gent to a function f on a set E. Then, for every {δn} ∈ J(E, {fn}) there is

{βn} ∈ J(E, {fn}) such that limn→+∞ δn
βn

= +∞.

P r o o f. Let
an := sup

x∈E
|fn(x)− f(x)| for all n ∈ N.

Then, {γn} ∈ J(E, {fn}) if and only if limn→+∞ an

γn
= 0. Let {δn} ∈ J(E, {fn}).

Put βn := δn ·
√

an

δn
for all n ∈ N. Then, limn→+∞ an

βn
= limn→+∞

√
an

δn
= 0,

so βn ∈ J(E, {fn}). Moreover, limn→+∞ δn
βn

= limn→+∞
√

δn
an

= +∞. �

We would like to ask a more general question.

Question 13. Let {fn}n∈N be a sequence of measurable functions converg-
ing to f on a set E of positive measure. Under what conditions can one show
that for every {δn} ∈ J(E, {fn}) there exist a set A ⊆ E of full measure and

{βn} ∈ J(A, {fn}) such that limn→+∞ δn
βn

= +∞?

Let S∞ denote a set of permutations of N.
We would like to consider J(E, {fσ(n)}) for σ∈S∞. It is easily seen that if {fn}n∈N

is a sequence of measurable functions converging to f on E, {δn}∈J(E, {fn}) and
σ ∈ S∞ is such that σ(n) = n for n > n0, then {δn} ∈ J(E, {fσ(n)}).
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Proposition 14. Let {fn}n∈N be a sequence of measurable functions con-
verging to f on a set E of positive measure. If there exists an increasing se-
quence of natural numbers {pn}n∈N such that N \ {pn : n ∈ N} is infinite,
and a sequence {ypn

}n∈N of positive numbers such that limn→+∞
ypn

pn
= 0 and

λ
(
lim supn→+∞{x ∈ E : |fpn

(x) − f(x)| > ypn
}) > 0, then for every {δn} ∈

J(E, {fn}) there exists σ ∈ S∞ such that {δn} /∈ J(A, {fσ(n)}) for any A ⊂ E,
λ(E \A) = 0.

P r o o f. For simplicity, we assume that f ≡ 0. Denote

Apn
:= {x ∈ E : |fpn

(x)| > ypn
} for n ∈ N.

Let {δn} ∈ J(E, {fn}). For n ∈ N we choose k(n) such that δk(n) <
ypn

pn
and

k(n) < k(n) + 1 < k(n+ 1). Let K := {k(n) : n ∈ N}. Then, N \K is an infinite
set and by the assumption also N \ {pn : n ∈ N} is infinite. Define a one-to-one
function π : K → {pn : n ∈ N} such that π(k(n)) = pn for n ∈ N. Let σ be any
permutation of N extending π. Then, for x ∈ Apn

we have∣∣∣∣fπ(k(n))(x)δk(n)

∣∣∣∣ =
∣∣∣∣fpn

(x)

δk(n)

∣∣∣∣ > ypn

ypn

· pn = pn,

so

Apn
⊂
{
x ∈ E :

∣∣∣∣fπ(k(n))(x)δk(n)

∣∣∣∣ > pn

}
for every n ∈ N.

Therefore, if x∈ lim supn→+∞Apn
, then for every m∈N there exists pn>m such

that
fπ(k(n))(x)

δk(n)
>pn, so limn→+∞

fπ(n)(x)

δn
=+∞. Since λ(lim supn→+∞Apn

)> 0,

the proof is complete. �

Observe that if {fn}n∈N is a sequence of constant functions converging to f
on a set of positive measure and fn �= f for infinitely many n ∈ N, then it satisfies
the assumptions of the last proposition. Indeed, for simplicity, we assume that
f ≡ 0 and fn �= f for every n ∈ N. Then, for every n ∈ N we have

λ(E) = λ({x ∈ E : |fn(x)| �= 0}) = λ

(⋃
k∈N

{
x ∈ E : |fn(x)| > 1

k

})
.

There exists k(n) ∈ N such that λ({x ∈ E : |fn(x)| > 1
k(n)}) > λ(E)

2 . It suffices

to define pn and ypn
as follows:

pn := k(2n) and ypn
:=

1

pn
for every n ∈ N.

Additionally, we would like to underline that in Proposition14 it is not enough
to assume that λ

({x ∈ E : fn(x) �= f(x)}) > 0 for every n ∈ N. It is shown

by the sequence {fn}n∈N of characteristic functions of intervals [0, 1
n ] defined

on [0, 1].;Then, {fn}n∈N converges to 0 on (0, 1] and to 1 at the point x= 0 and
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λ
({x ∈ [0, 1] : fn(x) �= 0}) = 1 − 1

n . For every sequence {δn} ∈ S0 we have

limn→+∞
|fn(x)−f(x)|

δn
= 0 for every x ∈ [0, 1], so for any A ⊂ [0, 1] with λ(A) > 0

there is no {δn} ∈ S0 \J(A, {fn}). Therefore, for any {δn} ∈ J([0, 1], {fn}) there
is no σ ∈ S∞ such that {δn} /∈ J(A, {fσ(n)}), where A ⊂ [0, 1] has a positive
measure.

Question 15. Let {fn}n∈N be a sequence of measurable functions converging
to f on a set E of positive measure. Under what conditions do any of the next
assertions hold?

1) For every {δn} ∈ J(E, {fn}) there is σ ∈ S∞ such that for every set A ⊆ E
of full measure, {δn} /∈ J(A, {fσ(n)}).

2) For every σ ∈ S∞ there exists a set A ⊆ E of full measure such that
J(E, {fn}) ⊆ J(A, {fσ(n)}).

Question 16. Let {fn}n∈N be a sequence of measurable functions converging
to f on a set E of positive measure. Obviously, for every finite set B ⊆ S∞
there exists a set A ⊆ E of full measure such that

⋂
σ∈B J(A, {fσ(n)}) �= ∅

(apply Theorem 1 for the sequence of functions {maxσ∈B |fσ(n)(x)− f(x)|}n∈N).
Is there a set B ⊆ S∞ for which this is not true? If yes, what is the least cardinality
of a set B ⊆ S∞ for which this is not true?

Question 16 has a simple answer for countable sets B ⊆ S∞. It is given
in Proposition 17. Before making this assertion, we need to recall a few facts:

• A space X is called a QN-space if every sequence of continuous functions
fn :X→R, n ∈ N, pointwise converging to 0 quasi-normally converges to 0.

• Recall that b is the bounding number, i.e., b :=minimal cardinality of a
set of functions B ⊆ N

N without an upper bound in the eventual partial
ordering ϕ ≤∗ ψ ⇔ there exists k ∈ N such that ϕ(n) ≤ ψ(n) for every
n ≥ k, n ∈ N;

• b is a regular cardinal and ω1 ≤ b ≤ c (see [5]).

• Note that b is the minimal cardinality of a space that is not a QN-space [3]!

Proposition 17. If J(A, {fn}) �= ∅, then
⋂

σ∈B J(A, {fσ(n)}) �= ∅ for every
B ⊆ S∞ of cardinality less than b.

P r o o f. If J(A, {fn}) �= ∅, then by Lemma 3 there is {εn} ∈ S0 such that
for every x ∈ A there is an index k such that |fn(x) − f(x)| ≤ εn for n ≥ k.
For n ∈ N let gn : S∞ → R be defined by gn(σ) := εσ(n). The functions gn
are continuous (if S∞ is considered as a subspace of the Baire space N

N or if
S∞ has the discrete topology) and the sequence of functions {gn}n∈N pointwise
converges to 0. If B ⊆ S∞ is of cardinality less than b, then B is a QN-space and
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therefore, {gn}n∈N quasi-normally converges to 0 on B. By Lemma, 3 there is
{δn} ∈ J(B, {gn}). Then, {δn} ∈ ⋂σ∈B J(A, {fσ(n)}) because

lim
n→+∞

|fσ(n)(x)− fn(x)|
δn

leq lim
n→+∞

εσ(n)

δn
= lim

n→+∞
gn(σ)

δn
= 0

for every x ∈ A and for every σ ∈ B. �
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