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ABSTRACT. In this paper, we introduce a new subclass of analytic funct-
ions with negative coefficients defined by Gegenbauer polynomials. We obtain
coefficient bounds, growth and distortion properties, extreme points and radii
of starlikeness, convexity and close-to-convexity for functions belonging to the
class TSm

λ (γ, �, k, ϑ). Furthermore, we obtained the Fekete-Szego problem
for this class.

1. Introduction

Let A denote the class of all functions u(z) of the form

u(z) = z +

∞∑
n=2

anz
n (1)

in the open unit disc E = {z ∈ C : |z| < 1}. Let S be a subclass of A con-
sisting of univalent functions and let satisfy the following usual normalization
condition u(0) = u′(0)− 1 = 0. We denote by S the subclass of A consisting of
functions u(z) which are all univalent in E.

A function u ∈ A is a starlike function of the order υ, 0 ≤ υ < 1, if it satisfies

�
{
zu′(z)
u(z)

}
> υ, (z ∈ E). (2)

This class will be denoted by S∗(υ) .
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A function u ∈ A is a convex function of the order υ, 0 ≤ υ < 1, if it satisfies

�
{
1 +

zu′′(z)
u′(z)

}
> υ, (z ∈ E). (3)

K(υ) will denote this class.

Note that S∗(0) = S∗ and K(0) = K are usual classes of starlike and convex
functions in E, respectively.

Let T denote the class of functions analytic in E that are of the form

u(z) = z −
∞∑

n=2

anz
n, (an ≥ 0, z ∈ E) (4)

and let T ∗(υ) = T ∩ S∗(υ), C(υ) = T ∩ K(υ). The class T ∗(υ) and the allied
classes possess some interesting properties and have been extensively studied
by Silverman [13].

The class T (λ), λ ≥ 0, was introduced and investigated by Szynal [16] as a
subclass of A consisting of functions of the form

u(z) =

1∫
−1

k(z,m)dμ(m), (5)

where

k(z,m) =
z

(1− 2mz + z2)λ
(z ∈ E,m ∈ [−1, 1]) (6)

and μ is a probability measure on the interval [−1, 1]. The collection of such
measures on [a, b] is denoted by P[a,b].

The Taylor series expansion of the function in (6) gives

k(z,m) = z + cλ1 (m)z2 + cλ2 (m)z3 + · · · (7)

and the coefficients for (7) were given below:

cλ0 (m) = 1; cλ1 (m) = 2λm; cλ2 (m) = 2λ(λ+ 1)m2 − λ;

cλ3 (m) =
4

3
λ(λ+ 1)(λ+ 2)m3 − 2λ(λ+ 1)m . . . ,

(8)

where cλn(m) denotes the Gegenbauer polynomial of degree n. Varying the pa-
rameter λ in (7), we obtain the class of typically real functions studied by [1,2,
6,9,10,12,14] and [17].

Let Gm
λ : A → A be defined in terms of convolution by

Gm
λ u(z) = k(z,m) ∗ u(z).

We have

Gm
λ u(z) = z +

∞∑
n=2

φ(λ,m, n)anz
n (9)

where
φ(λ,m, n) = cλn−1(m).
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Now, by making use of the linear operator Gm
λ , we define a new subclass

of functions belonging to the class A.

���������� 1.1� For 0 ≤ γ ≤ 1, � ≥ 1, k ≥ 0 and 0 ≤ ϑ < 1, a function u ∈ A
is said to be in the class Sm

λ (γ, �, k, ϑ) if it satisfies condition

�
{
�
zF ′(z)
F (z)

− (�− 1)

}
> k

∣∣∣∣�zF
′(z)

F (z)
− �

∣∣∣∣+ ϑ, (10)

where

F (z) = (1− γ)Gm
λ u(z) + γz

(
Gm
λ u(z)

)′
. (11)

We also define

TSm
λ (γ, �, k, ϑ) = Sm

λ (γ, �, k, ϑ) ∩ T.

By suitably specializing the parameters involved, the class Sm
λ (γ, �, k, ϑ) and

if it satisfies the condition TSm
λ (γ, �, k, ϑ) can be reduced to new or to known

much simpler classes of functions which were studied in earlier works (see [3–5,
7,11,15]).

The object of this paper is to study various properties for functions belonging
to the class Sm

λ (γ, �, k, ϑ) and TSm
λ (γ, �, k, ϑ), respectively.

2. Coefficient estimates

In order to prove our results from this section, we need the following lemma.

	�

� 2.1� Let ϑ be a real number and w be a complex number. Then, �(w)≥
ϑ if and only if

|w + (1− ϑ)| − |w − (1 + ϑ)| ≥ 0.

First, we give a sufficient coefficient bound for functions in the class

Sm
λ (γ, �, k, ϑ).

�����
 2.2� Let u ∈ A be given by (1). If

∞∑
n=2

[1− ϑ+ �(n− 1)(1 + k)]An(λ, γ,m)|an| ≤ 1− ϑ (12)

where
An(λ, γ,m) = [1 + γ(m− 1)] φ(λ,m, n). (13)

Then, u ∈ Sm
λ (γ, �, k, ϑ).
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P r o o f. In virtue of Definition 1.1 and Lemma 2.1, it is sufficient to show that

∣∣∣∣�zF
′(z)

F (z)
− (�− 1)− k

∣∣∣�zF ′(z)
F (z)

− �
∣∣∣− (1 + ϑ)

∣∣∣∣ ≤∣∣∣∣�zF
′(z)

F (z)
− (�− 1)− k

∣∣∣�zF ′(z)
F (z)

− �
∣∣∣+ (1 + ϑ)

∣∣∣∣ . (14)

For the right hand and left hand side of (14), respectively, we may write

R =

∣∣∣∣�zF
′(z)

F (z)
− (�− 1)− k

∣∣∣�zF ′(z)
F (z)

− �
∣∣∣+ (1− ϑ)

∣∣∣∣
=

1

|F (z)|

∣∣∣�zF ′(z)− (�− 1)F (z)− keiθ
∣∣∣�zF ′(z)− �F (z)

∣∣∣+ (1− ϑ)F (z)
∣∣∣

>
|z|

|F (z)|

[
2− ϑ−

∞∑
n=2

2− ϑ+ �(n− 1)(k + 1)

]
An(λ, γ,m)|an|

and similarly,

L =

∣∣∣∣�zF
′(z)

F (z)
− (�− 1)− k

∣∣∣�zF ′(z)
F (z)

− �
∣∣∣− (1 + ϑ)

∣∣∣∣
=

1

|F (z)|

∣∣∣∣�zF ′(z)− (�− 1)F (z)− keiθ
∣∣∣�zF ′(z)− �F (z)

∣∣∣− (1 + ϑ)F (z)

∣∣∣∣
<

|z|
|F (z)|

[
ϑ+

∞∑
n=2

∣∣∣�(n− 1)(1 + k)− ϑ
∣∣∣An(λ, γ,m)|an|

]

since

R− L >
|z|

|F (z)|

[
2(1− ϑ)− 2

∞∑
n=2

[1− ϑ+ �(n− 1)(1 + k)]An(λ, γ,m)|an|
]
≥ 0,

the required condition (12) is satisfied. �

In the next theorem, we obtain a necessary and sufficient condition for a
function u∈T to be in the class TSm

λ (γ, �, k, ϑ).

�����
 2.3� Let u∈T be given by (4). Then, u∈TSm
λ (γ, �, k, ϑ) if and only if

∞∑
n=2

[1− ϑ+ �(n− 1)(1 + k)]An(λ, γ,m)an ≤ 1− ϑ, (15)

where An(λ, γ,m) is defined by (13). The result is sharp.
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P r o o f. Assume that inequality (15) holds true. In virtue of Theorem 2.2 and
the definition of TSm

λ (γ, �, k, ϑ), choosing the values of z on the positive real
axis, inequality (10) reduces to

1−
∞∑

n=2
[1 + �(n− 1)]An(λ, γ,m)anz

n−1

1−
∞∑

n=2
An(λ, γ,m)anzn−1

− ϑ >

k

∣∣∣∣∣∣∣∣

∞∑
n=2

�(n− 1)An(λ, γ,m)anz
n−1

1−
∞∑

n=2
An(λ, γ,m)anzn−1

∣∣∣∣∣∣∣∣
. (16)

Letting z → 1−, we obtain the desired inequality. Finally, equality holds for the
function u defined by

u(z) = z − 1− ϑ

[1− ϑ+ �(n− 1)(1 + k)]An(λ, γ,m)
zn, (n ≥ 2). (17)

�

��������� 2.4� If u ∈ TSm
λ (γ, �, k, ϑ) then,

an ≤ 1− ϑ

[1 − ϑ+ �(n− 1)(1 + k)]An(λ, γ,m)
, (n ≥ 2). (18)

Equality is obtained for the function u given by (17).

3. Growth and Distortion theorem

�����
 3.1� Let u ∈ TSm
λ (γ, �, k, ϑ). Then, for |z| = r < 1

r − (1− ϑ)

B2(λ, γ,m, �, k, ϑ)
r2 ≤ |u(z)| ≤ r +

(1− ϑ)

B2(λ, γ,m, �, k, ϑ)
r2 (19)

and

1− 2(1− ϑ)

B2(λ, γ,m, �, k, ϑ)
r2 ≤ |u′(z)| ≤ 1 +

2(1− ϑ)

B2(λ, γ,m, �, k, ϑ)
r, (20)

where

Bn(λ, γ,m, �, k, ϑ) = [1− ϑ+ �(n− 1)(1 + k)]An(λ, γ,m), (n ≥ 2). (21)

Inequalities (19) and (20) are sharp for the function u given by

u(z) = z − (1− ϑ)

B2(λ, γ,m, �, k, ϑ)
z2.
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P r o o f. Since u ∈ TSm
λ (γ, �, k, ϑ) and from Theorem 2.3, it follows
∞∑

n=2

Bn(λ, γ,m, �, k, ϑ)an ≤ (1− ϑ),

where Bn(λ, γ,m, �, k, ϑ) is given by (21), we have

B2(λ, γ,m, �, k, ϑ)

∞∑
n=2

an =

∞∑
n=2

B2(λ, γ,m, �, k, ϑ)an

≤
∞∑

n=2

Bn(λ, γ,m, �, k, ϑ)an ≤ 1− ϑ

and therefore, ∞∑
n=2

an ≤ (1− ϑ)

B2(λ, γ,m, �, k, ϑ)
. (22)

Since u is given by (3), we obtain

|u(z)| ≤ |z|+ |z|2
∞∑

n=2

an|z|n−2 ≤ r + r2
∞∑

n=2

an ≤ r +
(1− ϑ)

B2(λ, γ,m, �, k, ϑ)
r2

and

|u(z)| ≥ |z| − |z|2
∞∑

n=2

an|z|n−2 ≥ r − r2
∞∑

n=2

an ≥ r − (1− ϑ)

B2(λ, γ,m, �, k, ϑ)
r2.

In view of Theorem 2.3, we also have

B2(λ, γ,m, �, k, ϑ)

2

∞∑
n=2

nan =

∞∑
n=2

B2(λ, γ,m, �, k, ϑ)

2
nan

≤
∞∑

n=2

(Bn, λ, γ,m, �, k, ϑ)an ≤ (1− ϑ)

which yields ∞∑
n=2

nan ≤ 2(1− ϑ)

B2(λ, γ,m, �, k, ϑ)
.

Thus,

|u′(z)| ≤ 1 +

∞∑
n=2

nan|z|n−1 ≤ 1 + r

∞∑
n=2

nan ≤ 1 +
2(1− ϑ)

B2(λ, γ,m, �, k, ϑ)
r

and

|u′(z)| ≥ 1−
∞∑

n=2

nan|z|n−1 ≥ 1− r

∞∑
n=2

nan ≥ 1− 2(1− ϑ)

B2(λ, γ,m, �, k, ϑ)
r.

Now, the proof of our theorem is completed. �
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4. Extreme points

Next, we examine the extreme points for the function class TSm
λ (γ, �, k, ϑ).

�����
 4.1� Let the functions u1(z) = z and

un(z) = z − (1− ϑ)

Bn(λ, γ,m, �, k, ϑ)
zn, (23)

where

0 ≤ λ ≤ 1, 0 ≤ γ ≤ 1, m ∈ N, � ≥ 1, k ≥ 0, 0 ≤ ϑ < 1, n ≥ 2.

Then, u ∈ TSm
λ (γ, �, k, ϑ) if and only if

u(z) =

∞∑
n=2

λnun(z), (z ∈ E), (24)

where

λn ≥ 0 (n ≥ 1) and

∞∑
n=1

λn = 1.
(25)

P r o o f. Assume that u can be written as in (24). Then,

u(z) = λ1z +

∞∑
n=2

λn

[
z − (1− ϑ)

Bn(λ, γ,m, �, k, ϑ)
zn

]
=

z −
∞∑

n=2

λn
(1− ϑ)

Bn(λ, γ,m, �, k, ϑ)
zn.

Since
∞∑

n=2

Bn(λ, γ,m, �, k, ϑ)λn
(1− ϑ)

Bn(λ, γ,m, �, k, ϑ)
=

(1− ϑ)

∞∑
n=2

λn = (1− ϑ)(1− λ1) ≤ (1− ϑ),

in virtue of Theorem 2.3 it follows that

u ∈ TSm
λ (γ, �, k, ϑ).

Conversely, suppose u ∈ TSm
λ (γ, �, k, ϑ) and consider

λn =
Bn(λ, γ,m, �, k, ϑ)

(1− ϑ)
an, (n ≥ 2) and λ1 = 1−

∞∑
n=2

λn.

Then,

u(z) =

∞∑
n=1

λnun(z).

Hence, the proof is completed. �
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5. Radii of starlikeness, convexity and close to convexity

We begin this section with the following theorem.

�����
 5.1� Let the function u given by (4) be in the class TSm
λ (γ, �, k, ϑ).

Then, u is starlike of order ρ(0 ≤ ρ < 1) in |z| < r1(λ, γ,m, �, k, ϑ), where

r1(λ, γ,m, �, k, ϑ) = inf
n≥2

[
(1− ρ)Bn(λ, γ,m, �, k, ϑ)

(n− ρ)(1− ϑ)

] 1
n−1

.

P r o o f. To prove the theorem, we must show that
∣∣∣∣zu

′(z)
u(z)

− 1

∣∣∣∣ ≤ 1− ρ, for z ∈ E, 0 ≤ ρ < 1 with |z| < r1(λ, γ,m, �, k, ϑ).

We have

∣∣∣∣zu
′(z)

u(z)
− 1

∣∣∣∣ =

∣∣∣∣∣∣∣∣
−

∞∑
n=2

(n− 1)anz
n−1

1−
∞∑

n=2
anzn−1

∣∣∣∣∣∣∣∣
≤

∞∑
n=2

(n− 1)an|z|n−1

1−
∞∑

n=2
an|z|n−1

.

Thus, ∣∣∣∣zu
′(z)

u(z)
− 1

∣∣∣∣ ≤ 1− ρ if

∞∑
n=2

(n− ρ)

(1− ρ)
an|z|n−1 ≤ 1. (26)

In virtue of (15), we have
∞∑

n=2
Bn(λ, γ,m, �, k, ϑ)

1− ϑ
an ≤ 1.

Hence, inequality (26) will be true if

(n− ρ)

(1 − ρ)
|z|n−1 ≤ Bn(λ, γ,m, �, k, ϑ)

1− ϑ

or if

|z| ≤
[
(1− ρ)Bn(λ, γ,m, �, k, ϑ)

(n− ρ)(1− ϑ)

] 1
n−1

, (n ≥ 2).

Thus, the proof of the theorem is completed. �

Proofs of the following Theorem 5.2 and Theorem 5.3 are analogous to that
of Theorem 5.1, so we omit them.
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�����
 5.2� Let the function u given by (4) be in the class TSm
λ (γ, �, k, ϑ).

Then, u is convex of order ρ (0 ≤ ρ < 1) in |z| < r2(λ, γ,m, �, k, ϑ), where

r2(λ, γ,m, �, k, ϑ) = inf
n≥2

[
(1− ρ)Bn(λ, γ,m, �, k, ϑ)

n(n− ρ)(1− ϑ)

] 1
n−1

.

�����
 5.3� Let the function u given by (4) be in the class TSm
λ (γ, �, k, ϑ).

Then, u in close-to-convex of order ρ(0 ≤ ρ < 1) in |z| < r3(λ, γ,m, �, k, ϑ),
where

r3(λ, γ,m, �, k, ϑ) = inf
n≥2

[
(1− ρ)Bn(λ, γ,m, �, k, ϑ)

n(1− ϑ)

] 1
n−1

.

6. The Fekete-Szego problem for the function class
Sm
λ (γ, �, k, ϑ)

In this section, we obtain the Fekete-Szego inequality for the functions in the
class Sm

λ (γ, �, k, ϑ). In the order to prove our main result, we need the following
lemma.

	�

� 6.1 ([8])� If p(z) = 1 + c1z + c2z + c3z
2 + · · · is an analytic function

with positive real part in E, then

|c2 − νc21| =

⎧⎪⎪⎨
⎪⎪⎩

−4ν + 2, ν ≤ 0,

2, 0 ≤ ν ≤ 1,

4ν − 2, ν ≥ 1,

when ν < 0 or ν > 1 the inequality holds if and only if p(z) = 1+z
1−z or one of its

rotations. If 0 < ν < 1, then the equality holds if and only if

p(z) =
1 + z2

1− z2

or one of rotations. If ν = 0, the equality holds if and only if

p(z) =

(
1 + δ

2

)
1 + z

1− z
+

(
1− δ

2

)
1− z

1 + z
, (0 ≤ δ ≤ 1) or one of its rotations.

If ν = 1, the equality holds if and only if p(z) is the reciprocal of one of the
functions such that the equality holds in the case of ν = 0.
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�����
 6.2� Let �≥1, 0≤k≤ϑ<1. If u ∈ Sm
λ (γ, �, k, ϑ) is given by (1), then

|a3−μa22|=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1−ϑ)
�2(1−k)2A3(λ,γ,m)

[
�(1−k)+2(1−ϑ)−4μ(1−ϑ)A3(λ,γ,m)

A2
2(λ,γ,m)

]
, μ≤σ1,

(1−ϑ)
�(1−k)A3(λ,γ,m) , σ1≤μ≤σ2,

−(1−ϑ)
�2(1−k)2A3(λ,γ,m)

[
�(1−k)+2(1−ϑ)−4μ(1−ϑ)A3(λ,γ,m)

A2
2(λ,γ,m)

]
, μ≥σ2,

where

σ1 =
A2

2(λ, γ,m)

2A3(λ, γ,m)
and σ2 =

A2
2(λ, γ,m)[1− ϑ+ �(1− k)]

2A3(λ, γ,m)(1− ϑ)
.

The result is sharp.

P r o o f. Since �(w) ≤ |w| for any complex numbers, u ∈ Sm
λ (γ, �, k, ϑ) implies

that

�
[
�
zF ′(z)
F (z)

− (�− 1)

]
> k�

[
�
zF ′(z)
F (z)

− �

]
+ ϑ

or that

�
(
zF ′(z)
F (z)

)
>

ϑ− 1 + �(1− k)

�(1− k)
.

Hence,

G ∈ S∗
(
ϑ− 1 + �(1− k)

�(1− k)

)
.

Let

p(z) =

zF ′(z)
F (z) − ϑ−1+�(1−k)

�(1−k)

1−ϑ
�(1−k)

= 1+ c1z + c2z
2 + · · ·

Then, by virtue of (9) and (11), we have

a2 =
(1− ϑ)

�(1− k)A2(λ, γ,m)
c1

and

a3 =
(1− ϑ)

2�(1− k)A2(λ, γ,m)

[
c2 +

1− ϑ

�(1− k)
c21

]
.

Therefore, we obtain

a3 − μa22 =
(1− ϑ)

2�(1− k)A3(λ, γ,m)

[
c2 −

1− ϑ

�(1− k)
c21

]
− μ

(1− ϑ)2

�2(1− k)2A2
2(λ, γ,m)

c21

=
(1− ϑ)

2�(1− k)A3(λ, γ,m)

[
c2 −

1− ϑ

�(1− k)
c21

(
2μ

A3(λ, γ,m)

A2
1(λ, γ,m)

− 1
)]

.
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We write

a3 − μa22 =
(1− ϑ)

2�(1− k)A3(λ, γ,m)
(c2 − ρc21),

where,

ρ =
(1− ϑ)

�(1− k)

[
2μ

A3(λ, γ,m)

A2
2(λ, γ,m)

− 1

]
.

Our result follows by application of the above lemma. Denote

ξ =
ϑ− 1 + �(1− k)

�(1− k)
.

If μ < σ1 or μ > σ2, then the equality holds true if and only if

F (z) =
z

(1− eiθz)2(1−ξ)
, (θ ∈ R).

When σ1 < μ < σ2, the equality holds true if and only if

F (z) =
z

(1− eiθz2)(1−ξ)
, (θ ∈ R).

If μ = σ1 , then the equality holds true if and only if

F (z) =

[
z

(1− eiθz)2(1−ξ)

] 1+δ
2
[

z

(1 + eiθz)2(1−ξ)

] 1−δ
2

=

z

[(1− eiθz)1+δ(1 + eiθz)1−δ]
1−ξ

, (0 ≤ δ ≤ 1, θ ∈ R).

Finally, when μ = σ2, the equality holds true if and only if p(z) is the reciprocal
of one of the functions such that equality holds true in the case of μ = σ2. �
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