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ABSTRACT. In this paper, we consider pexiderized functional equations for
studying their Hyers-Ulam-Rassias stability. This stability has been studied for

a variety of mathematical structures. Our framework of discussion is a modular
space. We adopt a fixed-point approach to the problem in which we use a gener-
alized contraction mapping principle in modular spaces. The result is illustrated
with an example.

1. Introduction

The study of stabilities of functional equations is an active area of research
in mathematics. The kind of stability for which the results are established here
is Hyers-Ulam-Rassias stability. This stability problem was first raised by Ulam
[36] and thereafter it was further generalized in the works of Hyers [5] and
Rassias [39]. It is a general concept which is applicable in diverse frameworks
of mathematics like those in problems of differential equations [25, 32, 37], fixed
points [20], isometrics [42], etc. Particularly for the functional equations, the
Hyers-Ulam-Rassias stability has been considered in a good number of pa-
pers in different types of spaces [2, 3, 7, 10, 15, 21, 26, 27, 30, 33–35, 38, 43–45].
Several books like [6,13,28,29,31,40] provide a comprehensive account of devel-
opment of this line of research.
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Our present work is in the framework of modular spaces [12, 17]. A mod-
ular is a function defined on a linear space. It defines a corresponding space
which is known as modular space. It has a general structure and several studies
in other domains of functional analysis have been very legitimately extended
to this space. For an in detail study and for the motivations behind the develop-
ment of this important concept of mathematics, we refer to the references [23,41].

The study of functional equations in modular spaces was initiated in the work
of W. M. Kozlowski [41] in 1988 following which several other works on this line
of research were published in modular spaces [1,11,18,22].

Recently in 2014, G. Sadeghi [9] by applying the fixed point methods examined
Hyers-Ulam-Rassias stability of the generalized Jensen functional equation in the
frame work of modular spaces with Fatou property [18] satisfying Δ2- conditions.

We prove generalized Hyers-Ulam-Rassias stability for an additive pexiderized
functional equation

f(x+ y) = g(x) + h(y) (1.1)

which is a generalization of Jensen functional equation [16].

The problem of Hyers-Ulam-Rassias stability in its most general formalism
seeks the answer to the question whether an approximation of a mathematical
object is possible from a class of entities in case the concerned mathematical
object has an approximate behavior like the entities belonging to that class.
Our results also indicate how such approximations are possible for functional
equations in modular spaces. In many of the problems considered in modular
spaces, Δ2- condition has been used [9, 11, 19, 24]. In those works, it is pivotal
to the proofs of the results established therein. We do not use this condition
in our proof. For this reason our proofs are more complicated. It is a remarkable
feature of our work. Our approach to this problem of stability is through a fixed
point methodology for which we use a contraction mapping theorem appearing
in [1].

2. Preliminaries

The following is a definition of pexiderized additive functional equation [14].

A mapping f : R→ R is said to be an additive form if

f(x) = ax for all x, a ∈ R.
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If X and Y are assumed to be a real vector space and a Banach space, respec-
tively, then for a mapping f : X → Y , consider

f ( x + y ) = f ( x ) + f ( y ) · · · (1)

known as a Cauchy functional equation. Any solution of (1) is termed as an
additive mapping. Particularly, if X = Y = R, the additive form f( x) = ax is
a solution of (1). The form

f ( x + y ) = g ( x ) + h ( y ) · · · (2)

is called a pexiderized additive functional equation.

In this section, we recall some definitions and results concerning modular
spaces.

���������� 2.1� Let X be a vector space over a field K (R or C). A generalized
functional ρ : X → [0,∞] is called a modular is for arbitrary x, y ∈ X

i) ρ(x) = 0 if and only if x = 0,

ii) ρ(αx) = ρ(x) for every scalar α with |α| = 1,

iii) ρ(z) ≤ ρ(x) + ρ(y) whenever z is a convex combination of x and y.

iii′) If iii) is replaced by ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α+ β = 1
and α, β ≥ 0, then we say that ρ is a convex modular. The corresponding
modular space, denoted by Xρ, is then defined by

Xρ := {x ∈ X : ρ (λx) → 0 as λ→ 0}.
The modular space Xρ can be equipped with a norm called the Luxemburg
norm, defined by

||X||ρ := inf
{
λ > 0 : ρ

(x
λ

)
≤ 1
}
.

Remark 2.2.

i) For a fixed x ∈ Xρ, the valuation [8] γ ∈ K → ρ(γx) is increasing.

ii) ρ(x) ≤ δρ
(
(1/δ)x

)
for all x ∈ Xρ, provided that ρ is a convex modular and

0 < δ ≤ 1.

iii) Every norm defined on X is a modular on X. In general, the modular ρ
does not behave as norm or distance because it is not sub additive [17].

���������� 2.3�

Let Xρ be a modular space and let {xn} be a sequence in Xρ. Then,

i) {xn} is ρ-convergent to a point x ∈ Xρ and write xn
ρ−→ x if ρ(xn−x) → 0

as n→ ∞.

ii) {xn} is called ρ-Cauchy if for any ε > 0 one has ρ(xn − xm) < ε for suffi-
ciently large m,n ∈ N.
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ii) A subset K ⊂ Xρ is called ρ-complete if any ρ-Cauchy sequence is
ρ-convergent.

iv) The modular ρ has the Fatou property if ρ(x) ≤ limn→∞ infρ(xn) whenever
the sequence {xn} is ρ-convergent to x.

v) A modular ρ is said to satisfy Δ2-condition if there exists κ ≥ 2 such that

ρ(2x) ≤ κρ(x) for all x ∈ Xρ.

���������� 2.4� Given a modular space Xρ, a nonempty subset C ⊂ Xρ, and
a mapping T : C → C. The orbit of T around a point x ∈ Xρ is the set

O(x) := {x, Tx, T 2x, . . . }.
The quantity δρ(x) := sup{ρ(u − v) : u, v ∈ O(x)} is then associated and is
called the orbit diameter of T at x. In particular, if δρ(x) <∞, one says that T
has a bounded orbit at x.

���������� 2.5� Let ρ be a modular defined on a vector space X. Let C ⊂ Xρ

be nonempty. A mapping T : C → C is called ρ-Lipschitzian if there exists a
constant L ≥ 0 such that

ρ
(
T (x)− T (y)

) ≤ Lρ(x− y), ∀x, y ∈ C.

If L < 1, then T is called ρ-contraction.

The first result is the modular version of the Banach Contraction Principle.

	
����� 2.6 ([1])� Assume Xρ is ρ-complete. Let C be a nonempty ρ-closed
subset of Xρ. Let T : C → C be a ρ-contraction mapping. Then, T has a fixed
point z if and only if T has a ρ-bounded orbit. Moreover, if ρ(x− z) <∞, then
{Tn(x)} ρ-converges to z, for any x ∈ C.

The above theorem allows us to conclude that if z1 and z2 are two fixed
points of T such that ρ(z1−z2) <∞, then we have z1 = z2. In particular, if C is
ρ-bounded, then T has a unique fixed point in C.

3. The generalized Hyers-Ulam stability of (1.1)
in modular spaces

Throughout this paper, X is considered to be linear space and Xρ-complete
convex modular space and also the convex modular ρ has the Fatou property.
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����� 3.1� Let f : X → Xρ is a mapping which satisfied the functional
inequality

ρ
(
4f(x+ y)− 4g(x)− 4h(y)

) ≤ φ(x, y) (3.1)

for all x, y ∈ X, where φ : X2 → [0,∞) is a mapping satisfying

φ(3x, 3y) ≤ 3Lφ(x, y) (3.2)

for all x, y ∈ X and some L with 0 < L < 1.

Then, there exists a unique additive mapping A : X → Xρ such that

ρ

(
A(x)− f(x)− f(0)

4

)
≤ 1

4.3(1− L)
ψ(x, x),

ρ

(
A(x)− g(x)− g(0)

4

)
≤ 1

4.3(1− L)
ψ(x, x) +

1

42
φ(x, 0),

(3.3)

and,

ρ

(
A(x)− h(x)− h(0)

4

)
≤ 1

4.3(1− L)
ψ(x, x) +

1

42
φ(0, x),

for all x ∈ X, where ψ(x, x) = ψ1(x, x) + ψ2(x, x) and

ψ1(x, x) = 1
4φ
(
x
2 ,

−x
2

)
+ 1

4φ
(−x

2 ,
x
2

)
+ 1

4φ
(
x
2 ,

x
2

)
+ 1

4φ
(−x

2 ,
−x
2

)
,

ψ2(x, x) = 1
4φ
(−x

2 ,
3x
2

)
+ 1

4φ
(
3x
2 ,

−x
2

)
+ 1

4φ
(−x

2 ,
−x
2

)
+ 1

4φ
(
3x
2 ,

3x
2

)
.

P r o o f. Consider the set M = {g : X → Xρ : g(0) = 0} and define a mapping
ρ̃ on M by

ρ̃(g) = inf
{
c > 0 : ρ

(
g(x)

) ≤ cψ(x, x)
}
, g ∈M.

It is easy to prove that ρ̃ is complete convex modular on M [9]. Also, consider
a mapping J :Mρ̃ →Mρ̃ and define

Jg(x) =
1

3
g(3x) for all g ∈Mρ̃ and x ∈ X.

We now prove that J is a ρ̃-strict contractive. Let g, h ∈ Mρ̃ and let c ∈ [0,∞)
be a constant with ρ̃(g − h) ≤ c. Then,

ρ
(
g(x)− h(x)

) ≤ cψ(x, x) for all x ∈ X.

Now,

ρ
(
Jg(x)− Jh(x)

)
= ρ

(
1

3
g(3x)− 1

3
h(3x)

)

≤ 1

3
ρ
(
g(3x)− h(3x)

)
≤ 1

3
cψ(3x, 3x)

≤ cLψ(x, x) for all x ∈ X.
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Therefore,
ρ̃(Jg − Jh) ≤ cL.

Hence,
ρ̃(Jg − Jh) ≤ Lρ̃(g − h) for all g, h ∈Mρ̃.

That is, J is a ρ̃-strict contractive.

Now, we prove

δρ̃ = sup
{
ρ̃
(
Jn (f)− Jm (f)

)
: m,n ∈ N

}
<∞.

Putting x = x
2 and y = y

2 in (3.1), we get

ρ

(
4f
(x+ y

2

)
− 4g

(x
2

)
− 4h

(y
2

))
≤ φ

(x
2
,
y

2

)
. (3.4)

Now,

ρ

(
2f
(x+ y

2

)
− f(x)− f(y)

)

=ρ

(
1

4

(
4f
(x+ y

2

)
−4g

(x
2

)
−4h

(y
2

))
+
1

4

(
4f
(x+ y

2

)
−4g

(y
2

)
−4h

(x
2

))

−1

4

(
4f(x)− 4g

(x
2

)
− 4h

(x
2

))
− 1

4

(
4f(y)− 4g

(y
2

)
− 4h

(y
2

)))

(3.5)

≤ 1

4
φ
(x
2
,
y

2

)
+

1

4
φ
(y
2
,
x

2

)
+

1

4
φ
(x
2
,
x

2

)
+

1

4
φ
(y
2
,
y

2

)
.

Again, putting y = −x in (3.5) and setting F (x) = f(x)− f(0), we have

ρ
(
2f(0)− f(x)− f(−x))

≤ 1

4
φ
(x
2
,
−x
2

)
+

1

4
φ
(−x

2
,
x

2

)
+

1

4
φ
(x
2
,
x

2

)
+

1

4
φ
(−x

2
,
−x
2

)
,

ρ
(−F (x)− F (−x))
≤ 1

4
φ

(
x

2
,
−x
2

)
+

1

4
φ

(−x
2
,
x

2

)
+

1

4
φ
(x
2
,
x

2

)
+

1

4
φ

(−x
2
,
−x
2

)
,

that is,

ρ
(
F (x) + F (−x))

≤ 1

4
φ

(
x

2
,
−x
2

)
+

1

4
φ

(−x
2
,
x

2

)
+

1

4
φ
(x
2
,
x

2

)
+

1

4
φ

(−x
2
,
−x
2

)

= ψ1 (x, x).

(3.6)
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Again, putting y = 3x and x = −x in (3.5)

ρ
(
2f(x)− f(−x) − f(3x)

)
≤ 1

4
φ

(−x
2
,
3x

2

)
+

1

4
φ

(
3x

2
,
−x
2

)
+

1

4
φ

(−x
2
,
−x
2

)
+

1

4
φ

(
3x

2
,
3x

2

)
,

or,

ρ
(
2F (x)− F (−x) − F (3x)

)
≤ 1

4
φ

(−x
2
,
3x

2

)
+

1

4
φ

(
3x

2
,
−x
2

)
+

1

4
φ

(−x
2
,
−x
2

)
+

1

4
φ

(
3x

2
,
3x

2

)

= ψ2 (x, x).

(3.7)

Now,

ρ

(
3F (x)

2
− F (3x)

2

)
= ρ

(
F (3x)

2
− 3F (x)

2

)

= ρ

(
1

2

(
2F (x)− F (−x)− F (3x)

)
+

1

2

(
F (x) + F (−x)))

=
1

2
ψ2 (x, x)

1

2
ψ1 (x, x) =

1

2
ψ (x, x).

(3.8)

Also,

ρ

(
F (x)

2
− F (3x)

2 · 3
)

= ρ

(
1

3

(
3F (x)

2
− F (3x)

2

))

=
1

2 · 3ψ (x, x).

(3.9)

Therefore,

ρ

(
F (x)

2
− F (32 x)

2 · 32
)

= ρ

(
1

3

(
3F (x)

2
− F (3x)

2

)
+

1

3

(
F (3x)

2
− F (32 x)

2 · 3
))

≤ 1

2 · 3ψ(x, x) +
1

2 · 32ψ(3x, 3x),

by using (3.8) and (3.9),

=
1

2

2∑
i=1

1

(3)i
ψ(3i−1x, 3i−1x) for all x ∈ X. (3.10)
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Therefore, by the method of mathematical induction, we have

ρ

(
F (3nx)

2 · 3n − F (x)

2

)
≤ 1

2

n∑
i=1

1

3i
ψ(3i−1x, 3i−1x) (3.11)

Hence, we have

ρ

(
F (3nx)

2 · 3n − F (x)

2

)
≤ 1

2

n∑
i=1

3i−1ψ(x, x)

3i
Li−1 [by (3.2)]

≤ ψ(x, x)

2 · 3
n∑

i=1

Li−1

≤ ψ(x, x)

2 · 3(1− L)
,

(3.12)

as 0 < L < 1 for all x ∈ X and n ∈ N.

Thus, it follows from 3.12 that for any n,m ∈ N , we have

ρ

(
F (3nx)

4.3n
− F (3mx)

4.3m

)

≤ 1

2
ρ

(
F (3nx)

2 · 3n − F (x)

2

)
+

1

2
ρ

(
F (3mx)

2 · 3m − F (x)

2

)
ρ

(
F (3nx)

4.3n
− F (3mx)

4.3m

)

≤ 1

2
× ψ(x, x)

2 · 3(1− L)
+

1

2
× ψ(x, x)

2 · 3(1− L)
ρ

(
F (3nx)

4.3n
− F (3mx)

4.3m

)

≤ ψ(x, x)

2 · 3(1− L)
for all x ∈ X [by (3.12)].

This implies that ρ̃
(
Jn(14F ) − Jm(14F )

) ≤ 1
2·3(1−L) < ∞ for all m,n ∈ N .

This shows that J has a bounded orbit at 1
4F .

Therefore by an application of Theorem 2.6 we have

i) J has a fixed point A ∈M at 1
4F that is, JA = A that is, A(x) = 1

3A(3x)
for all x ∈ X.

ii) The sequence
{
Jn
(
1
4F
)}

ρ̃-converges to A.

Therefore, limn→∞ ρ
((

1
4.3nF (3

nx)
)−A(x)

)
= 0.

So, we can define

A(x) :=
1

4
lim
n→∞

F (3nx)

3n
=

1

4
lim

n→∞
f(3nx)− f(0)

3n
. (3.13)
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Again, replacing x and y by 3nx and 3ny, respectively, in (3.5), we get

ρ

(
1

4.3n

(
2 f
(
3n
(x+ y

2

))
− f(3nx)− f(3ny)

))

= ρ

(
1

4.3n

(
2F
(
3n
(x+ y

2

))
− F (3nx)− F (3ny)

))

≤ 1

4.3n
ψ1(3

nx, 3ny) ≤ 1

4
Lnψ1(x, y) for all x, y ∈ X and n ∈ N.

Now, taking limit as n→ ∞ and using Fatou property and 0 < L < 1, we get

2A

(
x+ y

2

)
= A(x) +A(y).

Also, from (3.13) we have that A(0) = 0. Therefore, A is an additive map-
ping [16]. Also, using the fact that ρ has Fatou property, from (3.12) we get

ρ

(
2A(x)− F (x)

2

)
≤ 1

2 · 3(1− L)
ψ(x, x) for all x ∈ X.

That is,

ρ

(
A(x)− F (x)

4

)
≤ 1

2
ρ

(
2A(x)− F (x)

2

)

≤ 1

2 · 2 · 3(1− L)
ψ(x, x) for all x ∈ X,

that is,

ρ

(
A(x)− f(x)− f(0)

4

)
≤ 1

2 · 2 · 3(1− L)
ψ(x, x) for all x ∈ X. (3.14)

Also, putting y = 0 in (3.1), we have,

ρ
(
4f(x)− 4g(x)− 4h(0)

) ≤ φ(x, 0),

that is,

ρ
(
4f(x)− 4g(x)− 4f(0) + 4g(0)

) ≤ φ(x, 0),

as

f(0) = g(0) + h(0), ρ
(
4F (x)− 4G(x)

) ≤ φ(x, 0).

Therefore,

ρ
(
F (x)−G(x)

)
= ρ

(
1

4

(
4F (x)− 4G(x)

))

≤ 1

4
φ(x, 0).
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Now,

ρ

(
A(x)− G(x)

4

)
= ρ

(
1

2

(
2A(x)− F (x)

2

)
+

1

4

(
F (x)−G(x)

))

≤ 1

2
× 1

2 · 3(1− L)
ψ(x, x) +

1

4
× 1

4
φ(x, 0).

That is,

ρ

(
A(x)− g(x)− g(0)

4

)
≤ 1

2
× 1

2 · 3(1− L)
ψ(x, x) +

1

4
× 1

4
φ(x, 0),

for all x ∈ X.

Similarly,

ρ

(
A(x)− h(x)− h(0)

4

)
≤ 1

2
× 1

2 · 3(1− L)
ψ(x, x) +

1

4
× 1

4
φ(0, x),

for all x ∈ X.

To prove the uniqueness, let A′ : X → Xρ be another additive mapping
satisfying (3.3). Then, we have

ρ

(
A(x)

2
− A′(x)

2

)

≤ 1

2
ρ

(
A(x)− F (x)

4

)
+

1

2
ρ

(
A′(x)− F (x)

4

)

≤ ψ(x, x)

4 · 3(1− L)
<∞ for all x ∈ X.

Also, since A and A′ are two fixed points of J and ρ
(

A(x)
2 − A′(x)

2

)
<∞, so by

Theorem 2.6 we conclude that A(x) = A′(x) ∀ x ∈ X.

This completes the proof of the theorem. �


�������� 3.2� Let θ ≥ 0 and X be a normed linear space and a mapping
f : X → Xρ with f(0) = g(0) = 0 satisfying inequality

ρ(f(x+ y)− g(x)− h(y) ) ≤ θ(‖x‖p + ‖y‖p)
for all x, y ∈ and 0 ≤ p < 1. Then, there exists a unique additive mapping
A : X → Xρ such that

ρ

(
A(x)− f(x)

4

)
≤ (3 + 3p) θ

3 · 2p+2(1− 2p−1)
‖x‖p

and

ρ

(
A(x)− g(x)

4

)
≤ (3 + 3p) θ

3 · 2p+2(1− 2p−1)
‖x‖p + θ

42
‖x‖p for all x ∈ X.
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P r o o f. Define φ(x, y) = θ(‖x‖p + ‖y‖p) for all x, y ∈ X and take L = 2p−1;
the proof of the result is the same as above. �


�������� 3.3� Let ε ≥ 0 and X be a normed linear space and a mapping
f : X → Xρ with f(0) = g(0) = 0 satisfying inequality

ρ
(
f(x+ y)− g(x)− h(y)

) ≤ ε

for all x, y ∈. Then, there exists a unique additive mapping A : X → Xρ such
that

ρ

(
A(x)− f(x)

4

)
≤ ε

3
and ρ

(
A(x)− g(x)

4

)
≤ 19

48
ε for all x ∈ X.

P r o o f. Define φ(x, y) = ε for all x, y ∈ X and take L = 1
2 , and the proof of the

result is the same as the Theorem 3.1. �

Example 3.4. Let (X, ‖ · ‖) be a normed linear space and Xρ a ρ-complete
convex modular space where ρ(x) = ‖x‖. Define f : X → Xρ by

f(x) = ax+A‖x‖x0, g(x) = ax+B‖x‖x0 and h(x) = ax+ C‖x‖x0
for all x ∈ X, where A,B,C ∈ R

+ and x0 is a unit vector in X. Then,

ρ
(
f(x+ y)− g(x)− h(y)

) ≤ (A−B)‖x‖+ (A− C)‖y‖ for all x, y ∈ X.

Let
φ(x, y) = (A−B)‖x‖+ (A− C)‖y‖ for all x, y ∈ X

and take L = 1
2 . Thus, all the conditions of Theorem 3.1 are satisfied. Then,

there exists a unique additive mapping A : X → Xρ such that

ρ

(
A(x)− f(x)

4

)
≤ 1

4
(2A−B − C)‖x‖,

ρ

(
A(x)− g(x)

4

)
≤ 1

42
(9A− 5B − 4C)‖x‖

and

ρ

(
A(x)− h(x)

4

)
≤ 1

42
(9A− 4B − 5C)‖x‖ for all x ∈ X.

4. Conclusion

It is interesting to observe the behaviours of functional equations in modular
spaces. The proof of the theorem presented here utilizes many concepts which are
particular to modular spaces. Further, modular spaces without Δ2- conditions
have been considered here which warrants additional features in the proof itself.
It is perceived that similar studies for other types of equations in modular spaces
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in the absence of Δ2-conditions will be mathematically interesting. This can be
taken up for future research.

����������������The authors gratefully acknowledge the suggestions made
by the learned referee.
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