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ON O’MALLEY POROUSCONTINUOUS FUNCTIONS

Irena Domnik — Stanis�law Kowalczyk — Ma�lgorzata Turowska

Institute of Exact and Technical Sciences, Pomeranian University in S�lupsk, S�lupsk, POLAND

ABSTRACT. In 2014, J. Borśık and J. Holos defined porouscontinuous func-
tions. Using the notion of density in O’Malley sense, we introduce new definitions
of porouscontinuity, namely MOr and SOr-continuity. Some relevant properties
of these classes of functions are discussed.

1. Preliminaries

Let N, Z and R denote the set of all positive integers, the set of all integers
and the set of all real numbers, respectively. In the whole paper we will consider
real functions defined on R. The symbol |I| stands for the length of an interval
I ⊂ R. By f |A we denote the restriction of f to A ⊂ R. For a set A ⊂ R and an
interval I ⊂ R let Λ(A, I) denote the length of the largest open subinterval of I
having an empty intersection with A. Then according to [1,6], the right porosity
of the set A at x ∈ R is defined as

p+(A, x) = lim sup
h→0+

Λ(A, (x, x+ h))

h
,

the left porosity of the set A at x is defined as

p−(A, x) = lim sup
h→0+

Λ(A, (x− h, x))

h
,

and the porosity of A at x is defined as

p(A, x) = max
{
p−(A, x), p+(A, x)

}
.
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���������� 1.1 ([1], Definition 1)� Let r ∈ [0, 1). A point x ∈ R will be called
a point of πr-density of a set A ⊂ R if p(R \A, x) > r.

���������� 1.2 ([1], Definition 1)� Let r ∈ (0, 1]. A point x ∈ R will be called
a point of μr-density of a set A ⊂ R if p(R \A, x) ≥ r.

���������� 1.3 ( [1], Definition 2)� Let r ∈ [0, 1) and x ∈ R. The function
f : R → R will be called:

• Pr-continuous at x if there exists a set A ⊂ R such that x ∈ A, x is a point
of πr-density of A and f |A is continuous at x;

• Sr-continuous at x if for each ε > 0 there exists a set A ⊂ R such that
x ∈ A, x is a point of πr-density of A and f(A) ⊂ (f(x)− ε, f(x) + ε

)
.

Let r ∈ (0, 1] and x ∈ R. The function f : R → R will be called:

• Mr-continuous at x if there exists a set A ⊂ R such that x ∈ A, x is a
point of μr-density of A and f |A is continuous at x;

• Nr-continuous at x if for each ε > 0 there exists a set A ⊂ R such that
x ∈ A, x is a point of μr-density of A and f(A) ⊂ (f(x)− ε, f(x) + ε

)
.

All these functions are called porouscontinuous functions.

Symbols Pr(f), Sr(f), Mr(f) and Nr(f) denote the set of all points at which
f is Pr-continuous, Sr-continuous, Mr-continuous and Nr-continuous, respec-
tively. In [1], the equality Mr(f) = Nr(f) for every f and every r ∈ (0, 1] was
proved. Observe that if f is continuous from the right or from the left at some x,
then f is porouscontinuous at x.

	
����� 1.4 ([4], Theorem 2.1)� Let r ∈ [0, 1), x ∈ R and f : R → R. Then,
x ∈ Pr(f) if and only if lim

ε→0+
p
(
R \ {t : |f(x)− f(t)| < ε}, x) > r.

For further consideration we recall main results of [1].

	
����� 1.5 ([1], Theorem 6)� Let 0 < r < s < 1 and f : R → R. Then

C(f) ⊂ M1(f) ⊂ Ps(f) ⊂ Ss(f) ⊂ Ms(f) ⊂ Pr(f) ⊂ P0(f) ⊂ S0(f) ⊂ Q(f)

(C(f) and Q(f) denote the set of all points at which f : R → R is continuous
and quasicontinuous, respectively).

Following [1], we introduce the following notations:

• C = {f : C(f) = R}, Q = {f : Q(f) = R} and C± is the set of all functions
f : R → R such that at every x ∈ R, f is continuous from the left or from
the right (obviously C � C±),

• for r ∈ (0, 1], let Mr = {f : Mr(f) = R},
• for r ∈ [0, 1), let Pr = {f : Pr(f) = R} and Sr = {f : Sr(f) = R}.
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����� 1.6 ([1], Theorem 7)� Let 0 < r < s < 1. Then

C ⊂ M1 ⊂ Ps ⊂ Ss ⊂ Ms ⊂ Pr ⊂ Mr ⊂ P0 ⊂ S0 ⊂ Q.

All inclusions are proper.

In [4], we can find comparison of presented classes of functions in the topology
of uniform convergence which is generated by the metric

�(f, g) = min
{
1, sup {|f(x)− g(x)| : x ∈ R}}

in the space of all functions from R to R.

	
����� 1.7 ([4], Theorem 3.3)�

1) C± is nowhere dense and closed in M1.

2) For r ∈ [0, 1), M1 is nowhere dense and closed in Pr.

3) For r ∈ (0, 1), Sr is nowhere dense and closed in Mr.

4) For 0 ≤ r < s ≤ 1, Ms is nowhere dense and closed in Pr.

5) For r ∈ (0, 1], Mr is nowhere dense and closed in P0.

6) S0 is nowhere dense and closed in Q.

	
����� 1.8 ([4], Theorem 3.4)� Pr is a first category subset of Sr for every
r ∈ [0, 1).

	
����� 1.9 ([4], Theorem 3.9)� There exists f : R → R from M1 which does
not belong to Baire class one.

If we take lower limit instead of upper limit and if we take maximum of lower
porosities in definitions of the right porosity and the left porosity, then we obtain
so-called v-porosity. Some other properties of different kinds of porosity are
described in [6,7].

2. O’Malley porouscontinuous function

In [5], R. J. O’Malley modified the notion of preponderant continuity.
He showed how one can replace density of a set by another condition involving
the Lebesgue measure, [2, 5]. Combining the notion of porouscontinuity defined
by J. Borśık and J. Holos and using the concept of R. J. O’Malley, we define
other types of porouscontinuity.

���������� 2.1� Let r ∈ [0, 1), x ∈ R and A ⊂ R. A point x will be called
a point of πOr-density of a set A if for each η > 0 there exist δ ∈ (0, η) and
an open interval (a, b) ⊂ A ∩ ((x− δ, x+ δ) \ {x}) such that b−a

δ > r.
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���������� 2.2� Let r ∈ (0, 1], x ∈ R, A ⊂ R. A point x will be called a
point of μOr-density of a set A if for each η > 0 there exist δ ∈ (0, η) and
(a, b) ⊂ A ∩ ((x− δ, x+ δ) \ {x}) such that b−a

δ ≥ r.

Directly from the above definitions and from Definitions 1.1 and 1.2 we obtain
the following remarks.

Remark 2.3. Let r∈(0, 1), x∈R and A⊂R. If x is a point of πOr-density of A,
then x is a point of μOr-density of A.

Remark 2.4. Let r∈ [0, 1), x∈R and A⊂R. If x is a point of πr-density of A,
then x is a point of πOr-density of A.

Remark 2.5. Let r∈(0, 1], x∈R and A⊂R. If x is a point of μOr-density of A,
then x is a point of μr-density of A.

���������� 2.6� Let r ∈ [0, 1), x ∈ R and f : R → R. We will say that f is
SOr-continuous at x if for each ε > 0, the point x is a point of πOr-density
of a set f−1

(
(f(x)− ε, f(x) + ε)

)
.

���������� 2.7� Let r ∈ (0, 1], x ∈ R and f : R → R. We will say that f is
MOr-continuous at x if for each ε > 0, the point x is a point of μOr-density
of a set f−1

(
(f(x)− ε, f(x) + ε)

)
.

Symbols SOr(f) and MOr(f) denote the set of all points at which f is
SOr-continuous and MOr-continuous, respectively, for corresponding r.

In a simple manner we may define SOr-continuity from the right, SOr-
-continuity from the left, MOr-continuity from the right, MOr-continuity from
the left at some point for corresponding r.

Symbols SO+
r (f), SO−

r (f), MO+
r (f) and MO−

r (f) denote the set of all
points at which f is SOr-continuous from the right, SOr-continuous from the
left, MOr-continuous from the right and MOr-continuous from the left, respec-
tively, for corresponding r.

It is easy to see that f is SOr-continuous at x if and only if f is SOr-
continuous from the right at x or f is SOr-continuous from the left at x.
Obviously, similar condition holds for MOr-continuity.

Remark 2.8. Let r ∈ [0, 1), x ∈ R and f, g : R → R. If f is continuous at x and
g is SOr-continuous at x, then f + g is SOr-continuous at x. More generally,
if f is continuous from the right at x and g is SOr-continuous from the right
at x, then f + g is SOr-continuous from the right at x. And similarly, if f
is continuous from the left at x and g is SOr-continuous from the left at x,
then f + g is SOr-continuous from the left at x.
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Remark 2.9. Let r ∈ (0, 1], x ∈ R and f, g : R → R. If f is continuous at x and
g is MOr-continuous at x, then f + g is MOr-continuous at x. More generally,
if f is continuous from the right (left) at x and g is MOr-continuous from the
right (left) at x, then f + g is MOr-continuous from the right (left) at x.

From definitions of SOr-continuity and MOr-continuity we obtain the fol-
lowing corollaries.

�������� 2.10� A function f : R → R is MO1-continuous at x ∈ R if
and only if f is continuous from the right or from the left at x. In particular,
C±=MO1.

�������� 2.11� A function f : R → R is SO0-continuous at x ∈ R if and
only if f is quasicontinuous at x. In particular, Q = SO0.

	
����� 2.12� Let r ∈ [0, 1), x ∈ R. A function f : R → R is SOr-continuous
at x if and only if there exists a set E ⊂ R such that x ∈ E, x is a point
of πOr-density of E and f |E is continuous at x.

P r o o f. Assume that f is SOr-continuous at x. Then, for ε = 1 and η = 1 there
exist

δ1 ∈ (0, η) and (a1, b1) ⊂ f−1
(
(f(x)− 1, f(x) + 1)

) ∩ ((x− δ1, x+ δ1) \ {x}
)

such that b1−a1

δ1
> r. Next, for ε = 1

2
and η = 1

2
there exist

δ2 ∈
(
0,min

{
1

2
, |a1 − x|, |x− b1|

})
and

(a2, b2) ⊂ f−1

((
f(x)− 1

2
, f(x) +

1

2

))
∩
(
(x− δ2, x+ δ2) \ {x}

)
such that b2−a2

δ2
> r. Generally, for ε = 1

n and η = 1
n there exist

δn ∈
(
0,min

{
1

n
, |an−1 − x|, |x− bn−1|

})
and

(an, bn) ⊂ f−1

((
f(x)− 1

n
, f(x) +

1

n

))
∩ ((x− δn, x+ δn) \ {x}

)
such that bn−an

δn
> r for each n ≥ 2. Put

E =

∞⋃
n=1

(an, bn) ∪ {x}.

Obviously, f |E is continuous at x. Take η > 0. Since limn→∞ δn = 0, there exists
n0 such that δn0

< η. Therefore, (an0
, bn0

) ⊂ E ∩ ((x− δn0
, x+ δn0

) \ {x}) and
bn0

−an0

δn0
> r. This means that x is a point of πOr-density of E.
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Now, assume that there exists E ⊂ R such that x ∈ E, f |E is continuous
at x and x is a point of πOr-density of E. Take ε > 0 and η > 0. By continuity
of f |E at x, there exists δε>0 such that |f(t)−f(x)|<ε for each t∈E ∩ (x− δε,
x + δε). Since x is a point of πOr-density of E, there exist δ ∈ (0,min{η, δε})
and an interval (a, b) such that (a, b) ⊂ E ∩ ((x− δ, x+ δ) \ {x}) and b−a

δ
> r.

Therefore, f is SOr-continuous at x. �

In a similar way we can proof the following theorem.

	
����� 2.13� Let r ∈ (0, 1], x ∈ R. A function f : R → R is MOr-continuous
at x if and only if there exists a set E ⊂ R such that x ∈ E, x is a point of μOr-
-density of E and f |E is continuous at x.

Let
SOr = {f : SOr(f) = R} for r ∈ [0, 1)

and

MOr = {f : MOr(f) = R} for r ∈ (0, 1].

Directly from Remarks 2.3, 2.4 and 2.5 we obtain the following theorem.

	
����� 2.14� Let r ∈ (0, 1). Then, Sr ⊂ SOr ⊂ MOr ⊂ Mr.

All inclusions presented in Theorem 2.14 are proper which the following
examples show.

Example 2.15. Let r ∈ [0, 1). We will construct f : R → R from SOr \ Sr.

Let E =
⋃∞

n=1(an, bn), where 0 < · · · < bn+1 < an < bn < · · · , bn−an

bn
= r+ 1−r

n+1

for each n ∈ N and limn→∞ an = 0. Define f : R → R by letting

f(x) =

{
0, x ∈ E ∪ {0},
1, x 	∈ E ∪ {0}.

Then, f is continuous from the right or from the left at each point except 0.
Therefore,

R \ {0} ⊂ Sr(f) and R \ {0} ⊂ SOr(f).

Let η > 0. Since limn→∞ an = 0, there exists n0 such that bn0
< η. Taking

δ = bn0
we obtain

bn0
−an0

δ =
bn0

−an0

bn0
= r + 1−r

n0+1 > r. Thus, 0 ∈ SOr(f).

Moreover,

{x : |f(x)− f(0)| < 1} = E ∪ {0}
and

p (R \ E, 0) = lim sup
n→∞

bn − an
bn

= lim sup
n→∞

(
r +

1− r

n+ 1

)
= r.

Therefore,
0 	∈ Sr(f) and f ∈ SOr \ Sr.
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Example 2.16. Let r ∈ (0, 1). We will construct f : R → R from MOr \ SOr.
Let E=

⋃∞
n=1(an, bn), where 0< · · · < bn+1 <an<bn< · · · , limn→∞ an=0 and

bn−an

bn
= r for each n ∈ N. Define f : R → R by

f(x) =

{
0, x ∈ E ∪ {0},
1, x 	∈ E ∪ {0}.

Observe that f is continuous from the right or from the left at each point different
from 0. Therefore, R\{0} ⊂ SOr(f). Moreover, f |E∪{0} is constant and for each
η > 0 we can find n0 such that bn0

< η. Taking δ = bn0
, we get

bn0
− an0

δ
=

bn0
− an0

bn0

= r.

Hence, 0 ∈ MOr(f). Let ε =
1
2 and η = b1. Then, {x ∈ R : |f(x)− f(0)| < ε} =

E ∪ {0} and if (a, b) ⊂ {x ∈ R : |f(x) − f(0)| < ε} ∩ ((−δ, δ) \ {0}) for some

δ ∈ (0, η), then (a, b) ⊂ (an0
, bn0

) for some n0 ≥ 1. Thus, b−a
δ ≤ bn0

−an0

bn0
= r.

Therefore, 0 /∈ SOr(f) and f ∈ MOr \ SOr.

Example 2.17. Let r ∈ (0, 1]. We shall show that there exists f : R → R from
Mr \MOr. Let E =

⋃∞
n=1(an, bn), where 0 < · · · < bn+1 < an < bn < · · · and

bn−an

bn
= r − r

n+1 for each n ∈ N and limn→∞ an = 0. Define f : R → R by

f(x) =

{
0, x ∈ E ∪ {0},
1, x 	∈ E ∪ {0}.

Obviously, f is continuous from the right or from the left at each point different
from 0. Hence, R \ {0} ⊂ MOr(f). Moreover, f |E is continuous at 0 and

p (R \ E, 0) = lim sup
n→∞

bn − an
bn

= lim sup
n→∞

(
r − r

n+ 1

)
= r.

So, 0 ∈ Mr(f). Let ε =
1
2 and η = b1. Then, {x ∈ R : |f(x)−f(0)| < ε} = E∪{0}

and if (a, b) ⊂ {x ∈ R : |f(x) − f(0)| < ε} ∩ ((−δ, δ) \ {0}) for some δ ∈ (0, η),

then (a, b) ⊂ (an0
, bn0

) for some n0 ≥ 1. Thus, b−a
δ ≤ bn0

−an0

bn0
= r − r

1+n0
< r.

Therefore,
0 /∈ MOr(f) and f ∈ Mr \MOr.

By Corollary 2.10 and Corollary 2.11 we obtain the following inclusions.

�������� 2.18� C± = MO1 ⊂ M1 and S0 ⊂ SO0 = Q.

Again, all inclusions presented in the previous corollary are proper which
follows from Example 2.15 and Example 2.17.

Combining Theorem 1.6, Theorem 2.14 and Corollary 2.18, we obtain full
chain of inclusions between different kinds of porouscontinuity.
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Remark 2.19. Let 0 < r < t < 1. Then

C± = MO1 ⊂ M1 ⊂ Pt ⊂ St ⊂ SOt ⊂
MOt ⊂ Mt ⊂ Pr ⊂ Sr ⊂ SOr ⊂

MOr ⊂ Mr ⊂ P0 ⊂ S0 ⊂ SO0 = Q (2.1)

and all inclusions are proper.

	
����� 2.20� Fix r ∈ (0, 1). Let (fn)n∈N, fn : R → R, be a sequence of func-
tions such that each of them is SOr-continuous at x. If (fn)n∈N is uniformly
convergent to f : R → R, then f is SOr-continuous.

P r o o f. Fix r ∈ [0, 1), x ∈ R. Let ε > 0. There exists n0 ∈ N such that

|fn(t)− f(t)| < ε

3
for each n ≥ n0 and t ∈ R. Since fn0

is SOr-continuous at x, there exists E ⊂ R
such that x ∈ E, x is a point of πOr-density of E and fn0

|E is continuous at x.
Therefore, we can find δn0

> 0 such that

|fn0
(t)− fn0

(x)| < ε

3

for each t ∈ E ∩ (x− δn0
, x+ δn0

). Hence

|f(t)− f(x)| ≤
|f(t)− fn0

(t)|+ |fn0
(t)− fn0

(x)|+ |fn0
(x)− f(x)| ≤

ε

3
+

ε

3
+

ε

3
= ε

for each t ∈ E∩(x−δn0
, x+δn0

). This means that f is SOr-continuous at x. �
	
����� 2.21� Fix r ∈ (0, 1]. Let (fn)n∈N, fn : R → R, be a sequence of func-
tions such that each of them is MOr-continuous at x. If (fn)n∈N is uniformly
convergent to f : R → R, then f is MOr-continuous.

The proof of this theorem is very similar to that of the previous theorem and
we omit it.

3. Comparison of families of porouscontinuous functions
in terms of porosity

The aim of the section is to describe the size of the presented families of func-
tions, one into another, in terms of porosity.

Let us equip the space X of all functions from R to R with the metric

�(f, g) = min
{
1, sup{|f(x)− g(x)| : x ∈ R}}.
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If F ⊂ X consists of bounded functions, then ‖f‖ = sup{|f(x)| : x ∈ R} is a
norm in F such that the metric generated by ‖ ‖ is equivalent to �. If F ⊂ X ,
then we consider in F the metric � restricted to F , and the open ball in F with
the center f and radius R > 0 will be denoted by BF(f,R).

First, we recall the usual definition of lower porosity in a metric space X.
The open ball with the center x ∈ X and radius R will be denoted by B(x,R).
Let M ⊂ X, x ∈ X and R > 0. Then, according to [6], we denote the supremum
of the set of all r > 0 for which there exists z ∈ X such that B(z, r) ⊂ B(x,R)\M
by γ(x,R,M ). The number

p(M,x) = 2 lim inf
R→0+

γ(x,R,M )

R

is called the lower porosity of M at x. We say that the set M is lower porous at x
if p(M,x) > 0. The set M is called lower porous if M is lower porous at each
point x ∈ M , and M is called σ-lower porous ifM is the countable union of lower
porous sets.

We will transfer the notion of porosity into function spaces. Let F1 ⊂ F2 ⊂ X ,
f ∈ F2 and R > 0. Then, γ(f,R,F1,F2) will denote the supremum of the set
of all r > 0 for which there exists g ∈ F2 such that BF2

(g, r) ⊂ BF2
(f,R) \ F1.

The number

p(F1,F2, f) = 2 lim inf
R→0+

γ(f,R,F1,F2)

R

is called the lower porosity of F1 in F2 at f . We will say that F1 is lower porous
in F2 at f if p(F1,F2, f) > 0 and we will say that F1 is strongly lower porous

in F2 at f if p(F1,F2, f) ≥ 1. The family F1 is called lower porous (strongly
lower porous) in F2 if it is lower porous (strongly lower porous) in F2 at each
of its points. The family F1 is called σ-lower porous (σ-strongly lower porous)
in F2 if it is a countable union of lower porous (strongly lower porous) sets in F2.

Obviously, every strongly lower porous set is lower porous, every lower porous
set is nowhere dense and every σ-lower porous is meager. Moreover, none of the
reverse inclusions is true.

In the sequel, we will need some results from [3].

���������� 3.1 ([3], Definition 2.2)� Let I ⊂ R be any interval. We will say
that the family F of real functions f : I → R is admissible if:

• C(f) ∩ int I 	=∅ for each f ∈F (int I denotes the interior of the interval I);

• if f ∈ F, then af + b ∈ F for all real numbers a, b.

Remark 3.2. For every r ∈ [0, 1), families Sr and SOr are admissible.

Remark 3.3. For every r ∈ (0, 1], families Mr and MOr are admissible.
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����� 3.4 ( [3], Corollary 2.4)� Let I ⊂ R be any interval. Let F1, F2

be admissible families of functions, F1 ⊂ F2. If for all x0 ∈ int I there exists
hx0

: I → R with the properties:

1) hx0
∈ F2,

2) ‖hx0
‖ = 1

2 ,

3) ∀f∈F2
(x0 ∈ C(f) ⇒ hx0

+ f ∈ F2),

4) for f : I → R, if there exists δ > 0 such that
sup {|hx0

(x)− f(x)| : x ∈ (x0 − δ, x0 + δ) ∩ I} < 1
2 , then f 	∈ F1,

then F1 is strongly lower porous in F2.

	
����� 3.5� Let r ∈ [0, 1). Then, Sr is strongly lower porous in SOr.

P r o o f. Let us take any x0 ∈ R. Let (an)n≥1, (bn)n≥1, (cn)n≥1, (dn)n≥1 be four
sequences of reals with properties x0 < · · · < dn+1 < cn < an < bn < dn < · · · ,
limn→∞ an = x0,

bn−an

bn−x0
= r + 1−r

2(n+1) and dn−cn
dn−x0

= r + 1−r
n+1 for each n ≥ 1.

Denote A =
⋃∞

n=1[an, bn]. Define hx0
: R → R by

hx0
(x) =

⎧⎪⎨
⎪⎩

1
2 , x ∈ (−∞, x0) ∪

⋃∞
n=1[dn+1, cn] ∪ [d1,∞),

−1
2 , x ∈ {x0} ∪A,

linear on [cn, an], [bn, dn], n ≥ 1.

1) Observe that hx0
is continuous at each point different from x0, so R \ {x0} ∈

SOr(hx0
). Obviously, hx0

|A is continuous at x0. Let us take any ε > 0 and
η > 0. Since limn→∞ bn = x0, we can find n0 such that bn0

< x0 + η. Taking

δ=bn0
− x0 and (a, b)=(an0

, bn0
), we get

bn0
−an0

δ =
bn0

−an0

bn0
−x0

=r+ 1−r
2(n+1) >r.

Thus, x0 is πOr-density point of A. Finally, hx0
∈ SOr.

2) Obviously, ‖hx0
‖ = 1

2 .

3) Take f : R → R from SOr, which is continuous at x0. By Remark 2.8,

f + hx0
∈ SOr.

4) Now, take any f : R → R such that there exists δ > 0 for which

sup {|hx0
(x)− f(x)| : x ∈ (x0 − δ, x0 + δ)} = α <

1

2
.

Without loss of generality we may assume that d1 < x0 + δ. Then,

− 1

2
− α ≤ f(x0) ≤ −1

2
+ α and 0 <

1

2
− α ≤ f(x) ≤ 1

2
+ α

for x ∈ (x0 − δ, x0) ∪
∞⋃

n=1

[dn+1, cn].
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Thus,

|f(x)− f(x0)| ≥ 1− 2α > 0 for x ∈ (x0 − δ, x0) ∪
∞⋃

n=1

[dn+1, cn].

Denote ε = 1− 2α. Then

{x ∈ (x0 − δ, d1) : |f(x)− f(x0)| < ε} ⊂ {x0} ∪
∞⋃

n=1

[cn, dn].

Since

p

(
R\
(
{x0}∪

∞⋃
n=1

[cn, dn]

)
, x0

)
= lim

n→∞
dn − cn
dn − x0

= lim
n→∞

(
r +

1− r

n+ 1

)
=r,

we conclude x0 	∈ Sr(f). And finally, f 	∈ Sr.

All assumptions of Theorem 3.4 are satisfied, so Sr is strongly lower porous
in SOr. �
	
����� 3.6� Let r ∈ (0, 1]. Then, MOr is strongly lower porous in Mr.

P r o o f. Let us take any x0 ∈ R. Let (an)n≥1, (bn)n≥1, (cn)n≥1, (dn)n≥1 be four
sequences of reals with properties:

x0 < · · · < dn+1 < cn < an < bn < dn < · · · ,
lim
n→∞ an = x0,

bn − an
bn − x0

= r − r

2(n+ 1)
and

dn − cn
dn − x0

= r − r

n+ 1
for each n ≥ 1.

Observe that

p

(
R\
(
{x0}∪

∞⋃
n=1

[an, bn]

)
, x0

)
= lim

n→∞
bn − an
bn − x0

= lim
n→∞

(
r − r

2(n+ 1)

)
=r.

Therefore, x0 is μr-density point of the set {x0} ∪
⋃∞

n=1[an, bn]. It is easy to see
that x0 is not μOr-density point of {x0} ∪

⋃∞
n=1[cn, dn]. Defining f : R → R in

the same way as in the proof of Theorem 3.5 and repeating arguments from the
mentioned proof, we can show that MOr is strongly lower porous in Mr. �

We would like to prove that for every r ∈ (0, 1) the family SOr is strongly
lower porous in MOr. It turns out that Theorem 3.4 is not strong enough and
we need to prove a small generalization of Theorem 3.4.

	
����� 3.7� Let I be any interval. Let F1, F2 be admissible families of func-
tions, F1 ⊂ F2. If for each s ∈ (0, 1

2

)
and for each f ∈ F1 there exist x0 ∈ C(f)

and a function h : I → R with properties:

1) h ∈ F2,

2) ‖h‖ = 1
2 ,
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3) ∀c∈R (ch+ f ∈ F2),

4) for g : I → R, if there exists δ > 0 such that
sup {|h(x)− g(x)| : x ∈ (x0 − δ, x0 + δ) ∩ I} < s, then g 	∈ F1,

then F1 is strongly lower porous in F2.

P r o o f. Choose any f ∈ F1 and s ∈ (0, 1
2 ). Let x0 ∈ C(f) and h : I → R satisfy

conditions 1) – 4). Choose any r ∈ (0, 1). Since F2 is admissible, rh ∈ F2. Clearly,

�(f, f + rh) =
r

2
.

By 3), f+rh ∈ F2. Since x0∈C(f), there exists δ>0 such that |f(x)−f(x0)|< r2s
2

for x ∈ (x0 − δ, x0 + δ) ∩ I. We shall show that

BF2

(
f + rh, rs − r2s

) ∩ F1 = ∅.
Pick g ∈ BF2

(
f + rh, rs− r2s

)
. Let d = �(g, f + rh). Then

|g(x)− f(x0)− rh(x)| ≤ |g(x)− f(x)− rh(x)|+ |f(x)− f(x0)| <

d+
r2s

2
< rs− r2s+

r2s

2
= rs− r2s

2
= rs

(
1− r

2

)
for x ∈ (x0 − δ, x0 + δ) ∩ I. Therefore

sup
{∣∣(g(x)− f(x0)

)− rh(x)
∣∣ : x ∈ (x0 − δ, x0 + δ) ∩ I

} ≤ rs(1− r
2 ) < rs.

Thus

sup

{∣∣∣∣g(x)− f(x0)

r
− h(x)

∣∣∣∣ : x ∈ (x0 − δ, x0 + δ) ∩ I

}
< s.

By 4), g−f(x0)
r 	∈ F1. Since F1 is admissible, g 	∈ F1. Moreover,

�(f, g) ≤ �(f, f + rh) + �(f + rh, g) <
r

2
+ rs− r2s < r.

Thus, we have shown

BF2

(
f + rh, rs − r2s

) ∩ F1 = ∅ and BF2

(
f + rh, rs(1 − r)

) ⊂ BF2
(f, r).

Since r > 0 was arbitrary,

p(F1,F2, f)=lim inf
r→0

2γ(f, r,F1,F2)

r
≥ lim inf

r→0

2(rs− r2s)

r
=lim inf

r→0
2s(1−r) = 2s

for every s ∈ (0, 1
2 ). Therefore

p(F1,F2, f) ≥ lim
s→ 1

2
−
2s = 1.

This means that F1 is strongly lower porous in F2. �
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�������� 3.8� Let I ⊂ R be any interval. Let F1, F2 be admissible families
of functions, F1 ⊂ F2. If for each f ∈ F1 there exist x0 ∈ C(f) and a function
h : I → R with properties:

1) h ∈ F2,

2) ‖h‖ = 1
2 ,

3) ∀c∈R (ch+ f ∈ F2),

4) for g : I → R, if there exists δ > 0 such that
sup {|h(x)− g(x)| : x ∈ (x0 − δ, x0 + δ) ∩ I} < 1

2 , then g 	∈ F1,

then F1 is strongly lower porous in F2.

	
����� 3.9� For every r ∈ (0, 1), the family SOr is strongly lower porous
in MOr.

P r o o f. Take any f ∈ SOr. Since SOr ⊂ Q, there exists a point x0 ∈ R
at which f is continuous. Without loss of generality we may assume that x0 = 0.
Let (an)n∈N, (bn)n∈N be two sequences of reals with the properties limn→∞ an=0,

0 < · · · < bn+1 < an < bn and bn−an

bn
= r for each n ≥ 1. Since f ∈ SOr, f is

SOr-continuous from the right or SOr-continuous from the left at each point
from the set

⋃∞
n=1{an, bn}. Denote

A=
{
an : an∈SO+

r (f)
} ∪ {bn : bn∈SO−

r (f)
}

and B =

∞⋃
n=1

{an, bn}\A.

Define h : R → R by

h(x) =

{ 1
2 , x ∈ (−∞, 0) ∪⋃∞

n=1(bn+1, an) ∪ (b1,∞) ∪ B,

−1
2
, x ∈ {0} ∪⋃∞

n=1(an, bn) ∪ A.

1) Observe that h is continuous from the left or from the right at each point
different from 0. Thus, R \ {0} ⊂ SOr(h). Moreover, h|⋃∞

n=1(an,bn)∪A is con-
tinuous at 0. Take η > 0. There exists n0 ∈ N such that bn0

< η and
bn0

−an0

bn0
= r. Hence, 0 is a point of μOr-density of

⋃∞
n=1(an, bn) ∪ A and

h ∈ MOr.

2) Obviously, ‖h‖ = 1
2 .

3) Let c ∈ R, x ∈ R. We will consider the following cases.
• Let x ∈ (−∞, 0)∪⋃∞

n=1

(
(bn+1, an)∪ (an, bn)

)∪ (b1,∞). Then, the func-
tion ch is continuous at x and f is SOr-continuous at x. Therefore,
f + ch is SOr-continuous at x, by Remark 2.8.
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• Let x ∈ ⋃∞
n=1{an}.

If x ∈ A, then f is SOr-continuous from the right at x and ch is con-
tinuous from the right at x. Thus, f + ch is SOr-continuous from the
right at x.
If x ∈ B, then f is SOr-continuous from the left at x and ch is contin-
uous from the left at x. Thus, f + ch is SOr-continuous from the left
at x.

• Let x ∈ ⋃∞
n=1{bn}.

If x ∈ A, then f is SOr-continuous from the left at x and ch is contin-
uous from the left at x. Thus, f + ch is SOr-continuous from the left
at x.
If x ∈ B, then f is SOr-continuous from the right at x and ch is con-
tinuous from the right at x. Thus, f + ch is SOr-continuous from the
right at x.

• If x = 0, then ch is MOr-continuous at x and f is continuous at 0.
Therefore, f + ch is MOr-continuous at x.

Finally, f + ch ∈ MOr.

4) Assume that for g : R → R there exists δ > 0 such that

sup {|h(x)− g(x)| : x ∈ (−δ, δ)} = α <
1

2
.

We shall show that
g 	∈ SOr.

Without loss of generality we may assume b1 < δ. Observe that

g(0) ≤ −1

2
+ α and g(x) ≥ 1

2
− α

if x ∈ (−δ, 0) ∪⋃∞
n=1(bn+1, an) ∪ (b1, δ) ∪B. Thus

|g(x)− g(0)| ≥ 1− 2α if x ∈ (−δ, 0) ∪
∞⋃

n=1

(bn+1, an) ∪ (b1, δ) ∪ B.

Take any ε ∈ (0, 1− 2α) and η ∈ (0, δ). Then

{x ∈ (−δ, b1) : |g(x)− g(0)| < ε} ⊂
∞⋃

n=1

(an, bn) ∪A.

Hence, for every δη ∈ (0, η) if

(a, b) ⊂ g−1
(
(g(0)− ε, g(0) + ε)

) ∩ ((−δη, δη) \ {0}
)
,

then b− a

δη
≤ sup

n≥1

bn − an
bn

= r.

This means that 0 	∈ SOr(g). Therefore, g 	∈ SOr.

By Corollary 3.8, we conclude that SOr is strongly lower porous in MOr. �
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����� 3.10� Let 0 ≤ r < t ≤ 1. Then, Mt is strongly lower porous in Pr.

P r o o f. Let x0 ∈ R. Let (an)n∈N, (bn)n∈N, (cn)n∈N, (dn)n∈N be four sequences
of reals with the properties:

x0 < · · · < dn+1 < cn < an < bn < dn < · · · , lim
n→∞

an = x0,

bn − an
bn − x0

= r +
t− r

3
and

dn − cn
dn − x0

= r +
2(t− r)

3
for each n ∈ N.

Then

p

(
R \

∞⋃
n=1

(an, bn), x0

)
= lim

n→∞
bn − an
bn − x0

= lim
n→∞

(
r +

t− r

3

)
> r

and

p

(
R \

∞⋃
n=1

(cn, dn), x0

)
= lim

n→∞
dn − cn
dn − x0

= lim
n→∞

(
r +

2(t− r)

3

)
< t,

which means that x0 is a point of πr-density of
⋃∞

n=1(an, bn) and x0 is not a
point of μt-density of

⋃∞
n=1(cn, dn). Define h : R → R by

h(x) =

⎧⎪⎨
⎪⎩

1
2 , x ∈ (−∞, x0) ∪

⋃∞
n=1[dn+1, cn] ∪ (d1,∞),

−1
2
, x ∈ {x0} ∪

⋃∞
n=1[an, bn],

linear on [bn, dn], [cn, an], n ≥ 1.

In a similar way as in proof of Theorem 3.5, we can show that Mt is strongly
lower porous in Pr. �

Let us recall the other results from [3].

	
����� 3.11 ([3], Theorem 3.31)�

• Pt is strongly lower porous in Pr for 0 ≤ r < t < 1;

• St is strongly lower porous in Sr for 0 ≤ r < t < 1;

• Mt is strongly lower porous in Mr for 0 < r < t ≤ 1.

	
����� 3.12 ([3], Theorem 3.36)� Let r ∈ (0, 1). Then, Sr is strongly lower
porous in Mr.

Remark 3.13. Let us rewrite and expand (2.1). This enlargement contains
majority of results obtained in the paper. Let 0 < r < t < 1. Then

C± = MO1

3.6⊂ M1

3.10⊂ Pt ⊂ St

3.5⊂ SOt

3.9⊂

MOt

3.6⊂ Mt

3.10⊂ Pr ⊂ Sr

3.5⊂ SOr

3.9⊂

MOr

3.6⊂ Mr

3.10⊂ P0 ⊂ S0

3.5⊂ SO0 = Q.
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The number located above the inclusion mark denotes the number of theorem
which says about porosity of the smaller family into the greater one.

�������� 3.14 ([3])� Let r ∈ [0, 1). What can we say about the porosity of Pr
in Sr?
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