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ABSTRACT. As in the recent article of M. Balcerzak, T. Filipczak and P. Nowa-
kowski, we identify the family CS of central Cantor subsets of [0, 1] with the Polish
space X := (0, 1)N equipped with the probability product measure μ. We investi-
gate the size of the family P0 of sets in CS with packing dimension zero. We show
that P0 is meager and of μ measure zero while it is treated as the corresponding
subset of X. We also check possible inclusions between P0 and other subfamilies
of CS consisting of small sets.

1. Introduction

The paper is a continuation of the studies presented in [2] where the family CS
of central Cantor sets was considered and the sizes (with respect to measure and
category) of several subfamilies of CS consisting of small sets were investigated.

Recall the standard construction of a central Cantor subset of [0, 1] (see [2], cf.
also [11], [10] and [7]). An interval I ⊂ R is called concentric with an interval J if
they have a common centre. By |I| we will denote the length of the interval I. Let
a=(an)∈(0, 1)N. The set C (a) is defined similarly as the classical Cantor ternary
set, but in the n-th step of the construction, from every interval I obtained in the
previous step, we remove the open interval concentric with interval I of a length
equal to an |I| (for the classical Cantor set, it is 1

3 |I| for any n). Specifically, first,
we define by induction the intervals It and Pt indexed by finite binary sequences.
By I∅ we denote the interval [0, 1] and by P∅ the open interval with a length
equal to a1 |I∅| = a1, concentric with I∅. If we have already defined the intervals
It and Pt, where t∈{0, 1}n, n∈N ∪ {0}, then the left and the right component

© 2021 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C la s s i f i c a t i on: 28A80, 28A78, 28A35, 54E52.
Keywords: central Cantor sets, Baire category, product measure, sets of packing dimension
zero.

Licensed under the Creative Commons BY-NC-ND4.0 International Public License.

1



PIOTR NOWAKOWSKI

of the set It\Pt will be denoted by Itˆ0 and Itˆ1, respectively. The open intervals
concentric with them, with a length equal to an+1 |Itˆ0|=an+1 |Itˆ1|, are denoted
by Ptˆ0 and Ptˆ1, respectively.

For all n ∈ N, set

In :=
{
It1,...,tn : (t1, . . . , tn) ∈ {0, 1}n} and Cn(a) :=

⋃
In.

Let C(a) :=
⋂

n∈N
Cn(a). Then, C(a) is called a central Cantor set. Of course,

every family In covers the set C(a). Each interval of the family In is called basic
of rank n. From the construction, it follows that the length of this interval is
equal to

dn =
1

2n
(1− a1) · · · (1− an). (1)

We will consider dn as a function of a variable a, that is a �→ dn(a). However,
for the simplicity of notation, we will keep writing dn.

ConsiderX := (0, 1)N and equip it with the product topology generated by the
natural topology in (0, 1). Then, X is a Polish space. Also, having Lebesgue
measure on the σ-algebra of measurable subsets of (0, 1), we equip X with the
product σ-algebra S generated by the σ-algebra of measurable subsets of (0, 1)
and the product measure μ on S generated by the Lebesgue measure on (0, 1).
Then, (X,S , μ) is a probability space.

Since every central Cantor subset of [0, 1] is uniquely determined by the re-
spective sequence (an) ∈ X, we can identify the family CS of all central Cantor
subsets of [0, 1] with the set X. Thanks to this idea, we can identify subsets
of CS with the corresponding subsets of X, and then we can use topological and
measure structure of X. Namely, for a subset A of CS we denote

A∗ := {a ∈ X : C(a) ∈ A},
and, identifying A with A∗, we may interpret A as a subset of X.

In [2], the following families of small sets were considered: microscopic sets,
sets of Hausdorff dimension zero, strongly porous sets, porous sets, and Lebesgue
null sets. It was proved that the intersections of these families with CS ordered
as above, form an increasing sequence with respect to inclusion, and all inclu-
sions between these families are proper. It also turned out that all the considered
intersections, treated as subsets of X (via the identification A �→ A∗), are resid-
ual. Moreover, the families of microscopic sets and sets of Hausdorff dimension
zero are of μ measure zero, and the remaining ones are of full measure.

In this paper, we will consider the family P0 of central Cantor sets with
packing dimension zero. We will show that this family is meager and of μ-
-measure zero. We will also examine possible inclusions between P0 and the fami-
lies considered in [2]. The obtained results answer the question posed by Professor
Mariusz Urbański during the conference “Dynamics, measures and dimensions”
which took place in Będlewo in 2019.
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2. Main results

In [2], a useful class of small central Cantor sets was introduced. Namely,
let f : N → [1,∞), and define the family M(f) ⊂ CS as follows:

M(f) :=
{
C(a) ∈ CS : ∀ε>0 ∃n∈N dn< εf(n)

}
, (2)

where the numbers dn depend on a = (an) according to formula (1).

The family M(f) may be characterized as below.

Proposition 2.1 ([2]). For a sequence f : N → [1,∞) and a set C(a) ∈ CS,
the following conditions are equivalent:

(i) C(a) ∈ M(f);

(ii) ∀ε>0 ∀m∈N ∃n≥m dn < εf(n);

(iii) lim inf
n→∞ (dn)

1/f(n)
= 0;

(iv) lim inf
n→∞

f(n)
− ln dn

= 0.

Theorem 2.2 ([2]). Let f : N → [1,∞). Then, the set M(f) is residual

of type Gδ while it is treated as the corresponding subset M(f)∗ of X.

For the simiplicity, when f is given by an explicit formula, we will write

M(
f(n)

)
instead of M(f).

Now, let us recall the notions of Hausdorff and packing measures and di-
mensions (compare [4], [5], [7], [8], [9],). For s > 0 we define the s-dimensional
Hausdorff measure of a set E ⊂ R by the formula

Hs(E) := lim
δ→0+

Hs
δ (E),

where

Hs
δ (E) := inf

{ ∞∑
i=1

|Ii|s : Ii − open intervals, E ⊂
∞⋃
i=1

Ii, |Ii| ≤ δ

}
.

The Hausdorff dimension of a set E is given by

dimH(E) := sup{s > 0 : Hs(E) > 0} = inf{s > 0 : Hs(E) < ∞} ∈ [0, 1].

For s > 0 we define the s-dimensional packing measure of a set E ⊂ R by the
formula P s(E) := limδ→0+ P s

δ (E), where

P s
δ (E) :=

sup

{∞∑
i=1

|Ii|s : Ii− pairwise disjoint open intervals with centres in E,

|Ii|≤δ

}
.
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The packing dimension of a set E is given by the formula

dimP (E) := sup{s > 0 : P s(E) > 0} = inf{s > 0 : P s(E) < ∞} ∈ [0, 1].

The subfamily of the family CS of all sets with Hausdorff dimension equal to s
will be denoted by Hs, and of all sets with packing dimension equal to s, by Ps.

It is known that (see [4]) for any set E ⊂ R we have dimH(E) ≤ dimP (E).
Therefore, P0 ⊂ H0.

We will need the following result.

Theorem 2.3 ([7], [5]). The Hausdorff dimension of a central Cantor set C(a)
is equal to

lim inf
n→∞

n ln 2

− ln dn
,

and the packing dimension of the set C(a) is equal to

lim sup
n→∞

n ln 2

− ln dn
.

Corollary 2.4. H0 =
{
C(a) : lim inf

n→∞
n

− ln dn
= 0
}
= M(n).

Using Theorem 2.3, we can also prove the following theorem. Its proof is based
on ideas of [2, Theorem 2.5].

Theorem 2.5.

μ(H∗
s) = μ(P∗

s ) =

{
1 if s = ln 2

ln 2+1 ,

0, otherwise.

P r o o f. Observe that Yj(a) := ln(1 − aj), for j ∈ N, are independent random
variables on X with the same distribution and with the expected value equal to

EYj =

∫
(0,1)

ln(1− x) dλ(x) =

∫
(0,1)

ln t dλ(t) = −1.

By the strong law of large numbers [3, Theorem 2.25], we have μ(A) = 1, where

A :=

{
a ∈ X :

1

n

n∑
j=1

Yj(a) → −1

}
.

Hence, for any a ∈ A we have

ln 2

ln 2 + 1
=

ln 2

ln 2− lim
n→∞

1
n ·∑n

i=1 ln(1− ai)
= lim

n→∞
n ln 2

n ln 2−∑n
i=1 ln(1− ai)

= lim
n→∞

n ln 2

− ln
(∏n

i=1
1−ai

2

) = lim
n→∞

n ln 2

− ln dn
.
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Therefore, by Theorem 2.3, we get that for a random central Cantor set C(a)

dimH

(
C(a)

)
= dimP

(
C(a)

) a.s.
=

ln 2

ln 2 + 1
,

where ‘a.s.’ means ‘almost surely’. �

Corollary 2.6. The expected value of the Hausdorff dimension and of the

packing dimension of a central Cantor set is equal to ln 2
ln 2+1 .

From Theorem 2.5, Theorem 2.2, and Corollary 2.4 we get the following result.

Corollary 2.7 ([2]). The family H0 is residual of type Gδ and of measure μ
zero while it is treated as the corresponding subset of X.

The properties of the family of sets with packing dimension zero are different
from those for the family H0. Specifically, we have the following theorem.

Theorem 2.8. The family of sets in CS with packing dimension zero is of μ
measure zero, meager, and of type Fσδ, while it is treated as the corresponding

family P∗
0 in X.

P r o o f. Directly from Theorem 2.5 we have μ(P∗
0 ) = 0. By Theorem 2.3, we ob-

tain the following equivalences

C(a) ∈ P0 ⇔ lim sup
n→∞

n

− ln dn
= 0 ⇔ lim

n→∞
ln dn
n

= −∞ ⇔ lim
n→∞(dn)

1
n = 0

⇔ ∀k∈N∃m∈N∀n≥m dn ≤ 1

kn
⇔ a ∈

⋂
k∈N

⋃
m∈N

⋂
n≥m

{
a ∈ X : dn ≤ 1

kn

}
.

Thus,

P∗
0 =

⋂
k∈N

⋃
m∈N

⋂
n≥m

{
a ∈ X : (1− a1)(1− a2) . . . (1− an) ≤

(
2

k

)n}
.

The sets {a ∈ X : (1 − a1)(1 − a2) · · · (1 − an) ≤ (
2
k

)n} are closed, so
P∗
0 is of type Fσδ .

Observe that the set A :=
{
a ∈ X : dimP

(
C(a)

)
= 1
}
is included in X \P∗

0 .
To complete the proof, it suffices to show that the set A is residual. Since
dimP

(
C(a)

) ≤ 1 for any set C(a), we have the following equivalences

a ∈ A ⇔ lim sup
n→∞

n ln 2

− ln dn
= 1 ⇔ ∀k∈N∀m∈N∃n≥m

n ln 2

− ln dn
> 1− 1

k
.

Observe that the inequality n ln 2
− ln dn

> 1− 1
k is equivalent to the inequality

dn>

(
1

2

) nk
k−1

.
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Hence,

A =
⋂
k∈N

⋂
m∈N

⋃
n≥m

{
a ∈ X : dn >

(
1

2

) nk
k−1

}

=
⋂
k∈N

⋂
m∈N

⋃
n≥m

{
a ∈ X : (1− a1)(1− a2) · · · (1− an) >

(
1

2

) n
k−1

}
.

Let

Akm :=
⋃

n≥m

{
a ∈ X : (1− a1)(1− a2) · · · (1− an) >

(
1

2

) n
k−1

}

for m, k ∈ N. Of course, the sets Akm are open in X, so A is of type Gδ.
Let m, k ∈ N. We will show that Akm is dense. Consider a basic open set in X
of the form

U := U1 × U2 × · · · × Uj × (0, 1)× (0, 1)× · · · ,
where j ∈ N, and Ui are nonempty and open sets in (0, 1) for i = 1, . . . , j.
We will find a ∈ U ∩Akm. Choose ai ∈ Ui for i = 1, . . . , j. Let

M = (1− a1)(1− a2) · · · (1− aj).

There exists

n ≥ max{m, j + 1} such that M >

(
1

2

) n
k−1

.

For i ∈ {j+1, . . . , n} let ai < 1− n−j

√
1

M ·2
n

k−1
∈ (0, 1), and let ai be an arbitrary

element from (0, 1) for i > n. Observe that a = (ai) ∈ U ∩Akm. Indeed,

(1− a1)(1− a2) · · · (1− an) =

M · (1− aj+1) · · · (1− an) > M ·
(

n−j

√
1

M · 2 n
k−1

)n−j

=
1

2
n

k−1
.

Hence, a ∈ Akm. Therefore, the sets Akm are open and dense in the Polish
space X, and thus, they are residual. So, A is also residual in X, and conse-
quently, the set P∗

0 is meager in X. �
Corollary 2.9. P0 � H0.

Now, let us consider the family of microscopic sets in CS which is denoted
by M. Recall that we say that a set E ⊂ R is microscopic if for any ε > 0
there exists a sequence of intervals (Jn) such that E ⊂ ⋃n∈N

Jn and |Jn| ≤ εn.
For more information about microscopic sets, see [1] or [6]. We have the
following inclusions.

Theorem 2.10 ([2]). M(2n) ⊂ M ⊂ ⋂p∈(1,2) M(pn).
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We will now compare the families M and P0.

Example 1. We give an example of a set C(a) such that C(a) ∈ M(2n) \ P0 ⊂
M\P0. Let (kn) and (ln) be sequences of natural numbers such that k1 = 1 and

kn < ln < 2 · 3ln < kn+1 < 3 · 3ln

for n ∈ N. Define a sequence (xn). Put xkn
=
(

1
16

)kn and xln =
(

1
16

)3ln

for n∈N.
We have

xln

xkn

=

(
1

16

)3ln−kn

<

(
1

2

)ln−kn

and

xkn+1

xln

=

(
1

16

)kn+1−3ln

<

(
1

16

)3ln

=

(
1

2

)4·3ln

<

(
1

2

)kn+1−ln

.

So, we can define the rest of terms of the sequence (xi) in such a way that
xi+1

xi
< 1

2 for i ∈ N. Putting a1 = 1 − 2x1 and ai+1 = 1 − 2xi+1

xi
for i ∈ N,

we receive the sequence a ∈ (0, 1)N, for which di = xi. In particular,

dkn
=

(
1

16

)kn

and dln =

(
1

16

)3ln

.

We have
lim sup
n→∞

n ln 2
− ln dn

≥ lim
n→∞

kn ln 2
− ln dkn

= lim
n→∞

kn ln 2
kn ln 16 = 1

4 > 0,

and hence, C(a) /∈ P0. However,

lim inf
n→∞

2n

− ln dn
≤ lim

n→∞
2ln

− ln dln
= lim

n→∞
2ln

3ln ln 16
= 0.

Thus, by Proposition 2.1 and Theorem 2.10, we have C(a) ∈ M(2n) ⊂ M.

Example 2. We give an example of a set C(a) such that C(a) ∈ P0 \ M.
Let an = 1− 2

e2n−1 ∈ (0, 1) for n ∈ N and a = (an). Then,

dn =

n∏
i=1

1− ai
2

=

n∏
i=1

1

e2i−1
=

1

e
∑n

i=1(2i−1)
=

1

en2 .

Therefore,
lim sup
n→∞

n ln 2
− ln dn

= lim
n→∞

n ln 2
n2 = 0,

so, C(a) ∈ P0. However, for any p ∈ (1, 2) we have

lim inf
n→∞

pn

− ln dn
= lim

n→∞
pn

n2 = ∞,

and thus, C(a) ∈ P0 \M(pn) ⊂ P0 \M.

Corollary 2.11. M �⊂ P0 and P0 �⊂ M.

7



PIOTR NOWAKOWSKI

The results of this paper were presented at the 34th International Summer
Conference on Real Functions Theory 2020.
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