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SIMULATION STUDY OF INSENSITIVITY REGIONS

AND OUTLIERS

Eva Fǐserová

ABSTRACT. A procedure how to identify outliers in observations in a regular

linear model with constraints on mean value parameters is presented. A prob-
lem, how approximations of variance components influence the significance level
of statistical test is solved by insensitivity approach. Explicit expressions of in-
sensitivity regions are given. Behavior of insensitivity regions and the quality of
the procedure for outliers identification are studied by simulations.

1. Introduction

There are several procedures how to identify outliers in observations, cf. e.g.,
[1]. If unknown variance components occur in a covariance matrix of an obser-
vation vector, it is of some interest to know, whether approximations of them
can be used instead of their true values. Such a problem can be analyzed by the
insensitivity approach.

Approximations of variance components can destroy the optimum quality of
used statistical inference, namely a significance level of a statistical test for out-
liers identification in measurements. The main goal of the insensitivity approach
is to find a set of all values of variance components which make the tolerable
increase of the significance level of the test, cf. e.g., [5], [6].

Basic theoretical results on outliers and insensitivity regions in a regular linear
model with outliers when mean value parameters satisfy linear constraints have
been done in [3]. The aim of the paper is to study behavior of insensitivity
regions and the quality of procedure for outliers identification by simulations.
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2. Identification of outliers in measurement

Let us consider a linear regression model with constraints in the form

Y ∼ Nn (Xβ,Σ) , β ∈ V = {u : b + Bu = 0}. (1)

Here Y is an n-dimensional random vector (observation vector) which is nor-
mally distributed, its mean value is E(Y) = Xβ and the covariance matrix is
Var(Y) = Σ. The parametric space for β is V, β ∈ R

k is an unknown vector,
X and B are given matrices of types n × k and q × k, b ∈ R

q is a given vector.
The model (1) will be supposed to be regular, i.e., the matrix X has full

column rank, Σ is a positive definite and B has full row rank.
Let the covariance matrix Σ be known. The procedure for outliers identifica-

tion can be done in several steps. The first step is to estimate β in the model
(1) as the best linear unbiased estimator (BLUE) β̂ (cf. [4], p. 80), i.e.,

β̂ = (MB′CMB′)+X′Σ−1Y −C−1B′(BC−1B′)−1b,

Var(β̂) = C−1 −C−1B′(BC−1B′)−1BC−1 = (MB′CMB′)+.

The symbol (MB′CMB′)+ means the Moore–Penrose generalized inverse of the
matrix MB′CMB′ (cf. [7]), C = X′Σ−1X, MB′ = I−PB′ and PB′ = B′(B′)+.

The next step is to determine the residual vector

v = Y −Xβ̂ ∼ Nn

[
0,Σ −X(MB′CMB′)+X′] .

Then we can find suspicious measurements yi, i = i1, . . . , ir, by testing the
hypothesis H0 : E(v) = 0 versus Ha : E(v) �= 0 by the test statistic

T = v′Σ−1v ∼ χ2
n+q−k(δ1), δ1 = E(v)′Σ−1E(v).

In view of the Scheffé theorem (cf. [8]), the ith measurement is suspicious if

|{v}i| ≥
√

χ2
n+q−k(1 − α)

√
{Var(v)}ii, i ∈ {1, . . . , n}.

Here χ2
n+q−k(1 − α) is the (1 − α)-quantile of the chi-squared distribution with

n + q − k degrees of freedom.
If no suspicious large value |{v}i|, i.e., no suspicious measurement, is found,

stop this procedure. If r suspicious measurements are found, the model (1) can
be rewritten as

Y ∼ Nn (Xβ + EΔ,Σ) , β ∈ V = {u : b + Bu = 0}, Δ ∈ R
r, (2)

where

E = (ei1 , . . . , eir
), eij

∈ R
n, j = 1, . . . , r,

{
eij

}
k

=
{

0, k �= ij ,
1, k = ij ,
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and ij is the index with suspicious large value |{v}ij
|. Outliers among suspicious

measurements yi, i = i1, . . . , ir, can be identified by testing the hypothesis

H0 : Δ = 0 versus Ha : Δ �= 0. (3)

The hypothesis (3) can be tested in the model (2) if and only if (cf. [3])

M(XMB′) ∩M(E) = {0} ⇔ M (X′,B′) ∩M (E′,0) = {0}. (4)

Here M(Am,n) = {Au : u ∈ R
n} ⊂ R

m. Under the condition (4), the BLUE Δ̂
of the parameter Δ in the model (2) is (cf. [3])

Δ̂ =
[
E′ (MXMB′ ΣMXMB′

)+ E
]−1

E′Σ−1(Y −Xβ̂),

Var(Δ̂) =
[
E′ (MXMB′ ΣMXMB′

)+
E

]−1

.

Now the hypothesis (3) can be tested via the test statistic

Tout = Δ̂
′
[Var(Δ̂)]−1Δ̂ ∼ χ2

r(δ2), δ2 = Δ′[Var(Δ̂)]−1Δ.

Here it is necessary to distinguish two different significance levels. If the inves-
tigator suspects in advance in which measurements are outliers, i.e., indices of
suspicious measurements are a priori known, by the Scheffé theorem, the i∗th
measurement is considered to be an outlier if

|{Δ}i∗ | ≥
√

χ2
r(1 − α)

√{
Var(Δ̂)

}
i∗i∗

, i∗ ∈ {i1, . . . , ir}, (5)

where ij is the index with suspicious measurement. Usually, the investigator has
no a priori choice for outliers. Suspicious measurements are detected, e.g., from
residuals. So, we are in reality performing ( n

r ) significance tests, one for each
( n

r ) cases. By the Bonferonni’s inequality, the i∗th measurement is an outlier if

|{Δ}i∗ | ≥
√

χ2
r

[
1 − α

/ (
n
r

)]√{
Var(Δ̂)

}
i∗,i∗

, i∗ ∈ {i1, . . . , ir}. (6)

At the last step significant outliers yi∗ are omitted from realization of the
observation vector Y and the whole procedure is repeated.

3. Insensitivity regions

Let the covariance matrix in models (1), (2) be in the form Σ =
p∑

i=1

ϑiVi,

ϑ = (ϑ1, . . . , ϑp)′ ∈ ϑ ⊂ R
p. Here, except β and Δ, also the vector parameter ϑ

is unknown. V1, . . . ,Vp are known symmetric matrices. The parametric space ϑ
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is an open set in R
p with the property that if ϑ ∈ ϑ, then

p∑
i=1

ϑiVi is a positive
definite.

If we have the approximation ϑ0 of ϑ, outliers can be identified by the pro-
cedure given in the previous section (estimators are ϑ0-locally BLUE only).
However, the substitution of the true value ϑ∗ by its approximation ϑ0 can
destroy the optimum quality of significance levels of tests T and Tout.

Let ε > 0 be a given tolerable increase of the significance level α of the test
T . Let δε be given as a solution of the equation

PH0

{
T (ϑ∗) + δε ≥ χ2

n+q−k(1 − α)
}

= α + ε

⇒ δε = χ2
n+q−k(1 − α) − χ2

n+q−k(1 − α − ε).

The symbol PH0 means the probability under the null hypothesis H0. The insen-
sitivity region Nε for the significance level α of the test T is the set of all points
ϑ0 = ϑ∗ + δϑ such that if ϑ0 ∈ Nε, then the significance level is not larger than
α + ε. It can be expressed as

Nε =
{
ϑ∗ + δϑ :

(
δϑ − δεD+

t a
)′

Dt

(
δϑ − δεD+

t a
) ≤ (

1 + a′D+
t a

)
δ2
ε

}
, (7)

where t > 0 is a sufficiently large number and

Dt = 2t2SK − aa′, K= [MXMB′ Σ(ϑ∗)MXMB′ ]+,

{a}i = Tr {KVi} , {SK}i,j = Tr {KViKVj} , i, j = 1, . . . , p.

Similarly, we have two insensitivity regions for significance levels of the test
Tout (N giv

out,ε for a priori given indices of suspicious measurements, N rand
out,ε for

random indices) such that

ϑ0 ∈ N giv
out,ε ⇒ PH0

{
Tout(ϑ0) ≥ χ2

r(1 − α)
} ≤ α + ε,

ϑ0 ∈ N rand
out,ε ⇒ PH0

{
Tout(ϑ0) ≥ χ2

r [1 − α/ ( n
r )]

} ≤ (α + ε) / ( n
r ) .

The explicit expressions of N giv
out,ε and N rand

out,ε are given by (7) when symbols are
substituted according to the scheme

a → aout, Dt → Dout,t, δε → δgiv
out,ε or δrand

out,ε,

Dout,t = t2 (4CU − 2SZ) − aouta′
out, Z = KE (E′KE)−1 E′K,

{aout}i = Tr(ZVi), {CU}i,j = Tr(KViZVj), {SZ}i,j = Tr(ZViZVj)

for i, j = 1, . . . , p and δgiv
out,ε, δrand

out,ε are given by

δgiv
out,ε = χ2

r(1 − α) − χ2
r(1 − α − ε),

δrand
out,ε = χ2

r

[
1 − α/ ( n

r )
] − χ2

r

[
1 − (α + ε) / ( n

r )
]
.
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Note that the insensitivity regions aren’t centered at ϑ∗. For more details
about the insensitivity regions see [3]. The parameter t can be chosen in the
interval < 3, 5 >. For the optimum value of t see [6].

4. Simulation study

Example 4.1. In the triangle P1P2P3 the distances β1 = P2P3 = 800 m,
β2 = P3P1 = 900 m, β3 = P1P2 = 600 m and the angles β4 = {P2P1P3}
= 60◦36′36.59′′, β5 = {P3P2P1} = 78◦35′17.43′′, β6 = {P1P3P3} = 40◦48′15.98′′

are measured just twice with the accuracy σs (distances) and σω (angles).
The problem is to identify the outlier y1 among measurement. Using simu-

lations we will study behavior of insensitivity regions for the significance level
α = 0.05 and its tolerable increment ε = 0.05 in dependence on the choice of
the true (certificate) values σ∗

s , σ∗
ω and the choice of the significance level for the

test Tout (given or random indices of suspicious measurements). The significance
level for given indices is used as a heuristic approach in the sense that although
suspicious measurements aren’t a priori known and they are detected from resid-
uals, the significance level is chosen as for a priori known indices. Finally, we
compare the quality of the outlier identification for both types of significance
levels.

The process of measurement can be modelled by (more detail cf. [2])

Y2i−1 = βi + ε2i−1, Y2i = βi + ε2i, i = 1, . . . , 6,

β4 + β5 + β6 = 180◦, β1 sin β5 = β2 sin β4, β1 sin β6 = β3 sin β4.

The observation vector Y was generated in a natural way, an error term was
added to the true mean Xβ except Y1 = 800+ 0.75+ ε1, i.e., the observation y1

is an outlier. The error term had the distribution N12

[
0, (σ∗

s)2Vs + (σ∗
ω)2Vω

]
,

where different accuracies σ∗
s , σ∗

ω are given in Table 1, Vs = Diag(11×6,01×6)
and Vω = Diag(01×6,11×6) are diagonal matrices.

There were done 10 000 simulations for each of five different accuracies ϑ∗ =(
(σ∗

s)2, (σ∗
ω)2

)′ denoted by the case A–E. Maximum increase and decrease (in
%) of ϑ∗ which makes tolerable increment ε = 0.05 of α = 0.05 is given in
Tables 2, 3. Changes are the same for all cases A–E. Relatively large uncertainty
can be tolerated in ϑ∗ when detecting suspicious measurements (test T ). If ϑs is
true, then ϑω can increase of 62% and the significance level of the test T is not
larger than α + ε = 0.1, e.g., 3.52 ≤ ϑω ≤ 6.48 seconds2 in the case A. Rather
smaller uncertainty occurs when searching significant outliers (test Tout).

The insensitivity ellipses N0.05, N giv
out,0.05 and N rand

out,0.05 for t = 3 are shown
in Figures 1, 2. In Figure 1, they are given in dependence on the number
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Table 1. Accuracy of measurement

case σ∗
s (cm) σ∗

ω (second) ϑ∗
s (cm2) ϑ∗

ω (second2)

B 1.16 1.21 1.37 1.46
C 1.11 1.68 1.23 2.83
A 1.00 2.00 1.00 4.00
D 0.84 2.21 0.71 4.90
E 0.61 2.34 0.37 5.46

Table 2. Tolerable changes (in %) of ϑ∗ – N0.05.

increase decrease

ϑω 62 12

increase decrease

ϑs 72 22

Table 3. Tolerable changes (in %) of ϑ∗ – N giv
out,0.05, N rand

out,0.05.

given indices random indices

r = 2 r = 3 r = 4 r = 2 r = 3 r = 4

increase of ϑω 44 41 41 44 38 36
decrease of ϑω 27 20 17 27 19 14
increase of ϑs 44 52 59 44 48 52
decrease of ϑs 27 31 35 27 29 31

Table 4. Empirical probabilities (in %) of the number r of suspicious measurements.

r case B case C case A case D case E

2 96.55 98.93 99.51 99.69 99.73
3 3.44 1.07 0.47 0.31 0.25
4 0.01 0 0.02 0 0.02

Table 5. Empirical probabilities (in %) of outliers identification.

indices significant case B case C case A case D case E

given y1 only 98.14 98.18 95.79 91.21 88.08
random y1 only 99.62 89.47 68.34 53.45 45.59

given y1 and yj , j �= 1 1.86 1.35 0.83 0.66 0.85
random y1 and yj , j �= 1 0 0.01 0 0.01 0.01

given yj �= y1 only 0 0.46 0.68 0.82 0.67
random yj �= y1 only 0 0 0 0 0

given none 0 0.01 2.70 7.31 10.40
random none 0.38 10.52 31.64 46.54 54.40
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Figure 1. Insensitivity ellipses in dependence on the number of suspicious

measurements. N0.05 by dashed line, its center at ×, N giv
out,0.05 by solid

line, N rand
out,0.05 by dotted line. The symbol ◦ means ϑ∗, ∗ means the center

of N giv
out,0.05 or N rand

out,0.05.
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Figure 2. Insensitivity ellipses in dependence on ϑ∗. N0.05 by dashed line,

its center at ×, N giv
out,0.05 = N rand

out,0.05 by solid line, the center at ∗. The

symbol ◦ means ϑ∗.
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of suspicious measurements r. Naturally, N0.05 is independent of r. Further,
N rand

out,0.05 ⊂ N giv
out,0.05 for r = 3, 4 and N rand

out,0.05 = N giv
out,0.05 for r = 2. In Figure 2,

the insensitivity ellipses are presented in dependence on the choice of ϑ∗ for
r = 2. Although ellipses N0.05, or N giv

out,0.05, are different for different cases A–E,
tolerable changes (in %) are the same (see Tables 2, 3).

Empirical probabilities of the number of suspicious measurements r are given
in Table 4. Since the distance β1 is measured just twice, r ≥ 2. So, y1 and y2

are always detected as suspicious measurements. Another one or two suspicious
measurements are found very seldom. Empirical probabilities of outliers identifi-
cation are given in Table 5. The most precise measurement of angles σω and the
worst precise measurement of distances σs are in the case B and vice versa in
the case E. If the accuracy σω is decreasing, the probability that the outlier y1

is identified, is also decreasing. In the case B, the outlier y1 is identified almost
every time for both types of significance levels. In the case E, the probability
for given indices is 88% but for random indices it is less than 50%. It seems
that the outlier in measurement of distances is identified due to the accuracy of
measurement of angles. The results were obtained via T , Tout calculated for ϑ∗.

5. Conclusion

Generally, insensitivity regions Nε, N giv
out,ε and N rand

out,ε are different. In the
investigated situation, relatively large uncertainty can be tolerated in ϑ∗ when
searching for suspicious measurements. Rather smaller uncertainty occurs when
searching for significant outliers. Outliers identification depends on the accuracy
of measurement. Heuristic approach (indices of suspicious measurements aren’t
a priori known but significance level is chosen as for given indices) gives better
results than mathematically correct one (significance level for random indices).
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