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ABSTRACT. Designing an experiment for a real life problem may involve new
and complex situations. As a motivation a medical problem of finding an exper-
imental design to predict cardiopulmonary morbidity after lung resection with
standardized exercise oximetry is considered. Designing an experiment for models
with a mixture of controlled and uncontrolled variables has already been consid-

ered in the literature. Another degree of complexity appears when an experimental
unit can not complete the assigned experimental condition, e.g., the prescribed
exercise time in the medical example. Thus, the controlled variable has to be
considered as potentially censored. This paper is focused mainly on this problem
for censored discrete distributions.

1. Introduction

Optimum experimental design is used in a variety of applications, engineer-
ing, operations research, economics and medicine, among other. This plethora
of applications has led to the development of the classical theory due to some
new complexities which may appear in real problems. Thus, A r d a n u y and
L ó p e z -F i d a l g o (1992) computed optimal designs for experiments which
have constraints both in its support and replications. C o o k and T h i b o d e a u
(1980) considered some examples in which some of the independent variables
are not subject to control of the practitioner. In particular, they considered
two kinds of variables, one of them controlled and other uncontrolled, whose
values are known before the experiment is performed. These designs are called
marginally restricted designs. L ó p e z -F i d a l g o and G a r c e t -R o d r ı́ g u e z
(2004) considered the problem of constructing optimal experimental designs for
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regression models when the variable that is not under control can have unknown
values before the experiment is performed. These are the so called conditionally
restricted designs. In fact, they considered the mixture of both cases and pro-
vided equivalence theorems and iterative algorithms for generating approximate
optimal designs. The main motivation was a real medical problem. V a r e l a ,
C o r d o v i l l a , J i m é n e z and N o v o a (2001) applied an exercise test to ob-
tain more information in order to predict cardiopulmonary morbidity after lung
resection with standardized exercise oximetry. The independent variables, hap-
pen to be in the model are: the expired volume of air in one second, the oxygen
desaturation during the test and the exercise time in minutes.

Some other complexities appear in this real life problem. Thus, whenever
a new patient arrives, his “Respiratory Function” may be measured. Then, an
exercise time has to be assigned according to his specific “Respiratory Function”
value. M a r t ı́ n -M a r t ı́ n (2006) provided a sequential algorithm to construct
a marginally restricted D-optimal design in order to solve this problem.

Another complication arises when the patient, for some non-informative rea-
son, can not complete the time of the exercise. This means that the controlled
variable is potentially censored. In this paper, a known censoring probability dis-
tribution function is assumed for the controlled variable. Thus, when a particular
design is tried, another different design is expected according to this distribu-
tion. An expression of the information matrix is provided in order to calculate
the optimal design.

Some work has been done in optimal experimental design for potentially fail-
ing in the response. H a c k l (1995) provided a criterion based on D–optimality
and obtained optimal exact uniform designs for possible missing observations in
the quadratic model. I m h o f , S o n g and W o n g (2002, 2004) provided general
procedures to compute approximate designs. As far as the authors know, nothing
has been done for potentially censored independent variables. We deal with the
problem of obtaining D-optimal approximate designs for a linear model when
the values of some independent variables are potentially censored according to
a known probability distribution function.

Let us consider a linear model defined by

E[y] = ηT (x)α,

where the components of ηT (x) =
(
η1(x), . . . , ηm(x)

)
are m linearly independent

continuous functions on some compact space χ, αT = (α1, . . . , αm) are unknown
parameters to be estimated and the variance of the observations is assumed
constant.

An exact design is a sequence of experimental conditions x1, . . . , xN from the
design space χ. Assuming that only n of the points are different, a probability
measure represents the design. If the point xi appears Ni times in the design,
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pi = Ni/N will be the probability of xi, that is the proportion of experiments
to be performed under these conditions.

Using this idea K i e f e r and W o l f o w i t z (1959) gave a more general def-
inition of a design (approximate design) as any probability distribution, ξ. The
information matrix is defined as

M (ξ) =
∫
χ

η(x)ηT (x)ξ(dt).

The set of the information matrices, M, is convex and compact. Carathèodo-
ry’s theorem says that given an information matrix, there always exists a design
with the same information matrix and no more than m(m+1)/2+1 points in its
support. Therefore we may restrict to the search of designs with finite support,

ξ =
{

x1 x2 . . . xn

p1 p2 . . . pn

}
,

where ξ(xi) = pi is the proportion of experiments to be performed at the exper-
imental condition xi. Let � be the convex set of the approximate designs.

The inverse of the information matrix is proportional to the covariance matrix
of the least square estimates. In this paper we will focus on D-optimality, that
is a criterion based on maximizing the determinant of the information matrix.

The D-efficiency will assess the goodness of a particular design ξ with respect
to a D-optimal design ξ∗,

effD(ξ) =
(

detM (ξ)
detM (ξ∗)

)(
1
m

)
.

2. Potentially censored designs

A new complexity in the real case considered in this paper is analyzed in this
Section. Here, x ≡ t is the time that is going to be a variable potentially censored
in a design space χ. The censoring distribution will be assumed known through
a random variable T that measures the time, a chosen experimental unit is going
to stop given no prior limitation in time. In the real case mentioned above, T
would be the time a generic patient stops if he starts to ride the bicycle without
any time limit imposed in advance. Assume the censored time T has a probability
distribution on a set, which includes the whole design space. Let f(t) and F (t) be
the probability distribution function and the cumulative distribution function,
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respectively. A particular, but typical case, may be a distribution on [0,∞) with
a design space contained in it.

Let ξ̂ be the approximate design with finite support that is intended to be
applied in practice. Then, another design ξ is expected to result at the end of the
experimentation. Therefore, a design ξ̂ should be found such that the expected
design ξ will be optimal. We will call an optimal design with this restriction
censoring restricted (CER) optimal design. Sometimes it is possible to find ξ̂
such that the expected design ξ will be optimum according to the criterion
without censoring. But frequently, this is not the case and a restricted search
has to be performed. This happens mainly when there is an optimal time at the
highest possible time value. As a matter of fact if the censoring distribution is
continuous, this value will never be reached.

Let a discrete design space be

χ = {t1, t2, . . . , tn}, where t1 < . . . < tk < . . . < tn.

The censoring distribution will be considered as a discrete distribution on χ.
The cumulative distribution function will be

F (t) =
k∑

i=1

f(ti), tk ≤ t < tk+1, k = 1, . . . , n − 1,

where
f(ti) = P (T = ti), i = 1, . . . , n.

This case corresponds to an experiment where n stages have to be completed
and an experimental unit may stop the experiment at any of these stages. Thus,
f(ti) will be the probability to stop exactly at time ti, that is completing all
stages until i and then stop. When a design ξ̂ is tried in practice, an expected
censored design ξ will be actually performed following the rule:

(1) All the tries at t1 will succeed, thus all the weight given to t1, ξ̂(t1) will
remain for ξ.

(2) The number of the tries at time t2 which will not succeed, that is that will
stop at time t1, will be proportional to f(t1) and therefore the number
of tries succeeding will be proportional to 1 − f(t1). Thus, a proportion
f(t1)ξ̂(t2) of the sample size will actually stop at t1 and the rest

[
1 −

f(t1)
]
ξ̂(t2) will reach the time challenge t2.

(3) Following the same reasoning there will be a proportion of tries at time t3
that is expected to succeed,

[
f(t3) + · · · + f(tn)

]
ξ̂(t3); a proportion that

will stop at time t2, f(t2)ξ̂(t3); and a proportion that will stop at time t1,
f(t1)ξ̂(t3).
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A similar argument is used for the rest of the times. Therefore,

ξ(tk) =
[
1 − F (tk−1)

]
ξ̂(tk) +

n∑
i=k+1

ξ̂(ti)P (T = tk) (1)

= [1 − Fk−1]ξ̂(tk) + f(tk)[1 − Ξ̂k], k = 1, . . . , n − 1, (2)

and
ξ(tn) = f(tn)ξ̂(tn) = [1 − Fn−1]ξ̂(tn), (3)

where

Fk ≡ F (tk), Ξ̂k ≡
k∑

i=1

ξ̂(ti), k = 1, . . . , n − 1; F0 ≡ 0 and Ξ̂0 ≡ 0.

By definition ξ is a probability measure and so it may be considered as a de-
sign. From the expressions above ξ̂ may be worked out in function of ξ as de-
scribed in what follows,⎛

⎜⎜⎝
ξ̂(t1)

ξ̂(t2)
· · ·

ξ̂(tn)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 − F0 f(t1) f(t1) · · · f(t1)
0 1 − F1 f(t2) · · · f(t2)
· · · · · · · · · · · · · · ·
0 0 0 · · · f(tn)

⎞
⎟⎟⎠
−1 ⎛

⎜⎜⎝
ξ(t1)
ξ(t2)
· · ·

ξ(tn)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1
1−F0

1
1−F0

− 1
1−F1

· · · 1
1−F0

− 1
1−F1

1
1−F0

− 1
1−F1

0 1
1−F1

· · · 1
1−F1

− 1
1−F2

1
1−F1

− 1
1−F2· · · · · · · · · · · · · · ·

0 0 · · · 1
1−Fn−2

1
1−Fn−2

− 1
1−Fn−1

0 0 · · · 0 1
1−Fn−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ξ(t1)
ξ(t2)
· · ·

ξ(tn−1)
ξ(tn)

⎞
⎟⎟⎟⎟⎠
(4)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1−Ξ0
1−F0

− 1−Ξ1
1−F1

1−Ξ1
1−F1

− 1−Ξ2
1−F2· · ·

1−Ξn−2
1−Fn−2

− 1−Ξn−1
1−Fn−1

ξ(tn)
f(tn)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

Ξk ≡
k∑

i=1

ξ(ti), k = 1, . . . , n − 1 and Ξ0 ≡ 0.

The measure constructed in this way may not be a probability measure and
therefore it can not always be considered as an experimental design. It sums up
to one, but the values are non negative if and only if,

1 − Ξi−1

1 − Fi−1
≥ 1 − Ξi

1 − Fi
, i = 1, . . . , n − 1. (5)
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that is, the ratio ri = (1 − Ξi)/(1 − Fi) is non increasing for i = 1, . . . , n − 1.
Taking into account that the weights obtained sum up to 1, if this is satisfied,
the values have to be no greater than 1. Therefore, this is the condition for ξ̂ to
be an experimental design. Let �F be the set of these designs,

�F =
{
ξ | ξ satisfies (5)

}
.

������� 1� The set �F is convex.

P r o o f. Let ξ(1), ξ(2) ∈ �F , α ∈ (0, 1) and ξ = (1 − α)ξ(1) + αξ(2). With the
notation used above,

1 − Ξi =ξi+1 + · · · + ξn = (1 − α)
(
ξ
(1)
i+1 + · · · + ξ(1)

n

)
+ α

(
ξ
(2)
i+1 + · · · + ξ(2)

n

)
=(1 − α)

(
1 − Ξ(1)

i

)
+ α

(
1 − Ξ(2)

i

)
.

Therefore,

(1 − Ξi)(1 − Fi−1) =
[
(1 − α)

(
1 − Ξ(1)

i

)
+ α

(
1 − Ξ(2)

i

)]
(1 − Fi−1)

≥
[
(1 − α)

(
1 − Ξ(1)

i−1

)
+ α

(
1 − Ξ(2)

i−1

)]
(1 − Fi)

= (1 − Ξi−1)(1 − Fi).

�

From Theorem 1 of L ó p e z -F i d a l g o and G a r c e t -R o d r ı́ g u e z (2004)
an equivalence theorem may be stated. For that, the definition of a directional
derivative of Φ at M in the direction of N is needed,

∂Φ(M, N) = lim
ε→0

Φ
[
(1 − ε)M + εN

] − Φ(M )
ε

.

������� 2� If Φ is a convex function, then the following statements are equiv-
alent:

(1) Φ
[
M (ξ�)

]
= inf

ξ∈�F

Φ
[
M (ξ)

]
,

where ξ� is the CER Φ-optimal design.
(2) inf

N∈MF

∂Φ
[
M (ξ�), N

]
= sup

ξ∈�+
F

inf
N∈MF

∂Φ
[
M (ξ), N

]
,

where MF = {M (ξ) | ξ ∈ �F } and �+
F is the set of the designs with

nonsingular information matrix.
(3) inf

N∈MF

∂Φ
[
M (ξ�), N

]
= 0.

The procedure to compute Φ-optimal designs under this restriction is as fol-
lows:
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(1) Compute the Φ–optimal design without any restriction, say ξ∗. If r∗i is
increasing in i = 1, . . . , n − 1, then compute ξ̂ using equation (4) and the
problem is solved. Otherwise go to step 2.

(2) An optimal expected design subject to the restriction (5) must be found.
The information matrix associated to a generic expected design ξ, obtained
with equations (2) and (3), is

M (ξ) =
n∑

k=1

ξ̂(tk)

[
k−1∑
i=1

f(ti)η(ti)ηT (ti) + (1 − Fk−1)η(tk)ηT (tk)

]

The objective is then to find,

ξ∗F = arg min
{

Φ
[
M (ξ)

] | ξ ∈ �F

}
.

(3) In any of the two cases the design to be used in practice has to be computed
from the optimal expected design using formula (4).

Remark� A one–point design, say ξtk
, is in �F if and only if Fk−1 = 0. A

two–point design, say ξtk,tj
, k < j, is in �F if and only if Fk−1 = 0, Fj−1

= fk ξ(tk) ≤ 1−Fk

1−Fk−1
. There is not a way to find a simple rule for the rest of

the cases. Thus, it is not possible to find simple generators of the set of CER
designs.

Example� Let a model be,

E(y) = α1 + α2t, Var(y) = σ2, t ∈ χ = {0, 1, 2, 3}.
Assume there is a binomial censoring distribution on χ, Bi(3, 1/3),

f ≡
{

0 1 2 3
1/27 2/9 4/9 8/27

}
.

A general design

ξ ≡
{

0 1 2 3
1 − p − q − r p q r

}
satisfies (5) if the sequence

1 − Ξ
1 − F

≡
{

27(p + q + r)
26

,
27(q + r)

20
,
27r

8

}
,

is non increasing, that is 10p − 3q − 3r ≥ 0 and 2q − 3r ≥ 0. The information
matrix for this design is
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M (ξ) =
(

1 p + 2q + 3r
p + 2q + 3r p + 4q + 9r

)
.

Maximizing the determinant subject to those restrictions, the CER D-optimal
design will be,

ξ ≡
{

0 1 2 3
71/162 7/54 7/27 14/81

}
with determinant 49/36. It is well known that the unrestricted D-optimal de-
sign for this model gives half of the weight to each extreme point 0 and 3. Its
determinant is 9/4 and the efficiency of the restricted optimal with respect to
the unrestricted optimal is then 49/36

9/4 = 7/9, that is 77.8%.
Once the optimal expected design ξ is computed, there is the way back to

compute the design to by tried in practice ξ̂,

ξ̂ =

{
0 1 2 3

1−Ξ0
1−F0

− 1−Ξ1
1−F1

1−Ξ1
1−F1

− 1−Ξ2
1−F2

1−Ξ2
1−F2

− 1−Ξ3
1−F3

ξ(t4)
f(t4)

}

=
{

0 1 2 3
1 − p+q+r

26/27
p+q+r
26/27 − q+r

20/27
q+r

20/27 − r
8/27

r
8/27

}
=

{
0 3

5/12 7/12

}
.

This result is quite logical since this is the safest way to get something as similar
as possible to the unrestricted optimal design.
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