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DIAGNOSTICS FOR MULTIPLE RESPONSE DATA

Thomas Suesse — Ivy Liu

ABSTRACT. Surveys often allow arbitrary number of responses. Each of the
categorical responses is referred as an item. Marginal modeling of items simul-

taneously requires to incorporate the dependence between items. We investigate
deletion diagnostics as Cook distance and DBETA for these marginal models
based on homogenous linear predictor (HLP) model fitting and compare results
with the generalized estimation equations (GEE) approach.

1. Introduction

Surveys often contain qualitative variables for which respondents may select
any number of the outcome categories. This type of response is called multiple
responses. Each outcome category refers to an item, where the items are depen-
dent. A g r e s t i and L i u [2] introduced marginal models based on marginal
counts of each item. The models describe the association between the items
and some explanatory variables taking into account the dependence. We want
to consider two model approaches: generalized estimation equations (GEE) [9],
a generalization of quasi-likelihood, and maximum likelihood (ML) estimation
for homogeneous linear predictor (HLP) models [8]. This article focuses on the
computation of deletion diagnostics such as DBETA and the Cook distance
considering HLP models and compares these with GEE diagnostics. Deletion
diagnostics determine the influence of a deleted set of observations on the pa-
rameters estimate. For GEE, P r e i s s e r and Q a q i s h [11] considered Cook
distance and derived generalized one-step approximation formulas. We consider
Cook distance for HLP models for analyzing multiple response data. We provide
a variety of partly equivalent deletion methods for full solutions and one-step
approximations of the Cook distance. The methods are illustrated using an ex-
ample. Below, an example for multiple responses is introduced, then section 2
discusses marginal models and model fitting for GEE and HLP models. In the
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next section we introduce deletion diagnostics and discuss their application on
both fitting approaches. The article finishes with applying of the diagnostics on
the introduced example and its discussion.

Many surveys allow each respondent to respond to more than one category or
“item”. The respondent can pick any number out of c categories. This multiple
outcome variable is referred to as pick any/c variables and the corresponding
data as pick any/c data, where “/” stands for “out of”[4]. Each of the c category
responses is called an item [1].

Let c items be given and let the multiple response be li = (li1, . . . , lic),
lij ∈ {0, 1} for subject i = 1, . . . , n. There are 2c such responses. Let X be
a column vector of predictor variables with K possible combinations of settings

with
K∑

k=1

nk = n, where nk denotes the number of observations for setting k.

We assume independent multinomial distributions with 2c possible outcomes for
each of the K settings. The multinomial cell counts for setting i = 1, . . . , K and
multiple response l = 1, . . . , 2c are denoted by vil, equivalently, let τil denote the
multinomial probabilities and mil be the mean cell counts. The marginal counts
for item j = 1, . . . , c and setting i = 1, . . . , K is denoted by yij and equiva-
lently, the marginal probabilities and means by πij and μij. Let v denote the
column vector including all vil, equivalently, y, τ ,π, m and μ. The multinomial
quantities can be transformed to marginal quantities by:

πij =
∑

l=(l1,...,lc):lj=1

τil, yij =
∑

l=(l1,...,lc):lj=1

vil and μij =
∑

l=(l1,...,lc):lj=1

mil

equivalently being denoted by y = Bv, π = Bτ , μ = Bm with K · c × K · 2c

matrix B containing only 0s and 1s. Another notation being used for GEE are
the original observations yi = li for subject i = 1, . . . , n appropriately define
μi = πi.

In a study [14], 262 farmers were questioned about their veterinary infor-
mation sources. They could choose the following categories: (A) professional
consultant, (B) veterinarian, (C) state or local extension service, (D) magazines,
and (E) feed companies and reps. A g r e s t i and L i u [2] used “education” and
“size” of a farm as explanatory variables. The farmers were questioned whether
they had any kind of college education (“some college”) or not (“no college”).
The size of farms depended on the number of pigs they marketed annually: less
than 1,000, 1,000 to 2,000, 2,000 to 5,000, more than 5,000. Table 1 shows the
marginal counts for education and size of a farm, whereas table 2 shows the
multinomial counts.
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Table 1. Marginal Table of Farmers’ Veterinary Information Sources by
Education and Number of Pigs [14].

Number of Positive Responses
Number Information Source

Education of Pigs A B C D E Subjects

No College <1000 2 13 18 22 17 42

1000-2000 2 15 10 11 15 27

2000-5000 7 10 10 14 11 22

>5000 13 10 7 14 7 27

Some College <1,000 3 16 21 33 22 53

1000-2000 2 10 15 22 10 42

2000-5000 1 7 7 7 6 20

>5000 14 9 7 8 5 29

Total 44 90 95 131 93 262

Table 2. Joint Table of Farmers’ Veterinary Information Sources by Edu-
cation and Number of Pigs [14].

Number of Joint Counts
No College Some College

Number= Number of Pigs

( Binary 1000 2000 1000 2000
Sequence) <1000 -2000 -5000 >5000 <1000 -2000 -5000 >5000 Total

1=(00000) 0 0 0 0 0 0 0 0 0
2=(00001) 3 4 1 2 11 6 3 2 32

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

32=(11111) 1 2 3 2 3 0 0 1 12

Subjects 42 27 22 27 53 42 20 30 262

2. Marginal models

We want to model the marginal probabilities with 1:1 link function g, linear
predictor η, parameter estimate β and design matrix X:

η = g(π) = g(Bτ ) = Xβ with p = |β|. (1)

2.1. GEE

Maximum likelihood (ML) estimates for generalized linear models (GLM)
[10] can be obtained by fitting each of the c models separately. However, models
depend on items and items are not independent. More efficient parameter estima-
tion can be obtained by the generalized estimation equation (GEE) method [9],
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where marginal models are fitted simultaneously and a chosen correlation struc-
ture is incorporated, which is an extension of the quasi-likelihood method [16].
Let Var(Y) = f · φ−1 with variance function f = f (μ) and scale or dispersion
parameter φ. GEE estimates are obtained by computing the root of the GEE
(or quasi-score) equations:

n∑
i=1

(∂μi/∂β)T
(
AiRi(α)Ai

)−1(yi − μi) = 0

where ∂μi/∂β is a c × p matrix, Ai =
√

fi is a c × c diagonal matrix, Ri(α) is
the c × c correlation matrix for observation (cluster) i (i = 1, . . . , n) which is
a function of parameter(s) α. If design matrix X has full column rank, β can be
estimated by iterated weighted least squares [11]:

β̂
(k+1)

=
(
XT W(k)X

)−1

XT W(k)Z(k), k = 0, 1, 2, . . . (2)

with Z = Xβ̂ + D(y − μ), block diagonal matrices W = diag(W1, . . . ,Wn)
and D = diag(D1, . . . ,Dn) with Wi = D−1

i A−1
i R−1

i (α)A−1
i D−1

i , and Di =
∂ηi/∂μi for cluster i assuming the dispersion parameter φ and the correlation
matrix R(α) = diag

(
R1(α), . . . ,RK(α)

)
are known and given. If unknown, they

must be estimated consistently for every iterate by e.g. using the Pearson residu-
als as suggested in [9]. Under mild regularity conditions L i a n g and Z e g e r [9]
show, as n → ∞, n1/2(β̂ − β) is multivariate normal with mean 0 and some
robust covariance matrix (see [9]).

2.2. HLP models

L a n g (2005) generalized the class of generalized log-linear models to ho-
mogeneous linear predictor (HLP) models. For previous work see L a n g and
A g r e s t i [6], L a n g [7], [8] and B e r g s m a [3]. HLP models have the form

L(m) = Xβ (3)

where L is a smooth function from the multinomial counts satisfying certain
conditions, see L a n g (2005) for details. The marginal model (1) depends on
π and therefore on τ . According to L a n g (2005), models being expressed in
terms of τ are automatically HLP models. We have L(m) = g(π) = g(Aτ ) with
L : R

K2c → R
Kc. Let U be the orthogonal complement of X (X full column

rank), then define h(m) := UT L(m) and H := ∂h(m)T

∂m = ∂LT

∂m U. From (3),
it follows h(m) = 0. The following iteration scheme with reparametrization
ξ = logm was recommended by L a n g (2005) based on constrained (by the
model) maximization of the likelihood kernel l(ξ;v) = vT ξ:
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θ̂
new

= θ̂ −G(θ̂)−1g(θ̂) (4)

with

g(θ) =
[
v − eξ + H(ξ)λ

h(ξ)

]
and G(θ) =

(−D(eξ) H(ξ)
H(ξ)T 0

)

and θ =
(
ξT , λT

)T , where D(x) denotes a diagonal matrix with vector x on
the diagonal and λ denoting the Lagrange multiplier. Suppose a final solution
m̂ exists, the parameter estimate is computed by β̂ = RXL(m̂) with RX =
(XT X)−1XT . The asymptotic covariance for our model is (HLP model of zero
order):

Cov(β̂) =
(
XT ∂L(m̂)

∂mT
D(m̂)

∂L(m̂)T

∂m
X
)−1

.

The inverse of the matrix G can be simplified [8] by applying the inverse formula
of a partitioned matrix (e.g., in S e a r l e , p. 261 [15]) and is:

G−1 =

(
−D−1 + D−1H

(
HT D−1H

)−1
HT D−1 D−1H

(
HT D−1H

)−1(
HT D−1H

)−1 HT D−1
(
HT D−1H

)−1

)
.

(5)
Note that ML estimates are not properly defined for zero cell counts as in our
example and estimates are then called “extended ML estimates”.

3. Deletion diagnostics

Let β̂ be parameter estimate of all observations and let β̂[d] be the parameter
estimate having a set d of observations deleted. For given d the diagnostics
DBETA and C o o k distance (CD) [5] are defined as follows:

DBETA[d] = β̂ − β̂[d],

CD[d] = (β̂ − β̂[d])
T Cov(β̂)−1

(
β̂ − β̂[d]

)
/p . (6)
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3.1. GEE-diagnostics

The full solution for β̂[d] given index set d of observations to be deleted is
obtained by applying (2) with starting value β̂ and replacing X, W and Z by
X[d],V

−1
[d] and Z[d] respectively with V = W−1, W and Z partitioned as

W =
(

W[d] W[d]d

Wd[d] Wd

)
, Z =

(
Z[d]

Zd

)
such that without loss of generality the deleted observations are at the “end”
of W and Z. Matrices and vectors are now partitioned similarly. It follows
V−1

[d] = W[d]−W[d]dW
−1
d Wd[d]. Computing full solutions for DBETA and Cook

distance for all possible index sets d can be very time consuming. P r e i s e r and
Q a q i s h [11] derived one step approximations for these measures generaliz-
ing one step approximations for GLM [17] and logistic regression models [13].
One step approximation for β̂[d] are obtained by applying only one iteration.
For ordinary linear models the introduction of dummy variables is equivalent to
deletion [12]. We will apply this now for GEE. The solution β̃[d] is equal to β̂[d]

with

β̃ =
(

β̃[d]

β̃d

)
. (7)

where β̃ is the solution for all observations but with design matrix X̃:

X̃ =
(
X[d] 0
0 Id

)
, (8)

where Id is the identity matrix of length |d| and creates the dummy variables
β̃d for the deleted observations. However, this is only true, if the correlations of
both methods are the same for each step (e.g. known). It is sufficient to show
that applying one step yields the same new iterates β̃[d] and β̂[d] with the same
starting values.

P r o o f. (Applying formula for inverse of partitioned matrix, e.g. in S e a r l e ,
p. 261 [15]):
(
X̃T WX̃

)−1
X̃T WZ =

(
XT

[d]
W[d]X[d] XT

[d]
W[d]d

Wd[d]X[d] Wd

)−1 (
XT

[d]
W[d]Z[d] + XT

[d]
W[d]dZd

Wd[d]Z[d] + WdZd

)

=

⎛
⎝

(
XT

[d]
V−1

[d]
X[d]

)−1 (
XT

[d]
V−1

[d]
X[d]

)−1
XT

[d]
W[d]dW

−1
d

W−1
d Wd[d]X[d]

(
XT

[d]
V−1

[d]
X[d]

)−1
W−1

d Wd[d]X[d]

(
XT

[d]
V−1

[d]
X[d]

)−1
XT

[d]
W[d]dW

−1
d

⎞
⎠

(
XT

[d]
W[d]Z[d] + XT

[d]
W[d]dZd

Wd[d]Z[d] + WdZd

)
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=

⎛
⎝ (XT

[d]
V−1

[d]
X[d])

−1XT
[d]

V−1
[d]

Z[d]

−W−1
d Wd[d]

(
X[d](X

T
[d]

V−1
[d]

X[d])
−1XT

[d]
V−1

[d]
Z[d] − Z[d]

)
+ Zd

⎞
⎠ .

�

3.2. HLP diagnostics

In general,the marginal counts y have lower dimension than the joint counts v.
There are several ways of deleting. Let us assume that (*) deleting a set d of
marginal observations is equivalent to deleting a unique set d′ of joint observa-
tions. The most natural way is deleting/manipulating the joint counts. We can
show that the following methods are equivalent under (*):

(1) Deleting the set d′ of joint counts and hence deleting the set d of marginal
counts.

(2) Deleting only the set d of marginal counts by changing function L, s.t. L
maps all joint counts to the marginal counts with the deleted set d excluded
(simply omitting these components of L being in set d).

(3) Applying design matrix X̃ (8) in iteration scheme (4) instead of X.

Assumption (*) is not always fulfilled, however, methods (2.) and (3.) are al-
ways equivalent (resulting in identical steps). When one deletes marginal counts
with assumption (*) not holding, e.g., deleting a single item, methods (1.), (2.)
and (3.) still yield equal full solutions, only 1-step approximations differ slightly
(see Figure 2), where method (1.) refers now to manipulating the joint counts
such that the marginal counts are automatically deleted.
For deletion of joint counts without assumption (*), s.t. no marginal observa-
tions are deleted, these simplifications cannot be made. The proof of equivalence
is omitted and left to the reader.

A one-step solution for β[d] is:

β̂[d] = RX[d]L
(
exp

[
(−D−1 + D−1H[d]AHT

[d]D
−1)(v − m̂) + D−1H[d]Ah[d]

])
(9)

with A
(
HT

[d]D
−1H[d]

)−1. One could also expand L in a first order Taylor series,
but the formula would not simplify.

4. Example and discussion

One model denoted by “LIN S” (linear in farm size) for the farmer’s data [2]
is

log
(

πij

1 − πij

)
= αj + βS

j xi (10)

111



THOMAS SUESSE — IVY LIU

with equally spaced scores xi = 1, 2, 3, 4 depending on farm size (< 1, 000, . . . , >
5, 000). We computed the Cook distance for the farmers’ model (10) with GEE
and HLP fitting algorithms deleting farmsize and item×education (see Figure 1),
where full solutions and one step approximations (only 1 iteration, for details
see [13],[17]) are shown. The results show that GEE and ML diagnostics are
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Figure 1. Cook distance for model (10) and deletion of farmsize left and
deletion of item×Education right.

approximately the same and methods 1, 2 and 3 are also the same for full
solutions and very close for one step approximations even if condition (*) does
not hold. GEE and HLP (ML) deletion diagnostics both have their limitations.
GEE is not based on maximum likelihood and should only be applied if HLP
diagnostics are not applicable due to either too many zero cell counts or the
huge number of multinomial parameter. We investigated marginal models for
multiple response data, however, the introduced deletion methods do not depend
on marginal models only, but are generally applicable for GEE and HLP models.
Furthermore, the deletion methods do not depend on GEE and HLP models only,
but also on modeling based on the introduced iteration schemes - (2) and (4).
Looking at the results of the Farmer’s example, one can see less variation of the
Cook distance for HLP, which can be explained by the more unstable behaviour
of GEE due to the simultaneous estimation of the correlation and its parameter.
Thus, high Cook distance values obtained by GEE are suspicious of being only
a result of GEE fitting and not by influential observations.
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