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FIXED EFFECTS IN LINEAR REPEATED

MEASURES DESIGN MODELS WITH COVARIATES
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ABSTRACT. The topic of testing linear hypotheses about parameters of fixed
effects in models with variance-covariance components has been investigated ex-
tensively in the past decades. The main question is in determination of the degrees
of freedom of an approximate F -test. The approximation is based on the choice
of the estimate of the approximate variance-covariance matrix of the estimator of

the fixed effect parameters. Various approximations have been suggested in the
literature and some have already been implemented in statistical packages, such
as the generalized Satterthwaite approximation of degrees of freedom, sandwich
estimator, the Harville-Jeske-Kenward-Roger approximation, to name a few. For
repeated measures designs there are some possibilities of modeling the covariance
matrix as well as different choices of approximations. There are still open ques-

tions about how the different choices, either of the covariance structure or of the
approximating distribution of the test statistic, affect the size (and power) of the
tests. Here the sizes of different options of tests are determined and compared by
a simulation study.

1. Introduction

A special case of mixed linear model, the so-called repeated measures design
model, enjoys a special popularity and special treatment among investigators
dealing with replicated observations on sampling units. In such cases the de-
pendences between individual observations on the same unit cannot be ignored.
Particular attention is paid to replications that are carried out over time. In
such experiments, the interest is mostly in investigating the effect of interven-
tion (treatment), of time, and possibly of the treatment-by-time interaction.
Often the response is associated with a set of variables that are included in the
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model and are referred to as covariates. In most cases, the covariates are mea-
sured only once at the beginning of the experiment, i.e., they are considered not
to be time dependent.

In general, the model considered here can be expressed as follows. Denote by
Yi(j) the Ti(j) dimensional observation vector corresponding to the ith sampling
unit in the jth (treatment) group. Then Yi(j) can be modeled by

Yi(j) = (X1, X2)i(j)β + εi(j), (1)

where E
(
εi(j)

)
= 0 and the covariance matrix of Yi(j) is denoted by cov εi(j) =

Ri(j). Then, when combining all observations on all sampling units, we create an
N dimensional vector of observations Y , for which we shall assume the following
model.

E(Y ) = (X1 : X2)
(

β1

β2

)
, cov(Y ) = V (ϑ), (2)

where Y is the N × 1 random vector of observations. Here we shall consider the
case where Y follows a multivariate normal distribution. The matrix (X1 : X2)
is a known N × q matrix partitioned into two parts X1 and X2. X1 is the N × q1

matrix containing the observed covariates as columns, and X2 is the N × q2

design matrix corresponding to a factorial treatment structure of the trial. Since
observations on different sampling units are independent, the covariance matrix
V (ϑ) has a block diagonal structure, with Ri(j), the Ti(j) dimensional blocks
on the diagonal. It depends on an unknown r dimensional vector parameter
ϑ ∈ Θ ⊂ Rr, such that V (ϑ) is positive definite for all ϑ ∈ Θ. There are several
possible ways of modeling the covariance matrix. Here are just three most widely
used examples of types of structures of covariance matrices.

A. Compound symmetry (CS). The assumed structure is Ri(j) = ϑ11Ti(j)1
′
Ti(j)

+ ϑ2ITi(j) , ϑ2 > 0, 1� being an �-vector of ones. The parameter ϑ1 denotes
the common covariance between any two observations on the same sam-
pling unit, and ϑ2 denotes the error variance.

B. Autoregressive type of dependencies (AR(1)). Here, Ri(j) is a matrix with
entries Ri(j)l,m

= σ2ρ|l−m|, with 0 ≤ ρ ≤ 1 and σ2 > 0, l, m = 1, 2, . . . , Ti(j).

C. The most general is the case when all entries of the matrix Ri(j) (and hence
of V (θ)) are unknown and we do not assume any particular structure of
Ri(j), other than that it is positive definite. In general, the l, mth entry of
Ri(j) is assumed to be σl,m. We refer to this case as unstructured.
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2. Testing P ′β2 = 0

In the setting of model (2), we are interested in testing a linear estimable
hypothesis H0 : P ′β2 = 0 for a given q2 × k full rank matrix P , i.e., r(P ) = k.
Let F be a full column rank matrix for which X ′

1F = 0. The unbiased estimability
of P ′β2 is equivalent to the condition P = X ′

2FQ for some matrix Q.
If V (ϑ) is known, then the test statistic is based on the best linear unbi-

ased estimator (BLUE), ̂P ′β2, yielding β̂′
2P

[
cov(̂P ′β2)

]−1
̂P ′β2 that under H0

has a χ2 distribution with degrees of freedom equal to k. Let W (ϑ) = F ′V (θ)F .
Notice that here ̂P ′β2 = P ′(X ′

2FW (ϑ)−1F ′X2

)−
X ′

2FW (ϑ)−1F ′Y , which is in-
variant with respect to the choice of F . It is an easy exercise to show that
FW (ϑ)−1F ′ =

(
MX1V (ϑ)MX1

)+ and hence that ̂P ′β2 can be also expressed as
P ′(X ′

2(MX1V (ϑ)MX1)
+X2

)−
X ′

2

(
MX1V (ϑ)MX1

)+
Y , where MX1 = I − X1X

+
1

and where “+” denotes the Moore-Penrose generalized inverse. (See, e.g., [5].)
Its covariance matrix cov

(
̂P ′β2

)
, denoted by C(ϑ), can be expressed as

C(ϑ) = P ′ [X ′
2FW (ϑ)−1F ′X2

]−
P

= P ′ [X ′
2(MX1V (ϑ)MX1)

+X2

]−
P. (3)

In the case that V (ϑ) is proportional to a known matrix, say V (ϑ) = θV ,
with θ > 0 unknown, then the test is based on β̂′

2P
[
ĉov(̂P ′β2)

]−1
̂P ′β2, where

ĉov(̂P ′β2) = θ̂P ′[X ′
2(MX1V MX1)+X2

]−
P . Here, θ̂ is chosen to be the minimum

variance unbiased invariant estimator of θ. Under our assumptions and under
H0,

F =
1
k

β̂′
2P

[
ĉov

(
̂P ′β2

)]−1
̂P ′β2 (4)

has an F -distribution with N − r(X1, X2) degrees of freedom.
When V (ϑ) depends on unknown ϑ ∈ Θ ⊂ Rr, r > 1, the situation is more

complicated. From now on let ϑ̂ denote the REML estimator of ϑ based on
the full model (2). After plugging the estimates ϑ̂ into V (ϑ) and substituting
V (ϑ̂) in the expression for ̂P ′β2, we get an estimator denoted by ˜P ′β2 that is
often referred to as the empirical BLUE (EBLUE) (see, e.g., [3], [2].) In spite
of being nonlinear in Y , under normality, EBLUE remains unbiased for P ′β2,
since the estimator of ϑ is an even translation invariant function of Y , as shown
by several authors in a more general setting (see e.g., [2]). It is suggestive that
even in this complex case, the test statistic might be approached through[

˜P ′β2

]′ [
cov(˜P ′β2)

]−
˜P ′β2 . (5)
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JÚLIA VOLAUFOVÁ — LYNN R. LAMOTTE

The problem here is that cov(˜P ′β2), even in some simple settings under model
(2), in addition to the fact that it depends on unknown θ, does not have a closed
form. Instead, various approximations are suggested that still depend on ϑ, and
hence the estimated version of the approximation has to be used. The approxi-
mations considered by various authors are based on a decomposition

cov(˜P ′β2) = C(ϑ) + B(ϑ) (6)

(see, e.g., [3], [6], [2], [4]).
In the particular case of our model (2), we get the approximation of B(ϑ)

as follows. Denote by X∗
2 = F ′X2 and by S the (asymptotic) covariance matrix

of the REML estimators of ϑ with entries Sij , i, j = 1, 2, . . . , r. Let PX∗
2

=
X∗

2 (X∗′
2 W (ϑ)−1X∗

2 )−X∗′
2 W (ϑ)−1. Then in our particular case, the approxima-

tion BA(ϑ) of B(ϑ) is given by

BA(ϑ) =
r∑

i,j

SijQ
′PX∗

2

∂W (ϑ)
∂ϑi

(I − P ′
X∗

2
)W (ϑ)−1 ∂W (ϑ)

∂ϑj
P ′

X∗
2
Q . (7)

(See and compare also with, e.g., K e n w a r d and R o g e r [4].)

The empirical version of the asymptotic covariance matrix of ˜P ′β2, denoted
by C(ϑ̂), takes the form

C(ϑ̂) = P ′
[
X ′

2W (ϑ̂)+X2

]−
P. (8)

(See, e.g., [3], [6].) As pointed out by H a r v i l l e and J e s k e in [2] and subse-
quently by K e n w a r d and R o g e r in [4], for the estimate of the approximated
covariance matrix of ˜P ′β2, a correction term is needed that is exactly twice the
empirical version of BA(ϑ). The estimate of the approximated covariance matrix
of ˜P ′β2 is then given by

ĉovA(˜P ′β2) = C(ϑ̂) + 2BA(ϑ̂), (9)

which in our model takes the form

ĉovA(˜P ′β2)

= Q′P̂X∗
2

⎡
⎣W (ϑ̂) + 2

r∑
ij

Sij
∂W (ϑ̂)

∂ϑi
(I − P̂ ′

X∗
2
)W (ϑ̂)−1 ∂W (ϑ̂)

∂ϑj

⎤
⎦ P̂ ′

X∗
2
Q . (10)

Here
∂W (ϑ̂)

∂ϑj
=

∂W (ϑ)
∂ϑj

∣∣∣∣
ϑ=ϑ̂

and P̂X∗
2

is PX∗
2

at ϑ̂.

At this point there are several choices for creating the basis for the test statis-
tic. In each case we create the empirical version of the quadratic form by plugging
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in the REML estimates for ϑ. The options we shall investigate here are listed
below.

1. F1 = 1
k

[
˜P ′β2

]′
C(ϑ̂)−˜P ′β2 , (11)

emphasizing the simplicity of computations of C(ϑ̂). Under H0, F1 is ap-
proximated by an F -distribution with k and ν degrees of freedom. ν may
be determined possibly in two ways.

a) One possibility is to use the generalized Satterthwaite method (see,
e.g., [1]).

b) he other is the so-called between-within method of calculating the
degrees of freedom, which is the default for a repeated measures de-
sign analysis in the statistical package SAS in the procedure PROC
MIXED.

2. F3 = λF2 , (12)
where

F2 =
1
k

[
˜P ′β2

]′ [
C(ϑ̂) + 2BA(ϑ̂)

]−
˜P ′β2 , (13)

considering the suggested estimate of the approximation with the addi-
tional correction matrix BA(ϑ̂). K e n w a r d and R o g e r in [4] derived
the proportionality coefficient λ as a function of ϑ̂ as well as the approx-
imate denominator degrees of freedom, say ν(ϑ̂), so that the moments of
F3 match the moments of the F -distribution with k and ν(ϑ̂) degrees of
freedom.

3. Simulation study

A simulation study was carried out in order to investigate two phenomena,
the effect of the choice of the structure of the covariance matrix in modeling
dependencies between observations on the same sampling unit, and the effect of
the choice of type of approximate test of the hypothesis on the size of the test.
We focus here on the behavior of the p-value (size of the test) and its accuracy
(validity). For sampling units and covariates, the NHANES(2004) data set was
used with 8192 distinct records as the basic source. Equal numbers of males and
females were randomly selected with records of age, height and weight that are
considered as covariates in the model and constitute the matrix X1. Two levels
of sample sizes were considered, n = 6 per treatment group and n = 12 per treat-
ment group. There were three treatment groups considered, simulating a weight-
loss study, starting from the weight from the record of each sampling unit. For
each subject, repeated measures (up to 4, but with occasional missing values)
were generated with compound symmetric (CS) variance-covariance structure.
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The intraclass correlation, ρ, was set to four different levels, 0.1, 0.3, 0.6, and
0.9. The error variance σ2

e was set to 4. In the simulated models, there were no
treatment effects and no time-by-treatment interaction effects. For each above
mentioned configuration, there were 1000 simulations carried out and three dif-
ferent approximations of the test of the hypothesis of no treatment effect, cor-
responding to F1 with both methods of calculating ν as indicated in a) and b)
above and to F3. Although the generated data all had CS structure, when per-
forming the tests, we ran some simulations (Figures 1–3) in which the correct
(CS) covariance structure was used, and some (Figures 4 and 5) in which the
incorrect covariance structure was used (we used AR(1) for this purpose).

In the Figures 1–5, we plot the observed p-values on the vertical axis versus the
empirical cumulative distribution function of the p-value on the horizontal axis
from the 1000 simulations. Each panel corresponds to a particular approximation
of the test. Since the range of interest for the size of the test is mainly bounded
by 10%, the graphs show only the range from 0 to 0.1.

Figure 1. Observed p-values vs. empirical CDF of p-values for ρ = 0.1,
n = 6 per group and the right choice of CS.

Figure 2. Observed p-values vs. empirical CDF of p-values for ρ = 0.3,
n = 6 per group and the right choice of CS.
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Figure 3. Observed p-values vs. empirical CDF of p-values for ρ = 0.6,
n = 6 per group and the right choice of CS.

Figure 4. Observed p-values vs. empirical CDF, n= 6/group, ρ = 0.1,
AR(1) chosen instead of the true CS.

Figure 5. Observed p-values vs. empirical CDF, n=6/group, ρ = 0.3,
AR(1) chosen instead of the true CS.

4. Conclusions

Shown here are results with CS as the correct, and AR(1) as the incorrect
covariance structure. We also ran simulations examining unstructured as the
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Figure 6. Scatter plots of p-values, AR(1) instead of true CS, n=6/group,

ρ = 0.3 comparing methods.

Figure 7. Scatter plots of p-values, AR(1) instead of true CS, n=12/group,
ρ = 0.3 comparing methods.

incorrect covariance structure. We also generated data with AR(1) as the correct
and CS and unstructured as incorrect covariance structure. In each case the
results were similar to results reported here.

It seems that the major effect on the size of the test and consequently on
the accuracy of the p-value is the choice of the (wrong) covariance matrix. This
effect depends further on the tightness of dependencies between observations on
the same sampling unit.

The different types of approximations do not seem to have a meaningful effect
on the size of considered tests except when the choice of the covariance matrix
happens to be the right one (that, in practice, we never have a way of verifying).
See Figures 1–5.

The different types of approximate tests behave very similarly to each other.
In most of the cases, the approximate tests are anti-conservative. This is a serious
phenomenon since the observed p-values appear to be smaller than in fact they
should be, which may lead to unwarranted rejections and inflating the probability
of Type I error.
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Figures 6 and 7 show p-values computed with incorrect (AR(1) instead of CS)
covariance structure for different approximations (F3, F1 with a) and F1 with b) ).
These scatterplots illustrate that for larger sample size, it does not make a dif-
ference what type of approximation is used, since all behave in the same way.
More research is needed in this area to make generally valid recommendations.
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