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COMPARISON OF PREDICTORS OF TIME SERIES

IN ORTHOGONAL REGRESSION MODELS

Frantǐsek Štulajter

ABSTRACT. The problem of comparison of the best linear predictor defined
in a finite discrete spectrum model, and of the best linear unbiased predictor
defined in a simple linear regression model, is considered. Mean squared errors of
these two predictors are computed and compared in both these models under the

assumption that functions generating these two models are the same and that the
corresponding vectors in these models for a finite observation are orthogonal.

1. Introduction.

We shall consider the problem of prediction of time series based on model-
ing time series by different regression models. One model will be a finite dis-
crete spectrum model (FDSM) and the second a (simple) linear regression model
(LRM). In this approach the mean squared errors (MSEs) of the best linear
predictor (BLP) (which is defined in the FDSM) and the best linear unbiased
predictor (BLUP) (defined in the LRM) will be compared in both FDSM and
LRM. The general theory of best linear predictors in regression models is de-
scribed in G o l d b e r g e r (1962), C h r i s t e n s e n (1991) S t e i n (1999) and
Š t u l a j t e r (2002).

For a given time series data both these two regression models, with the same
regression functions, can be used. This is caused by the fact that on a base of
time series data, it is not possible to decide what model generates the given
data.

Some of the arising problems connected with the comparison of the mean
squared errors of the BLP and the BLUP were studied in Š t u l a j t e r (2002)
and Š t u l a j t e r (2003), where it was assumed that the vectors, which we get
from functions generating the FDSM and the LRM, were orthogonal, and also

2000 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 62M10.
Keywords: time series, finite discrete spectrum model, linear regression model, best linear

unbiased predictors, mean squared errors of best linear unbiased predictors.
Supported by the VEGA grant of the Slovak Grant Agency No. 1/3023/06.

175
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it was assumed that the parameters of the covariance function of time series in
the FDSM were known.

But only the MSE of the BLP, computed in the FDSM, with the MSE of the
BLUP, computed in the LRM, were compared in Š t u l a j t e r (2002). It is also
necessary to compare the MSE of the BLP if we use this predictor in the LRM,
and the MSE of the BLUP if we use this predictor in the case when the data
are generated by the FDSM. This is done, for orthogonal regression models, in
this contribution.

2. BLP in a finite discrete spectrum model.

An FDSM for time series X(.) is given by Š t u l a j t e r (2002),

X(t) =
l∑

i=1

Yifi(t) + w(t); t = 1, 2, . . . ,

where Y = (Y1, Y2, . . . , Yl)′ is a random vector with E[Y ] = 0 and with mutually
uncorrelated components Yi with variances D[Yi] = σ2

i ; i = 1, 2, . . . , l. It is
assumed that fi(.); i = 1, 2, . . . , l are given known functions, w(.) is a white
noise with a variance D

[
w(t)

]
= σ2 which is uncorrelated with random vector

Y = (Y1, Y2, . . . , Yl)′.
Time series X(.), given by FDSM, have covariance functions Rν(., .) given by

Rν(s, t) = σ2δs,t +
l∑

i=1

σ2
i fi(s)fi(t); s, t = 1, 2, . . . ,

where
ν = (σ2, σ2

1 , . . . , σ
2
l )′ ∈ (0,∞) × 〈0,∞)l = Υ.

A finite observation X =
(
X(1), . . . , X(n)

)′ of X(.) given by FDSM can be
written as

X = FY + w, (2.1)

where the n × l matrix F = (f1 . . . fl) has columns, n × 1 vectors,

fi =
(
fi(1), . . . , fi(n)

)′; i = 1, 2, . . . , l.

In this model E[X] = 0 and covariance matrices Covν(X) = Σν ; ν ∈ Υ of X
are positive definite and are given by

Σν = σ2In +
l∑

i=1

σ2
i fif

′
i =

l∑
i=0

σ2
i Vi,
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where V0 = In, Vi = fif
′
i , with ranks r(Vi) = 1; i = 1, 2, . . . , l and σ2

0 = σ2. We
call model (2.1.) also an FDSM and we call it orthogonal if fi ⊥ fj ; for i �= j.

According to the classical theory, G o l d b e r g e r (1962), the BLP, X∗
ν (n + d),

of X(n + d) is given by
X∗

ν (n + d) = r′νΣ−1
ν X, (2.2)

where
rν = Covν

(
X; X(n + d)

)
,

and
MSEν

[
X∗

ν (n + d)
]

= Dν

[
X(n + d)

]− r′νΣ−1
ν rν . (2.3)

In an orthogonal FDSM we have

rν =
l∑

i=1

σ2
i fi(n + d)fi (2.4)

and, see Š t u l a j t e r (2002),

Σ−1
ν =

1
σ2

(
In −

l∑
i=1

(
σ2/σ2

i + ‖fi‖2
)−1

fif
′
i

)
. (2.5)

The following lemma easily follows from (2.2.)–(2.5.).

����� 2.1� In an orthogonal FDSM

X = FY + w

the BLPs, X∗
ν (n + d), of X(n + d) are for every ν ∈ Υ given by

X∗
ν (n + d) =

l∑
i=1

fi(n + d)

σ2/σ2
i + ‖fi‖2 f ′

iX,

and

MSEν

[
X∗

ν (n + d)
]

= σ2

(
1 +

l∑
i=1

f2
i (n + d)

σ2/σ2
i + ‖fi‖2

)
.

Remark� In Š t u l a j t e r (2007), similar results as above, for l = 2, under the
assumption that the vectors f1, f2 are not orthogonal, are derived.

3. Comparison of predictors.

Now let us consider for time series X(.) the model

X(t) =
l∑

i=1

βifi (t) + w(t); t = 1, 2, . . .
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where w(.) is a white noise with variance D
[
w(t)

]
= σ2.

For this model we get for a finite observation X =
(
X(1), . . . , X(n)

)′ of X(.)
the (simple) LRM

X = Fβ + w; (3.1)

Covσ2(X) = Σσ2 = σ2In,

where β = (β1, β2, . . . , βl)′ ∈ Ek, where the n × l matrix F = (f1 . . . fl) has
columns, n × 1 vectors, fi and where σ2 ∈ (0,∞).

We call LRM (3.1.) orthogonal if fi ⊥ fj ; for i �= j.
The following lemma describes the BLUP and its MSE in an orthogonal LRM.

����� 3.1� In an orthogonal LRM

X = Fβ + w

the BLUP, X̂(n + d), of X(n + d) is given by

X̂(n + d) =
l∑

i=1

fi(n + d)

‖fi‖2 f ′
iX

and

MSEσ2

[
X̂(n + d)

]
= σ2

(
1 +

l∑
i=1

f2
i (n + d)

‖fi‖2

)
; σ2 ∈ (0,∞) .

Comparing the results given in Lemma 2.1. and in Lemma 3.1. we have di-
rectly the following statement.

����	�� 3.1� Let X∗
ν (n + d) be the BLP in an orthogonal FDSM and let

X̂(n + d) be the BLUP in an orthogonal LRM. Then

MSEν

[
X∗

ν (n + d)
] ≤ MSEσ2

[
X̂(n + d)

]
for every ν = (σ2, σ2

1 , . . . σ
2
l )′ ∈ Υ.

This result shows that the choice of the predictor X̂(n+d), assuming that the
data follows an LRM, is not as good as the choice of the predictor X∗

ν (n + d),
that is the BLP, assuming that observation X is given by an FDSM if parameter
ν of the FDSM, the variances σ2 and σ2

j ; j = 1, 2, . . . , l, are known. The reason
for this result is that in an FDSM we have some limitations on random “re-
gression parameters” consisting in the fact that they have finite variances and
thus realizations of these “parameters” are in some sense bounded, while in the
classical LRM we have no restrictions on regression parameters.

Now we shall consider the case when time series data come from an LRM, but
we use the predictor X∗

ν (n+d) with some arbitrary, but fixed, value of parameter
ν. It is easily to deduce the following lemma.
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����� 3.2� For the predictors X∗
ν (n + d) and X̂(n + d) the following equality

holds

X∗
ν (n + d) = X̂(n + d) −

l∑
i=1

σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)fi(n + d)f ′

iX . (3.2)

Using this lemma in an orthogonal LRM, we get the expression

MSE(β,σ2)

[
X∗

ν (n + d)
]

= MSEσ2

[
X̂(n + d)

]
+ Dσ2

⎡
⎣ l∑

i=1

fi(n + d)σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)f ′

iX

⎤
⎦

+

⎛
⎝Eβ

⎡
⎣ l∑

i=1

fi(n + d)σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)f ′

iX

⎤
⎦
⎞
⎠

2

− 2
l∑

i=1

fi(n + d)σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)

× Covσ2

(
X̂(n + d) − X(n + d); f ′

iX
)

.

Since f ′
iX; i = 1, 2, . . . , l are mutually uncorrelated with variances Dσ2 [f ′

iX] =
σ2 ‖fi‖2 if X is generated by an orthogonal LRM, we get

Dσ2

⎡
⎣ l∑

i=1

fi(n + d)σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)f ′

iX

⎤
⎦ = σ4

l∑
i=1

f2
i (n + d)σ2

‖fi‖2
(
σ2 + σ2

i ‖fi‖2
)2 ,

Eβ

⎡
⎣ l∑

i=1

fi(n + d)σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)f ′

iX

⎤
⎦ = σ2

l∑
i=1

fi(n + d)

σ2 + σ2
i ‖fi‖2 βi

and
l∑

i=1

fi(n + d)σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
) Covσ2

(
X̂(n + d) − X(n + d); f ′

iX
)

= σ4
l∑

i=1

f2
i (n + d)

‖fi‖2
(
σ2 + σ2

i ‖fi‖2
) ,

since, as it can be easily seen,

Covσ2

(
X̂(n + d) − X(n + d); f ′

iX
)

= σ2fi(n + d).
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The above derived results are collected in the following theorem.

����	�� 3.2� In an orthogonal LRM

X = Fβ + w

the MSEs of the predictor X∗
ν (n+d) are given for every β ∈ El and every ν ∈ Υ

by

MSE(β,σ2)

[
X∗

ν (n + d)
]

= MSEσ2 [X̂(n + d)]

− σ4
l∑

i=1

f2
i (n + d)

‖fi‖2
(
σ2 + σ2

i ‖fi‖2
)

− σ4
l∑

i=1

σ2
i

f2
i (n + d)(

σ2 + σ2
i ‖fi‖2

)2

+ σ4

(
l∑

i=1

fi(n + d)

σ2 + σ2
i ‖fi‖2 βi

)2
.

We can see that the mean squared errors, MSE(β,σ2)

[
X∗

ν (n+d)
]
, of the predic-

tor X∗
ν (n+d), used under the assumption that X is generated by an orthogonal

LRM, depends also on parameter β, since X∗
ν (n + d) is a biased predictor in an

LRM. The influence of values of β on the increase of the MSE(β,σ2)

[
X∗

ν (n + d)
]

can be significant for a fixed (small) n, but in many regression models this in-
fluence is negligible for large values of n.

We can also rewrite (3.2.) as

X̂(n + d) = X∗
ν (n + d) +

l∑
i=1

fi(n + d)σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)f ′

iX ,

from which we have

MSEν

[
X̂(n + d)

]
= MSEν

[
X∗

ν (n + d)
]

+ Eν

⎡
⎣ l∑

i=1

fi(n + d)σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)f ′

iX

⎤
⎦

2

+ 2
l∑

i=1

fi(n + d)σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)

× Covν

(
X∗

ν (n + d) − X(n + d); f ′
iX
)
.
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Since f ′
iX; i = 1, 2, . . . , l are, in an orthogonal FDSM, mutually uncorrelated

random variables with variances

Dν [f ′
iX] = σ2

i ‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)

,

we can write

Eν

⎡
⎣ l∑

i=1

fi(n + d)σ2/σ2
i

‖fi‖2
(
σ2/σ2

i + ‖fi‖2
)f ′

iX

⎤
⎦

2

= σ4
l∑

i=1

f2
i (n + d)

‖fi‖2
(
σ2 + σ2

i ‖fi‖2
) .

Next it is easy to verify that

Covν

(
X∗

ν (n + d) − X(n + d); f ′
iX
)

= 0

and thus we have shown that the following theorem is true.

����	�� 3.3� In an orthogonal FDSM

X = FY + w

the MSEs of the predictor X̂(n + d) are given by

MSEν

[
X̂(n + d)

]
= MSEν

[
X∗

ν (n + d)
]
+ σ4

l∑
i=1

f2
i (n + d)

‖fi‖2
(
σ2 + σ2

i ‖fi‖2
) ;

ν ∈ Υ.


����
������ From the results derived above we have, for orthogonal models,
for every β ∈ Ek and every ν ∈ Υ, the following statements: if

lim
n→∞

fi(n + d)
‖fi‖ = 0,

then

lim
n→∞ MSEσ2

[
X̂(n + d)

]
= lim

n→∞ MSEν

[
X∗

ν (n + d)
]

= lim
n→∞ MSEν

[
X̂(n + d)

]
= lim

n→∞ MSE(β,σ2)

[
X∗

ν (n + d)
]

= σ2.

We see that in orthogonal models the choice of the predictor X̂(n + d) is,
from the asymptotic point of view, equivalent with the choice of the predictor
X∗

ν (n+d), since, under the weak conditions, these two predictors have in the both
considered models the same asymptotic mean squared errors for all parameters
β and ν.

In practical applications of the kriging theory we have only time series data,
and thus all parameters of both regression models that we use for modeling the
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given time series data, should be estimated from these data. Thus it is necessary
to study the mean squared errors in both regression models of the predictor
X∗

ν̃ (n+d), where the unknown parameter ν is replaced by an estimator ν̃(X) of
ν, and to compare these mean squared errors with mean squared errors of the
predictor X̂(n + d).

The predictor X∗
ν̃ (n + d) is called the empirical BLUP. Some results on

mean squared error of the empirical BLUP can be found in Christensen (1992),
Harville, Jeske (1992), Štulajter (2002), Das, Jiang, Rao (2004), Štulajter (2007a)
and others. Methods of estimation of variances are given in Harville (1977),
Searle, Casella, McCulloch (1992), Štulajter, Witkovský (2004) and others.
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