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UNDERPARAMETRIZED REGRESSION MODELS

Luboḿır Kubáček

ABSTRACT. A description of many events and processes needs a large number

of parameters. However, models describing these events and processes are difficult
to deal with. Therefore, for practical purposes, it is sometimes necessary to neglect
some of the parameters and to use underparametrized models. Some problems
arising by this are studied.

Introduction

Mathematical description of many events and processes needs a large number
of parameters. However, models with large number of parameters are difficult
to deal with. Therefore, for practical purposes, a part of parameters is neglected
in the model. What can be expected in connection with statistical inference in
such underparametrized model?

Similar problems are studied also with a rather different approach in [2],
[4]–[8] etc.

Since a class of problems connected with models with a large number of
parameters is very rich, the problem of estimation is studied in the following
text only.

1. Notation and auxiliary statements

Y. . . n-dimensional random vector (observation vector),
F =

{
F (·, β, γ) : β ∈ β, γ ∈ γ

}
. . . class of distribution functions affiliated

to Y,
β. . . k-dimensional unknown vector parameter which cannot be neglected,
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γ. . . s-dimensional unknown vector parameter which is to be neglected,
E(Y) =

∫
udF (u; β, γ) = Xβ + Sγ,

X. . . n × k given matrix,
S. . . n × s given matrix,
Σ = Var(Y). . . covariance matrix of the observation vector Y,
C = X′Σ−1X,
β, γ. . . linear manifolds which can be either the whole space Rk and Rs,

respectively, or β = {β : b + Bβ = 0}, or

{β, γ} =

{(
β
γ

)
: b + Bβ + Gγ = 0

}
, etc.

B. . . q × k given matrix,
G. . . q × s given matrix,
MX . . . projection matrix on the orthogonal complement (in the Euclidean

norm) M⊥(X) of the column space M(X) = {Xu : u ∈ Rk},
(MXΣMX)+. . . the Moore-Penrose generalized inverse of the matrix

MXΣMX (in more detail cf. [9]),
K = BC−1X′Σ−1S − G,
L = B1C−1X′Σ−1S −G.

The covariance matrix Σ of the observation vector Y is assumed to be fixed
for the whole class F . This situation is denoted as

(b) Y ∼n

[
(X,S)

(
β
γ

)
,Σ

]
, β ∈ Rk, γ ∈ Rs. (1)

The underparametrized model is denoted as

(a) Y ∼n (Xβ,Σ), β ∈ Rk. (2)

The best linear unbiased estimators of the parameters β and γ in the model

(1) are denoted as β̂(b), γ̂(b) and the best linear unbiased estimator of the pa-

rameter β in the model (2) is denoted as β̂(a).

Assumption� In the following sections it is assumed that the regularity of the
models (1) and (2), i.e., r(X,S) = k+s < n, r(X) = k < n,Σ is positive definite.
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2. Models without constraints

In this section the models (1) and (2) are considered.

����� 2.1� If γ ∈ A, where

A =
{

γ : γ′S′Σ−1XC−1
{
C−1X′Σ−1S

[
S′(MXΣMX)+S

]−1
S′Σ−1XC−1

}−

×C−1X′Σ−1Sγ ≤ 1
}

,

then

∀{h ∈ Rk
}{

h′
[
E(b)

(
β̂(a)

)− β
]}2

+ Var
(
h′β̂(a)

) ≤ Var
(
h′β̂(b)

)
.

P r o o f. It is valid(
β̂(b)

γ̂(b)

)
=
(

C, X′Σ−1S
S′Σ−1X, S′Σ−1S

)−1 (
X′Σ−1Y
S′Σ−1Y

)
.

Thus

β̂(b) = β̂(a) −C−1XΣ−1S
[
S′(MXΣMX)+S

]−1S′Σ−1
(
Y −Xβ̂(a)

)
,

where β̂(a) = C−1X′Σ−1Y. (With respect to the assumption on regularity, the

matrix S′(MXΣMX)+S is regular.) Since β̂(a) and Y−Xβ̂(a) are uncorrelated,

Var
(
β̂(b)

)
= Var

(
β̂(a)

)
+ C−1X′Σ−1S

[
S′(MXΣMX)+S

]−1S′Σ−1

×(Σ −XC−1X′)Σ−1S
[
S′(MXΣMX)+S

]−1S′Σ−1XC−1

= C−1 + C−1X′Σ−1S
[
S′(MXΣMX)+S

]−1
S′Σ−1XC−1.

Let b = E(b)

(
β̂(a)

)−β and let γ satisfy the inequality (in the Loevner sense)

Var
(
β̂(a)

)
+ bb′ ≤L Var

(
β̂(b)

)
which is equivalent to

∀{h ∈ Rk
}
Var
(
h′β̂(a)

)
+ (h′b)2 ≤ Var

(
h′β̂(b)

)
.

The last inequality is equivalent (with respect to the Scheffé theorem [10]) to

b′
[
Var
(
β̂(b)

)− Var
(
β̂(a)

)]−
b ≤ 1.
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Since b = C−1X′Σ−1Sγ,

Var
(
β̂(b)

)− Var
(
β̂(a)

)
= C−1X′Σ−1S

[
S′(MXΣMX)+S

]−1S′Σ−1XC−1

and b ∈ M
(
Var(β̂(b))−Var(β̂(a))

)
, the last inequality is invariant to the choice

of the generalized inverse and the Scheffé theorem can be utilized. �

3. Models with constraints I

A model with constraints I will be considered in two forms

(cI) Y ∼n

[
(X,S)

(
β
γ

)
,Σ

]
, b + Bβ + Gγ = 0, (3)

or

(bI) Y ∼n

[
(X,S)

(
β
γ

)
,Σ

]
, b + Bβ = 0. (4)

Here it is assumed r(B,G) = q < k + s, r(B) = q < k.
In both cases the underparametrized model is

(aI) Y ∼n (Xβ,Σ), b + Bβ = 0. (5)

In the following text estimators in models with constraints will be denoted
by ̂̂ .

3.1. The constraints b + Bβ = 0 in the true model

����� 3.1� In the model (5) the BLUE of the parameter β is

̂

̂

β(aI) = β̂ − C−1B′(BC−1B′)−1
(
Bβ̂ + b

)
,

where β̂ = C−1X′Σ−1Y. Further

Var
(

̂

̂

β(aI)
)

= C−1 −C−1B′(BC−1B′)−1BC−1.

P r o o f. Cf., e.g., in [3]. �

In the model (4) the mean value of the parameter
̂

̂

β(aI) is

E(bI)

(
̂

̂

β(aI)
)

= β + (MB′CMB′)+X′Σ−1Sγ. (6)
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����� 3.2� The covariance matrix of the BLUE of the parameter β in the
model (4) is

Var
(

̂

̂

β(bI)
)

= (MB′CMB′)+

+ (MB′CMB′)+X′Σ−1S
[
S′(MXMB′ ΣMXMB′ )+S

]−1

× S′Σ−1X(MB′CMB′)+.

P r o o f. The model (4) can be rewritten as follows.

β = β0 + KBκ, M(KB) = Ker(B) = {u : Bu = 0},
where KB is k× (k− q) matrix with the full rank in columns and b+Bβ0 = 0.

Since KB(K′
BCKB)−1K′

B = (MB′CMB′)+ and MXKB
= MXMB′ , the ex-

pression for Var
(

̂

̂

β(bI)
)

can be easily obtained. �

The relationship (6), Lemma 3.1 and Lemma 3.2 imply

E(bI)

(
̂

̂

β(aI)
)
− β ∈ M

[
Var
(

̂

̂

β(bI)
)
− Var

(
̂

̂

β(aI)
)]

,

and thus analogously as in Lemma 2.1 the following theorem can be stated.

����	�� 3.3� If γ ∈ AI,bI
, where

AI,bI
=

{
γ : γ′S′Σ−1X(MB′CMB′)+

×
{

(MB′CMB′)+X′Σ−1S
[
S′(MXMB′ ΣMXMB′ )+S

]−1

× S′Σ−1X(MB′CMB′)+
}−

× (MB′CMB′)+X′Σ−1Sγ ≤ 1

}
,

then in the model (4)

∀{h ∈ Rk
}{

h′
[
E(bI)

(
̂

̂

β(aI)
)
− β

]}2

+ Var
(
h′ ̂̂β(aI)

)
≤ Var

(
h′ ̂̂β(bI)

)
.
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3.2. The constraints b + Bβ + Gγ = 0 in the true model

In the model (3) the situation is a little more complicated. The mean value

E
(

̂

̂

β(aI)
)

in the model (3) is

E(cI)

(
̂

̂

β(aI)
)

= β +
[
C−1X′Σ−1S −C−1B′(BC−1B′)−1(BC−1X′Σ−1S −G)

]
γ (7)

����� 3.4� Let K = BC−1X′Σ−1S −G. Then

̂

̂

β(cI) −
̂

̂

β(aI) =
[
C−1X′Σ−1S −C−1B′(BC−1B′)−1K

]
ξ

and

ξ = −
[
S′(MXΣMX)+S + K′(BC−1B′)−1K

]−1

×
[
S′Σ−1v + K′(BC−1B′)−1(Bβ̂ + b)

]
,

v =Y −Xβ̂, β̂ = C−1X′Σ−1Y, C = X′Σ−1X.

P r o o f. In the model (3) the BLUE of the parameter β is

̂

̂

β(cI) = (I,0)

{
D−1

(
X′Σ−1Y
S′Σ−1Y

)
−D−1

(
B′

G′

)

×
[
(B,G)D−1

(
B′

G′

)]−1[
(B,G)D−1

(
X′Σ−1Y
S′Σ−1Y

)
+ b

]}
,

D =
(

X′

S′

)
Σ−1(X,S).

After some simple, however tedious calculations, the proof can be straightfor-
wardly finished. �

����� 3.5� The covariance matrix of the vector ξ from Lemma 3.4 is

Var(ξ) =
[
S′(MXΣMX)+S + K′(BC−1B′)−1K

]−1

.

P r o o f. It is a direct consequence of the definition of the vector ξ. �
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����� 3.6�

Var
(

̂

̂β(cI )
)

=Var
(

̂

̂β(aI )
)

+
[
C−1X′Σ−1S− C−1B′(BC−1B′)−1K

]
×
[
S′(MXΣMX)+S + K′(BC−1B′)−1K

]−1

×
[
S′Σ−1XC−1 −K′(BC−1B′)−1BC−1

]
.

P r o o f. The covariance matrix of the estimator
̂

̂

β(cI) is

Var
(

̂

̂β(cI )
)

=(I,0)

{
D−1 −D−1

(
B′

G′

)[
(B,G)D−1

(
B′

G′

)]−1

× (B,G)D−1

}(
I
0

)
.

This expression can be rearranged into expression given in the statement. �

Since

bI,(cI) = E(cI )

(
̂

̂

β(aI)
)
− β ∈ M

[
Var
(

̂

̂

β(cI)
)
− Var

(
̂

̂

β(aI)
)]

(cf. (7)), the following theorem can be stated.

����	�� 3.7� If in the model (3) γ ∈ AI,(cI), where

AI,(cI ) =

{
γ : γ ′

[
S′Σ−1XC−1 − K′(BC−1B′)−1BC−1

]
×
{[

C−1X′Σ−1S − C−1B′(BC−1B′)−1K
]

×
[
S′(MXΣMX)+S + K′(BC−1B′)−1K

]−1

×
[
S′Σ−1XC−1 − K′(BC−1B′)−1BC−1

]}−

×
[
C−1X′Σ−1S− C−1B′(BC−1B′)−1K

]
γ ≤ 1

}
,

then

∀{h ∈ Rk
}{

h′
[
E(cI )

(
̂

̂

β(aI)
)
− β

]}2

+ Var
[
h′
(

̂

̂

β(cI )
)]

≤ Var
[(

̂

̂

β(aI)
)]

.

P r o o f. Proof is analogous as in Lemma 2.1. �
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4. Models with constraints II

A model with constraints II will be considered in two forms

(cII) Y ∼n

[
(X,S)

(
β1

γ

)
,Σ

]
, b + B1β1 + Gγ + B2β2 = 0, (8)

(bII) Y ∼n

[
(X,S)

(
β1

γ

)
,Σ

]
, b + B1β1 + B2β2 = 0. (9)

The regularity conditions are r(B1,G,B2) = q < k1 + s + k2, r(B2) = k2 < q,
r(B1,B2) = q < k1 + k2.
The parameters β1 and γ occurring in the mean value of the observation vector
Y can be directly measured. However, the parameter β2 occurs in the constraints
only.

In both cases the underparametrized model is

(aII) Y ∼n (Xβ1,Σ), b + B1β1 + B2β2 = 0. (10)

4.1. The constraints b + B1β1 + B2β2 = 0 in the true model

����� 4.1� The BLUE of the parameter β1 in the model (10) is

̂

̂

β
(aII )
1 = β̂1 −C−1B′

1

(
MB2B1C−1B′

1MB2

)+(
B1β̂1 + b

)
,

β̂1 =C−1X′Σ−1Y

and its mean value in the model (9) is

E(bII )

(
̂

̂

β
(aII )
1

)
=β1 + C−1X′Σ−1Sγ −C−1B′

1

(
MB2B1C−1B′

1MB2

)+
× B1C−1X′Σ−1Sγ

=β1 +
(
MB′

1MB2
CMB′

1MB2

)+

X′Σ−1Sγ. (11)

P r o o f. The expression for
̂

̂

β
(aII )
1 is known, e.g., in [3]. The expression for

E(bII )

(
̂

̂

β
(aII )
1

)
can be obtained directly. �
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����� 4.2� The covariance matrix of the BLUE
̂

̂

β
(bII )
1 of the parameter β1 in

the model (9) is

Var
(

̂

̂

β
(bII )
1

)
=Var

(
̂

̂

β
(aII )
1

)
+
(
MB′

1MB2
CMB′

1MB2

)+
X′Σ−1S

×
[
S′
(
MXMB′

1MB2
ΣMXMB′

1MB2

)+

S
]−1

× S′Σ−1X
(
MB′

1MB2
CMB′

1MB2

)+

.

P r o o f. Let Ker(B1,B2) = M (
K1
K2

)
. With respect to β1 = β1,0 + K1κ, the

model (9) can be rewritten as

Y − Xβ1,0 ∼n

[
(XK1,S)

(
κ
γ

)
,Σ

]

and thus

Var
(
̂κ(bII)

)
=(I,0)

(
K′

1CK1, K′
1X

′Σ−1S
S′Σ−1XK1, S′Σ−1S

)−1 (
I
0

)
=
(
K′

1CK1

)−1 +
(
K′

1CK1

)−1
K′X′Σ−1S

×
[
S′(MXK1ΣMXK1

)+S
]−1

× S′Σ−1XK1

(
K′

1CK1

)−1
.

Since M(K1) = M(
MB′

1MB2

)
, the proof can be straightforwardly finished. �

Since (cf. (11))

E(bII )

(
̂

̂

β
(aII )
1

)
− β1 ∈ M

[
Var
(

̂

̂

β
(bII)
1

)
− Var

(
̂

̂

β
(aII )
1

)]
,

the following theorem can be stated.
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����	�� 4.3� Let

AII,β1,(bII) =

{
γ : γ′S′Σ−1X

(
MB′

1MB2
CMB′

1MB2

)+
×
{(

MB′
1MB2

CMB′
1MB2

)+

X′Σ−1S

×
[
S′
(
MXMB′

1MB2
ΣMXMB′

1MB2

)+

S
]−1

× S′Σ−1X
(
MB′

1MB2
CMB′

1MB2

)+
}+

×
(
MB′

1MB2
CMB′

1MB2

)+

X′Σ−1Sγ ≤ 1

}
.

Then

γ ∈ AII,β1,(bII ) ⇒ ∀{h ∈ Rk1
}{

h′
[
E(bII )

(
̂

̂

β
(aII )
1

)
− β1

]}2

+ Var
(
h′̂̂β(aII )

1

)
≤ Var

(
h′̂̂β(bII )

1

)
.

����� 4.4� In the model (10) the BLUE of the parameter β2 is

̂

̂

β
(aII )
2 = −

[
(B′

2)
−
m(B1C−1B′

1)

]′ (
B1β̂1 + b

)
,

where β̂1 = C−1X′Σ−1Y, C = X′Σ−1X. The mean value of
̂

̂

β
(aII )
2 in the

model (9) is

E(bII )

(
̂

̂

β
(aII )
2

)
= β2 −

[
(B′

2)
−
m(B1C−1B′

1)

]′
B1C−1X′Σ−1Sγ.

P r o o f. The expression for
̂

̂

β
(aII )
2 is known, cf., e.g., [3]. The expression for

E(bII )

(
̂

̂

β
(aII )
2

)
is thus obvious. �

70



UNDERPARAMETRIZED REGRESSION MODELS

����� 4.5� In the model (9) the covariance matrix of the BLUE of β2 is

Var
(

̂

̂

β
(bII )
2

)
=Var

(
̂

̂

β
(aII)
2

)
+
[
(B′

2)
−
m(B1C−1B′

1)

]′
B1

(
MB′

1MB2
CMB′

1MB2

)+
× X′Σ−1S

[
S′
(
MXMB′

1MB2
ΣMXMB′

1MB2

)+

S
]−1

× S′Σ−1X
(
MB′

1MB2
CMB′

1MB2

)+

B′
1(B

′
2)

−
m(B1C−1B′

1)
.

P r o o f. The model (9) can be rewritten as

Y − Xβ1,0 ∼n

[
(XK1,S)

(
κ
γ

)
,Σ

]
,(

β1

β2

)
=
(

β1,0

β2,0

)
+
(

K1

K2

)
κ,

̂

̂

β
(bII )
2 = β2,0 + K2

̂κ(bII ).

Thus Var
(

̂

̂

β
(bII)
2

)
= K2Var(̂κ(bII))K′

2 implies the statement. �

����� 4.6�

E(bII )

(
̂

̂

β
(aII )
2

)
− β2 ∈ M

[
Var
(

̂

̂

β
(bII)
2

)
− Var

(
̂

̂

β
(aII )
2

)]
.

P r o o f. It is valid[
(B′

2)
−
m(B1C−1B′

1)

]′
B1

(
MB′

1MB2
CMB′

1MB2

)+

X′Σ−1S

=
[
B′

2(B1C−1B′
1 + B2B′

2)
−1B2

]−1

B′
2(B1C−1B′

1 + B2B′
2)

−1B1

×
[
C−1 −C−1B1

(
MB2B1C−1B′

1MB2

)+
B1C−1

]
XΣ−1S

=
[
(B′

2)
−
m(B1C−1B′

1)

]′
B1C−1X′Σ−1S ⊂ M

[
Var
(

̂

̂

β
(bII )
2

)
− Var

(
̂

̂

β
(aII )
2

)]
.

�

Thus the following theorem can be stated.
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����	�� 4.7� Let

AII,β2,(bII) =

{
γ : γ′S′Σ−1XC−1B′

1(B
′
2)

−
m(B1C−1B′

1)

×
{[

(B′
2)

−
m(B1C−1B′

1)

]′
B1C−1X′Σ−1S

×
[
S′
(
MXMB′

1MB2
ΣMXMB′

1MB2

)+

S
]−1

× S′Σ−1XC−1B′
1(B

′
2)

−
m(B1C−1B′

1)

}−

×
[
(B′

2)
−
m(B1C−1B′

1)

]′
B1C−1X′Σ−1Sγ ≤ 1

}
.

Then

γ ∈ AII,β2,(bII ) ⇒ ∀{h ∈ Rk2
}{

h′
[
E(bII )

(
̂

̂

β
(aII )
2

)
− β2

]}2

+ Var
(
h′̂̂β(aII )

2

)
≤ Var

(
h′̂̂β(bII )

2

)
.

4.2. The constraints b + B1β1 + Gγ + B2β2 = 0 in the true model

Let the adequate model be (8) and let the underparametrized model be (10).


�	����	� 4.8� The mean value of the BLUE of β1 in the model (10) is (cf.
Lemma 4.1)

E(cII )

(
̂

̂

β
(aII )
1

)
= β1 +

(
MB′

1MB2
CMB′

1MB2

)+
X′Σ−1Sγ

in the model (8).

����� 4.9� The BLUE of β1 in (8) is

̂

̂

β
(cII )
1 =

̂

̂

β
(aII )
1 +

[
C−1X′Σ−1S − C−1B′

1

(
MB2B1C−1B′

1MB2

)+
L
]
η,
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where

L =B1C−1X′Σ−1S −G,

η = −
{
S′(MXΣMX)+S + L′(MB2B1C−1B′

1MB2)
+L
}−1

×
[
S′Σ−1v + L′(MB2B1C−1B′

1MB2)
+(B1β̂1 + b)

]
,

β̂1 =C−1X′Σ−1Y,v = Y −Xβ̂1,C = X′Σ−1X.

P r o o f. Let L′
B2

be (q − k2) × q matrix with the full rank in rows, L′
B2

B2 =
0,L′

B2
LB2 = I(q−k2),(q−k2), i.e., MB2 = LB2L

′
B2

. The constraints b + B1β1

+ Gγ + B2β2 = 0 in (8) as far as the parameter β1 is concerned are equivalent
to constraints

L′
B2

b + L′
B2

B1β1 + L′
B2

Gγ = 0.

Thus the model (8) can be rewritten as

Y ∼ n

[
(X,S)

(
β1

γ

)
,Σ

]
, L′

B2
b + L′

B2
B1β1 + L′

B2
Gγ = 0. (12)

The model (12) can be compared with the model (3) and thus regarding Lemma
3.4 and the identity

LB2

(
L′

B2
B1C−1B′

1LB2

)−1L′
B2

=
(
MB2B1C−1B′

1MB2

)+
,

the proof can be finished. �

Now the following lemma is a consequence of Lemma 3.5.

����� 4.10� The covariance matrix of the vector η from Lemma 4.9 is

Var(η) =
[
S′(MXΣMX

)+S + L′(MB2B1C−1B′
1MB2

)+L
]−1

.

P r o o f. Proof can be performed analogously as in Lemma 4.9. �

����� 4.11�

Var
(

̂

̂

β
(cII )
1

)
− Var

(
̂

̂

β
(aII )
1

)
=
[
C−1X′Σ−1S − C−1B′

1

(
MB2B1C−1B′

1MB2

)+
L
]

×
[
S′(MXΣMX

)+S + L′(MB2B1C−1B′
1MB2

)−1L
]−1

×
[
S′Σ−1XC−1 − L′(MB2B1C−1B′

1MB2

)+
B1C−1

]
.
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P r o o f. The statement is a direct consequence of Lemma 4.9. However, to find
the resulting formula is rather lengthy and therefore it is omitted. �

Since

E(cII )

(
̂

̂

β
(aII )
1

)
− β1 ∈ M

[
Var
(

̂

̂

β
(cII )
1

)
− Var

(
̂

̂

β
(aII)
1

)]
,

the following theorem is valid.

����	�� 4.12� Let

U =C−1X′Σ−1S −C−1B′
1

(
MB2B1C−1B′

1MB2

)+
L,

V =S′(MXΣMX)+S + L′(MB2B1C−1B′
1MB2

)+
L

=
[
Var(η)

]−1
.

If in the model (8) γ ∈ AII,β1,(cII ), where

AII,β1,(cII ) =
{

γ : γ′U′(UV−1U′)−Uγ ≤ 1
}
,

then

∀{h ∈ Rk1
}{

h′
[
E(cII )

(̂̂
β

(a)
1

)
− β1

]}2

≤ Var
(

̂

̂

β
(cII )
1

)
− Var

(
̂

̂

β
(aII )
1

)
.

The mean value of the estimator
̂

̂

β
(aII )
2 = −

[
(B′

2)
−
m(B1C−1B′

1)

]′ (
B1β̂1 + b

)
(cf. Lemma 4.4) is

E(cII )

(
̂

̂

β
(aII )
2

)
= β2 −

[
(B′

2)
−
m(B1C−1B′

1)

]′
Lγ

in the model (8).

����� 4.13� The covariance matrix of
̂

̂

β
(cII )
2 is

Var
(

̂

̂

β
(cII )
2

)
= Var

(
̂

̂

β
(aII)
2

)
+
[
(B′

2)
−
m(B1C−1B′

1)

]′
× L

[
S′(MXΣMX)+S + L′(MB2B1C−1B′

1MB2

)+
L
]−1

× L′(B′
2)

−
m(B1C−1B′

1)
.
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P r o o f. With respect to Lemma 4.4 the covariance matrix of
̂

̂

β
(aII )
2 is

Var
(

̂

̂

β
(aII )
2

)
=
[
B′

2(B1C−1B′
1 + B2B′

2)
−1B2

]−1

− I

Thus in the model (8)

Var
(

̂

̂

β
(cII )
2

)
=

{
B′

2

[
(B1,G)

(
C,X′Σ−1S
S′Σ−1X, S′Σ−1S

)−1(
B′

1

G

)
+ B2B′

2

]−1

B2

}−1

− I

= Var
(

̂

̂

β
(aII )
2

)
+
[
(B′

2)
−
m(B1C−1B′

1)

]′
× L

{
S′(MXΣMX)+S + L′(M2B1C−1B′

1MB2)
+L
}−1

L′(B′
2)

−
m(B1C−1B′

1)
.

�

Since

E(cII )

(
̂

̂

β
(aII )
2

)
− β2 ∈M

{[
(B′

2)m(B1C−1B′
1)

]′
L
}

=M
[
Var
(

̂

̂

β
(cII )
2

)
− Var

(
̂

̂

β
(aII)
2

)]
,

the following statement is valid.

����	�� 4.14� Let

A∗
II,β2,(cII) =

{
γ : γ′L′(B′

2)
−
m(B1C−1B′

1)

{[
(B′

2)
−
m(B1C−1B′

1)

]′
× L

[
S′(MXΣMX)+S

+ L′(MB2B1C−1B′
1MB2)

+L
]−1

L′(B′
2)

−
m(B1C−1B′

1)

}−

×
[
(B′

2)
−
m(B1C−1B′

1)

]′
Lγ ≤ 1

}
.
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Then

γ ∈ A∗
II,β2,(cII ) ⇒ ∀{h ∈ Rk2

}{
h′
[
E(cII )

(
̂

̂

β
(aII )
2

)
− β2

]}2

+ Var
(
h′̂̂β(aII )

2

)
≤ Var

(
h′̂̂β(cII )

2

)
.
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[3] KUBÁČEK, L., KUBÁČKOVÁ, L., VOLAUFOVÁ, J.: Statistical Models with Linear
Structures. Veda, Bratislava, 1995.
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