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TESTING PROCEDURES BASED ON THE

EMPIRICAL CHARACTERISTIC FUNCTIONS I:

GOODNESS-OF-FIT, TESTING FOR SYMMETRY

AND INDEPENDENCE

Marie Hušková — Simos G. Meintanis

ABSTRACT. We review the most recent developments in the area of testing by
the empirical characteristic function. Our main focus is on goodness-of-fit tests

based on i.i.d. observations, but we also refer to testing for symmetry and testing
for independence.

1. Introduction

Let X be a random variable with unspecified distribution function (DF)
F (x) = P(X ≤ x), and consider a specific parametric class FΘ = {Fϑ, ϑ ∈ Θ}, of
distributions indexed by ϑ ∈ Θ, where Θ is an open subset of arbitrary dimen-
sion. Because the Glivenko-Cantelli theorem asserts that supx |Fn(x)−F (x)| → 0
almost surely, in classical consistent tests for the null hypothesis,

H0 : F ∈ FΘ, for some ϑ ∈ Θ, (1.1)

the empirical DF, Fn(x) is employed. An alternative way to tackle the composite
goodness-of-fit problem is to consider a transform of the DF of the type

K(z) =

∞∫
−∞

k(z, x)dF (x), z = s+ it
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and the corresponding empirical version,

Kn(z) =

∞∫
−∞

k(z, x)dFn(x),

computed from the observations. Hence, assuming that the transform K(·) uni-
quely determines the law of X, such an approach typically yields consistent tests
for the null hypothesis in (1.1). Although in principle the kernel k(·, x) may be
any arbitrary function defined over the entire complex plane, certain restrictions
on k(·, x) and z, have gained prominent position in Statistics. For instance, if
we let k(z, x) = exp (zx), then the characteristic function results for purely
imaginary z. With the same exponential kernel, t = 0, s ∈ R1 corresponds to the
moment generating function, while for z = (s, 0), s < 0, the Laplace transform
emerges. For z real, the kernel k(z, x) = zx, 0 < z < 1, is called the probability
generating function and is typically employed with discrete measures, and we
finally mention the Mellin transform with k(z, x) = xz, z > 0.

Although all these transforms (along with their empirical counterparts), pos-
sibly lead to efficient statistical procedures, and in fact have appeared in the
literature, certain properties make the CF the most appropriate transform to
work with. Amongst these properties is of course the one-to-one correspondence
between CF’s and DF’s, but equally important is the fact that the CF exists (it
is finite), for all t ∈ R. Nevertheless, some unexpected phenomena occurs in the
richness of complex function theory. For instance, and unlike other transforms,
uniqueness holds only if two CF’s coincide over the entire imaginary axis. For
counterexamples of two different DF’s with corresponding CF’s being identical
over compact intervals the reader is referred to U s h a k o v [27].

In this paper we review methods for testing certain hypotheses that make
use of the empirical CF. In Section 2, goodness-of-fit procedures with estimated
parameters are surveyed and a general framework is suggested under which as-
ymptotic properties of the resulting test statistics may be studied. In Section 3,
special emphasis is attached to inference procedures for the properties of sym-
metry and independence that make use of the specific way that these properties
are reflected upon the population CF.

2. Goodness-of-fit tests

Let X1, X2, . . . , Xn, be independent observations on the random variable X,
on the basis of which we wish to test the null hypothesis in (1.1). Assume fur-
ther that ϑ = (θ1, θ2) ∈ (−∞,∞) × (0,∞) and the DF of X may be writ-
ten as F (x;ϑ) = G

(
(x − θ1)/θ2

)
, for some function G. A general test statistic
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may be constructed by considering the analog in the frequency domain, of in-
tegrated empirical DF-based methods. In this approach the quantity of inter-
est is Dn(t) = |ϕn(t) − ϕ(t)|, where ϕ(t) = ϕ(t; θ1, θ2) denotes the CF under
H0, and ϕn(t) = n−1

∑n
j=1 e

itXj is the empirical CF. As pointed out earlier,
considering the behavior Dn(·) over the entire real line—say via an integrated
distance based on Dn(·)—renders the test statistic consistent against all pos-
sible deviations from H0, whereas additional assumptions are needed to yield
a consistent test if one considers Dn(·) only over finite intervals of t-values.
On the other hand, considering the CF and the empirical CF over the en-
tire real line introduces some extra technical difficulties. For example, periodic
components often dominate the behavior of ϕ(t), as well as that of ϕn(t), for
large values of t. Hence, some sort of damping in Dn(·) is necessary, in or-
der to make the integrals involved convergent. Also, as our method is aiming
at the widest applicability possible, the parameter ϑ = (θ1, θ2) is treated as
nuisance, to be consistently estimated by (θ̂1, θ̂2) from Xj , j = 1, 2 . . . , n. In
particular, we propose to employ not Dn(·), but an estimated version of the
distance, namely D̂n(t) = |ϕ̂n(t)−ϕ0(t)|, where ϕ0(t) = ϕ(t; 0, 1), and ϕ̂n(t) =
n−1

∑n
j=1 e

itYj is the empirical CF of the standardized observations Yj = (Xj −
θ̂1)/θ̂2, j = 1, 2 . . . , n. Moreover, since we are considering location-scale families
we wish our test statistic, say T = T (X1, X2, . . . , Xn), to satisfy T (cX1 + δ, cX2

+ d, . . . , cXn + δ) = T (X1, X2, . . . , Xn), for each δ ∈ R1, and c > 0. To this
end we require that our estimators θ̂m := θ̂m(X1, X2, . . . , Xn), m = 1, 2, satisfy
certain equivariance-invariance properties. Namely, we assume that θ̂1(cX1 + δ,

cX2 + d, . . . , cXn + δ) = cθ̂1(X1, X2, . . . , Xn) + δ, and that θ̂2(cX1 + δ, cX2

+d, . . . , cXn + δ) = cθ̂2(X1, X2, . . . , Xn). Then, any test statistic which depends
on Xj , j = 1, 2, . . . , n, solely via Yj , j = 1, 2, . . . , n, satisfies T (Y1, Y2, . . . , Yn)
= T (X1, X2, . . . , Xn), i.e., it is location-scale invariant.

With these considerations in mind we suggest to reject the null hypothesis
H0 in (1.1) for large values of

Tn,β = n

∞∫
−∞

D̂2
n(t)β(t) dt, (2.1)

where β denotes a damping measure (often termed weight function). To cap-
ture almost complete analogy with the Anderson-Darling statistic, E p p s [3]
proposed to employ β(t) = |ϕ0(t)|2/

∫ |ϕ0(u)|2du, but in what follows, we re-
serve the liberty of assigning to the damping function any non-negative inte-
grable function satisfying β(t) = β(−t). This approach was followed by E p p s
and P u l l e y [4], G ü r t l e r and H e n z e [8], and M e i n t a n i s [20], [21], in
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testing for the normal, the Cauchy, the Laplace and the logistic distribution,
respectively.
The following theorem, in which the asymptotic behavior of the test statistic is
investigated, holds under mild restrictions on F (·), the estimators of the param-
eters and the damping measure. A convenient setting for asymptotic distribution
theory is the Hilbert space H = L2(R1,B, β) of (equivalence classes of) measur-
able functions f : R1 → R1 satisfying

∫ ∞
−∞ f2(t)β(t) dt < ∞ with inner product

and norm in H defined by

< f, g >=

∞∫
−∞

f(t)g(t)β(t) dt and ||f || =

⎛
⎝

∞∫
−∞

f2(t)β(t) dt

⎞
⎠

1/2

,

respectively. In what follows, →D denotes convergence in distribution, →P de-
notes convergence in probability, while oP (1) stands for convergence in proba-
bility to zero.

������� 2.1� Let X1, . . . , Xn, . . ., be i.i.d. observations with DF, F (·). Assume
that the weight function is non-negative and satisfies

β(t) = β(−t), t ∈ R1, 0 <

∞∫
−∞

β(t) dt <∞.

Assume further that the estimator of θm, m = 1, 2, admits a first order asymp-
totic representation (see J u r e č k o v á and S e n [16]) of the type

√
n(θ̂m − θm0) =

1√
n

n∑
j=1

ψm(Xj) + oP (1),

where θ10 = 0, θ20 = 1, and E
[
ψm(X1)

]
= 0, E

[
ψ2

m(X1)
]
<∞, m = 1, 2.

Then the test statistic in (2.1) admits the following representation

Tn,β =

∞∫
−∞

Z2
n(t)β(θ̂2t) dt,

where Zn(t) = (θ̂2/n)1/2
∑n

j=1

{
cos tXj + sin tXj − ϕ(t; θ̂1, θ̂2)

}
.

Moreover, under the null hypothesisH0, there is a zero-mean Gaussian process
Z =

{
Z(t); t ∈ R1

}
such that Zn →D Z and,

Tn,β →D

∞∫
−∞

Z2(t)β(t) dt := Tβ ,

while under fixed alternatives we have Tn,β →P ∞.
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Remark 1� The proof of a more extended version of Theorem 2.1 is given in
M e i n t a n i s and S w a n e p o e l [24].

Remark 2� The covariance kernel, say ω(s, t), of Z depends on the distribution
being tested as well as on the type of estimators employed, but not on the
true values of the parameters θ1 and θ2. Although the distribution of Tβ is
complicated, its moments may in principle be calculated via ω(s, t). For example,

E(Tβ) =

∞∫
−∞

ω(t, t)β(t) dt,

and

Var(Tβ) = 2

∞∫
−∞

∞∫
−∞

ω2(s, t)β(s)β(t) ds dt,

are the limit expectation and limit variance of the test statistic, respectively.

Remark 3� The law of Tβ coincides with that of
∑

j≥1 λjN
2
j , where N1, N2, . . . ,

are i.i.d standard normal variates, and λj, j = 1, 2, . . . , are the nonzero eigenval-
ues of the integral equation

∫
ω(s, t)Λ(t)β(t) dt = λΛ(s). The typical eigenvalue

may be represented as λ := λβ(F, ϑ), i.e., it depends both on the damping mea-
sure β(·), as well as on the family being tested, and the value of the parameter ϑ.
In pure location-scale families however we have λ := λ

(0)
β (F ), where λ(0)

β (F ),
denotes the eigenvalue computed at ϑ = (0, 1), with ϑ = (θ1, θ2). M a t s u i
and T a k e m u r a [19], attack the computational sophisticated problem of ap-
proximating the limit null distribution of Tn,β , by computing the eigenvalues.
An alternative approach, which in fact has been followed by the majority of
researchers working in this area (see also W o n g and S i m [28]), is to perform
the test by Monte Carlo approximation of the critical points of Tn,β .

Remark 4� Although it is the most natural and straightforward to employ
D̂n(t) = |ϕ̂n(t)−ϕ0(t)| in (2.1), there exist other variations that make use of the
specific structure of the CF under the null hypothesis. In testing for symmetric
stability for instance, and faced with certain computational difficulties in apply-
ing the above “direct approach”, M e i n t a n i s [22], motivated by a differential
equation satisfied by the CF of the standard symmetric stable distribution, em-
ploys in (2.1), instead of D̂n(t), D̃n(t) = |ϕ̂′

n(t)+ α̂|t|α̂−1sign(t)ϕ̂n(t)|. Here, and
apart from the standard location-scale parameter, there exists an extra shape
parameter (often called “characteristic exponent”) denoted by α, 1 < α ≤ 2,
and estimated by α̂. Other variants are those of H e n z e and M e i n t a n i s [11],
[12], utilizing certain characterizations of the exponential distribution based on
the CF. Namely, under unit exponentiality the equations Imϕ0(t) = tReϕ0(t),
and |ϕ0(t)|2 = Reϕ0(t), hold true for each t ∈ R1. The natural approach is then
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to employ in (2), instead of D̂n(t), in [11], D̃n(t) = |Imϕ̂n(t) − tReϕ̂n(t)|, and
in [12], D̃n(t) = ||ϕ̂n(t)|2 − Reϕ̂n(t)|. However it should be noted that in both
cases θ1 is considered known (and therefore without loss of generality it is set
equal to zero), i.e., tests for the one-parameter and not the two-parameter expo-
nential distribution are constructed. Asymptotic results similar to those obtained
in Theorem 2.1, hold also for modifications of the test statistic, such as those in
H e n z e and M e i n t a n i s [12] and M e i n t a n i s [22]. However assumptions
and techniques of proof should be accordingly modified. The approach described
herein could be extended to cover the case of testing goodness-of-fit in the re-
gression context. Naturally, then there exist additional nuisance parameters, the
regression parameters. Hence, this extension requires extra assumptions on the
regression estimators (see H u š k o v á and M e i n t a n i s [15]).

Several multivariate goodness-of-fit methods may easily be included in the
general framework of this section, by considering the empirical CF, ϕn(t) =
n−1

∑n
j=1 e

it′Xj , where t and Xj denote vectors of arbitrary dimension d. Such
are the tests for multivariate normality of N a i t o [25], H e n z e and Z i n k l e r
[14], and H e n z e and W a g n e r [13]. N a i t o [25] employs the functionDn(t)=
|ϕ̂n(t)|2−e−||t||2/2, which is of course characteristic of the standard multivariate
normal law, in the test statistic

√
n

∫
Dn(t)β(t)dt. The empirical CF ϕ̂n(t) is

calculated from the standardized observations Yj = S−1/2Xj , j = 1, 2, . . . , n,
where S denotes the sample covariance matrix of Xj , j = 1, 2, . . . , n. The test
statistic has a normal limit null distribution, which is of course an advantage over
the methods presented earlier. On the other hand, and although N a i t o [25] pro-
vides formulae for the test statistic with d = 1 and d = 2, these formulas do not
seem to lend themselves to extension in arbitrary dimension easily. This short-
coming is remedied by the test of H e n z e and W a g n e r [13] (see also H e n z e
and Z i n k l e r [14]), in which the affine invariant test statistic n

∫
D2

n(t)β(t)dt,
where Dn(t) = |ϕ̂n(t) − e−||t||2/2|, but with the empirical CF computed from
the fully standardized observations Yj = S−1/2(Xj − X̄), j = 1, 2, . . . , n, where
X̄ denotes the sample mean of Xj , j = 1, 2, . . . , n. Despite the fact that squar-
ing the distance function brings in asymptotics as those encountered earlier in
Remark 2, this test admits a convenient closed form expression in arbitrary
dimension for specific choices of the damping measure β(t).

In order to dispense with complicated asymptotics, F a n [5] and K o u t r o u -
v e l i s and M e i n t a n i s [18] suggested to (essentially) assign a discrete mea-
sure to β(t), and thereby obtain a chi-squared limit law for the test statistic.
This method is appropriate for the general multivariate goodness-of-fit problem
(and not just for multivariate normality), with a damping scheme related to the
limit covariance matrix of Dn(·). The drawback is the loss of consistency against
general alternatives, but the finite-sample documentation in [18] is encouraging.
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3. Other applications of the empirical CF

In this section procedures are reviewed for multivariate symmetry and inde-
pendence based on the multivariate CF ϕ(t;X) = E(t′X). It should be men-
tioned beforehand that all these procedures are, unless otherwise stated, consis-
tent, and that finite sample results indicate their competitiveness with respect
to more established methods.

3.1. Tests for symmetry

The point of departure in this case is that Imϕ(t;X − μ) = 0, identically
in t, if the distribution of X is symmetric around μ. All procedures employ
the distance function Dn(t;μ) =

∣∣n−1
∑n

j=1 sin[t′(Xj − μ)]
∣∣, in the normalized

version either of the supremum type test suptDn(t;μ) or of the integrated type
statistic,

∫
D2

n(t;μ)β(t)dt. G h o s h and R u y m g a a r t [7] regard μ as fixed
and obtain the asymptotic distribution of the integrated test statistic under the
more restrictive hypothesis of spherical symmetry. On the other hand, H e n z e
et al. [10] consider the more general problem of testing for (reflective) symmetry
around an unknown center μ. The test utilizes the integrated type statistic based
on a fully standardized version Dn(S−1/2t; X̄) of the distance function, and
it is therefore affine invariant. The method is implemented as a permutation
procedure along the lines suggested by N e u h a u s and Z h u [26] who also
investigated the performance of the supremum statistic initially proposed by
H e a t h c o t e et al. [9].

3.2. Tests for independence

Under the restrictive setting of normal marginals, B i l o d e a u and L a f a y e
d e M i c h e a u x [1] developed a method for testing independence between the
normal components of a random vector based on the empirical CF. However, the
most general test statistic was proposed by K a n k a i n e n and U s h a k o v [17],
by extending to arbitrary dimension the method suggested by F e u e r v e r g e r
[6] for d = 2. The distance function characteristic of independence is Dn(t) =
|ϕn(t)−∏d

l=1 ϕnl(tl)|, where ϕnl(tl) = n−1
∑n

j=1 e
itlXjl , is the (marginal) empir-

ical CF computed from the observationXjl, j = 1, 2, . . . , n, onXl, l = 1, 2, . . . , d.
The point of departure in [17] is an earlier test of C s ö r g ő [2] based on Dn(t)
calculated at a single point t = tn, where tn denotes an estimate of a specific
value t = t0. They showed by counterexample that even when t0 is specially
(optimally) chosen, the resulting test statistic fails to be consistent. Although
the test statistic nD2

n(t)β(t)dt of K a n k a i n e n and U s h a k o v [17] may ap-
pear to depend on the underlying distribution of X, it can be made entirely
non-parametric by replacing the observations Xjl by the values Fn(Xjl) of the
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corresponding empirical DF. (For simulation results on this integrated test the
reader is referred to M e i n t a n i s and I l i o p o u l o s [23]).
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