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SIMPLICIAL DEPTH ESTIMATORS AND TESTS IN

EXAMPLES FROM SHAPE ANALYSIS

Stanislav Katina — Robin Wellmann — Christine H. Müller

ABSTRACT. In this paper we present the maximum simplicial depth estimator
and compare it to the ordinary least square estimator in examples from 2D and 3D
shape analysis focusing on bivariate and multivariate allometrical problems from
zoology and biological anthropology. We compare two types of estimators derived

under different subsets of parametric space on the basis of the linear regression
model, θ = (θ1, θ2)

T ∈ R
2 and θ = (θ1, θ2, θ3)

T ∈ R
3, where θ3 = 0. We also

discuss monotonically decreasing linear regression models in special situations. In
applications where outliers in x- or y-axis direction occur in the data and residuals
from ordinary least-square linear regression model are not normally distributed,

we recommend the use of the maximum simplicial depth estimators.

1. Introduction

Allometry is the linear or linearized characterization of the dependence of
shape on size. It is frequently used to describe average trends of shape change
during postnatal ontogeny (growth and development) and also to describe growth
trajectories where this postnatal ontogeny can contribute considerably to adult
inter-specific differences [3]. The bivariate concept of allometry focuses on linear
regression models of shape and size. In these models, the size measure is usu-

ally the natural logarithm of centroid size (ln(CS), CS =
√

(
∑k

i=1 ‖xi − xc‖2),
where xc is the centroid of the k × d configuration matrix X with the rows xi,
d = 2, 3, and ‖·‖2 is L2 Hilbert–Schmidt norm), and the dependent variable
is a vector of Procrustes shape coordinates. Procrustes shape coordinates are
derived from X using generalized Procrustes analysis, which minimizes the sum
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of square distances between homologous landmarks by translating, rotating and
rescaling them to the best (least-squares) fit. The multivariate approach focuses
on PCA in size-and-shape space, which is best constructed as a PCA of the
Procrustes coordinates augmented by ln(CS), where mutually uncorrelated PC
scores are a projection of a high-dimensional space onto a few-dimensional space
and summarize most of the variance present in the data. Our first data set is a
bivariate example and the second example is a multivariate one. Using a linear
regression model, we can test the following hypotheses: (1) for one ontogenetic
trajectory: function is linear or polynomial (with the degree 2 or more, but we
concentrate here on degree 2), (2) for two or more ontogenetic trajectories: (A)
the same intercept and slope—the same ontogenetic trajectories; (B) the same
slope but different intercept—parallel trajectories; and (C) different intercept
and slope—different trajectories. The term “ontogenetic scaling” refers to dif-
ferences in length of growth trajectories.

Problems arise when residuals of linear regression model are not normally
distributed and some outliers occur in the data. Then, one has to use alterna-
tive statistical methods. In such situations, we recommend the use of maximum
simplicial depth estimators instead of ordinary least-square (OLS) estimators.

2. Mathematical background

Consider a bivariate data set Z = {z1, . . . , zN}. The halfplane location depth
of an arbitrary point θ ∈ R

2 relative to X is defined as

dl (θ,Z) = min
H

# {n : zn ∈ H} , n = 1, . . . , N,

where H ranges over all closed halfplanes of which the boundary line passes
through θ. This depth concept was transferred to regression by, e.g., [7], and we
discuss it in the following paragraphs.

We assume that the bivariate random variables Z1, . . . , ZN are independent
and identically distributed, that the variables Zn have values in Z ⊂ R

2, and that
there is a known family of probability measures P =

{
PZ

θ : θ ∈ Θ
}

with Θ = R
q.

For given observations z := (z1, . . . , zN) ∈ ZN , we always write zn = (yn, tn),
n = 1, 2, . . . , N . Let x be the function x : R → R

q, x(t) = (1, t, . . . , tq−1)T . We
model the relationship between yn and tn by the linear regression model given by

yn = x (tn)T
θ + εn, (1)

where θ = (θ1, . . . , θq)
T ∈ R

q. For given observations z1, . . . , zN ∈ Z let Dom(z)
be the set of all those domains with constant depth. A maximal simplicial depth
estimator for given observations z1, . . . , zN ∈ Z with respect to a subset K ⊂ R

q
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is defined to be a parameter θ̂S ∈ arg max
θ∈K

dS(θ, z) [5], [7], where the simplicial
depth dS of θ within z is defined as [6]

dS(θ, z) :=
#

{
{n1, . . . , nq+1} ⊂ {1, . . . , N} : dH

(
θ, (zn1 , . . . , znq+1)

)
> 0

}
(

N
q+1

) ,

harmonized depth is the indicator function dH (θ, z) = IIS(z)(θ) and S(z) ∈
Dom(z) is a bounded domain. This means that the simplicial depth is the fraction
of simplices that contain the parameter θ (for details see [6]).

The maximum simplicial depth estimator θ̂S is not unique. If K is an affine
subspace of R

q or of a polyhedron, then the closure of the set of all parameters
θ ∈ K that maximize dS(·, z)|K is a union of polytopes. Let P be the set of these
polytopes. We calculate the vertices ext (P ) =

{
θP,1, . . . , θP,Np

}
of each polytope

P ∈ P, where conv
(
ext(P )

)
is the set of all convex combinations of vertices from

P . If we assume that the true probability measure belongs to {Pθ : θ ∈ K}, then
we can choose a best deepest parameter θ̂BD based on L1 and L2 minimization
from the set of θ̂S ∈ ⋃

P∈P

P .

In order to compare the maximum simplicial depth estimator with some other
estimate, we use the OLS-estimator (θ̂l2). In the examples, we used the following
S-PLUS functions implemented in the basic S-PLUS 6.2 package [5]: lm for
the OLS-estimator, anova for the F -test for the full linear regression model
versus the submodel, and chisq.gof for the Chi-square goodness-of-fit test of
a hypothesized normal distribution versus the OLS residual distribution (the
normality was rejected in all linear regression models used in the examples; all
p-values < 0.001). S-PLUS programs for simplicial depth estimators and the
best of all deepest parameters come from [6].

Assuming the linear regression model (1) we find (1) θ = (θ1, θ2)T ∈ R
2 and

(2) θ = (θ1, θ2, θ3)T ∈ R
3. For the one-sample problem, we use a distribution-free,

asymptotic α-level test for testing H0 : θ ∈ Θ0, where Θ0 =
{
θ ∈ R

3; θ3 = 0
}
,

which can be rejected at significance level α
2
. We write the test statistic [7] as

T (z) = N

(
sup
θ∈Θ0

dS(θ, z)− 1
2q

)
,

where the maximal simplicial depth is given by supθ∈Θ0
dS(θ, z) for testing H0 :

θ ∈ Θ0.
Let K be a subset of the parameters space Θ ∈ R

q. In the two-sample prob-
lem, we use a distribution-free, asymptotic α-level test for testing the null hy-
pothesis that independent observations from two populations can be described
by the same polynomial regression function (1) with a parameter in K. For
i = 1, 2, take θi to be the unknown, true parameter for the observations zi :=
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(zi,1, . . . , zi,Ni
) ∈ ZNi from the ith sample. For each population, we make the

same assumptions as for the one-sample test. We do not reject the hypothesis
H0 : θ1 = θ2 ∈ K at significance level α, if there is a θ ∈ K, such that neither
the hypothesis that θ is the true parameter for the first population, nor the hy-
pothesis that θ is the true parameter for the second population, can be rejected
at significance level α

2 . The test statistic is given [6] by

T
(
z1, z2

)
:= max

θ∈K

Φθ

(
z1, z2

)
,

where Φθ(z1, z2) := min
(
N1(dS(θ, z1) − 1

2q ), N2(dS(θ, z2) − 1
2q )

)
, and we reject

H0 : θ1 = θ2 ∈ K if T (z1, z2) is less than the α
2 -quantile of the distribution.

3. Examples

Example 1: 2D shape analysis in zoology

In the first application we wanted to find out how the relative head length of
the North American sunfish pumpkinseed (Lepomis gibbosus) in different Cana-
dian and introduced European populations depends on their size during growth.

In Canada, 85 specimens were collected in 2003 from the Otonabee River (oto)
and 117 specimens from the Looncall Lake (loon). A total of 162 specimens were
taken from Tanyards fisheries pond near Brighton, England (eng). From pre-
vious study of the external morphology of pumpkinseeds from an ontogenetical
point of view [4], it is known that the smallest pumpkinseed (predominantly ju-
veniles) differ significantly from the largest pumpkinseed (predominantly adults)
in all populations studied.

Let tn be standard length, defined as the distance between the anterior tip of
the upper jaw and the caudal fin base, and let yn be relative head length defined
as the head length divided by tn [4].

In the linear regression model (1) with q = 2, the best θ̂ in the sense of L1

and L2 minimization in the domain conv
(
ext (P )

)
is θ̂BD: for oto this vector is

(0.2580,−0.0007)T , for eng (0.2460,−0.0007)T and for loon (0.2593,−0.0008)T .
All these estimators are on the domain boundary with 3 vertices.

In the linear regression model (1) with q = 3 and θ3 = 0, the best θ̂ in
the sense of L1 and L2 minimization in the domain conv

(
ext (P )

)
is θ̂BD as

follows: for oto (0.2578,−0.0006, 0)T (not on the boundary, 4 vertices), and loon
(0.2563,−0.0007, 0)T and eng (0.251,−0.0007, 0)T (on the boundary, 4 vertices).
It is interesting to see the comparison of the linear regression model (1) for q = 2
versus q = 3 and θ3 = 0. In oto we have very similar estimators (but not exactly
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the same—the deepest convex hulls are slightly different), but for loon and eng
we have different estimators (the deepest convex hulls are different).

Assuming a linear regression model (1) with parameter θ = (θ1, θ2, θ3)T ∈ R
3,

we want to test the hypothesis that the true function is linear, i.e., H0 : θ ∈ Θ0,
where Θ0 = {θ ∈ R

3; θ3 = 0}. For oto, loon and eng, the maximal simplicial
depth supθ∈Θ0

dS(θ, z) is 0.129, 0.128 and 0.120, test statistics T (z) are 0.370,
0.359, −0.769, and N = 85, 117, 162, respectively. If the significance level is 10%,
then we can reject only the null hypothesis about the eng population, according
to [6].

Although the data are not normally distributed, we apply an F -test, it yields
p-values of 0.794, 0.031, and < 0.0001. So we reject null hypotheses about lin-
earity for the loon and eng populations. The loon decision, which is contrary
to the results of the maximal simplicial depth estimate, is due to outliers.

For the population eng, we reject the null hypothesis that the true function
is linear, i.e. H0 : θ ∈ Θ0, where Θ0 = {θ ∈ R

3; θ3 = 0} at significant level 10%
according to [6]. In the linear regression model (1) with q = 3 and θ3 = 0, the
best theta in the sense of L1 and L2 minimization in the domain conv

(
ext(P )

)
is θ̂BD = (0.251,−0.0007, 0)T , on the domain boundary with 4 vertices. In the
linear regression model (1) with q = 3 and θ3 �= 0, the best theta in the sense of
L1 criterion is θ̂BD = (0.2667,−0.0017, 0.00001)T , on the domain boundary with
8 vertices. We see that relative head length decreases during growth, but when
juvenile fishes become adults, the relative head length increases (Fig.1). This is
biologically puzzling, so we test the hypothesis that the true regression function
is monotonically decreasing: the hypothesis that the derivative of the true linear
regression function gθ is negative also for big fishes. Cutting at standard length
107mm, we test H0 : g′θ(107) ≤ 0 and g′′θ ≥ 0, which is equivalent to H0 : θ ∈ Θ0

with Θ0 :=
{
θ̃ ∈ R

3 : θ̃2 + 214θ̃3 ≤ 0 and θ̃3 ≥ 0
}
. Note, it is not so easy to test

this hypothesis in the classical way. The test statistic is T (z) = 0.261, which is
more than the 60% quantile of the asymptotic distribution. We may thus assume
that the true linear regression function is monotonically decreasing. The deepest
region has 11 vertices (Fig.1). An example of some deepest parameter theta for
monotonically decreasing functions is θ̂S = (0.2599,−0.0013, 0.000006)T .

Now we investigate whether the growth changes of relative head length of
the populations oto and loon can be described by the same regression line.
The test statistic for this two-sample problem is T (z1, z2) = −0.049, if q = 2,
and T (z1, z2) = −0.022, if q = 3. Both are more than the 30% quantile of
the asymptotic distribution [6] (Fig.2). Hence in both cases with respect to
a significance level of 5% there is no rejection. We may assume that the regression
lines are equal and described by one line. In the example, the estimate of the
deepest parameter theta of such a line is θ̂S = (0.2627,−0.0008)T , if q = 2, and
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Figure 1. Deepest quadratic lines and the OLS quadratic line (eng).

θ̂S = (0.2627,−0.0008, 0)T , if q = 3 with θ3 = 0, which maximizes Φθ(z1, z2).
Indeed, the deepest lines for oto and loon are rather similar and the lines for
q = 2 and q = 3 are the same. It is also seen that the deepest regions with
q = 2 are smaller than those with q = 3. Although OLS residuals, either for the
full regression model or for the submodel, do not have a normal distribution, we
apply the F -test, it yields p-value=0.428, so that the F -test and depth test give
the same result. The null hypothesis estimator is θ̂l2 = (0.2571,−0.0007)T . But
the true OLS function for loon is quadratic and for the oto it is linear, so the
F -test is not valid.

Example 2: 3D shape analysis in biological anthropology

In the second application we re-use part of a Vienna 3D data set of 372 crania
that has already been the source of several dissertations using semilandmarks:
data from 32 landmark points and 7 ridge curves totalling 161 semilandmarks.
In this example, we use 6 landmarks and 28 semilandmarks of the midplane,
from the three hominid species, subadult and adult male crania of 27 bonobos
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Figure 2. Deepest lines and the H0 line (q = 3, oto and loon).

(Pan paniscus), 26 chimpanzees (Pan troglodytes) and 68 humans (Homo sapi-
ens) [2]. Procrustes coordinates are rotated to the midplane of the average shape.
Semilandmarks are allowed to slide along ridge curves to minimize bending en-
ergy [1]. Then, each of the 121 specimens is unwarped to the pooled average
shape [2]. There are clear effects of species and centroid size on the landmark
configuration [3].

Let tn be PC1 scores and yn PC2 scores (together explaining 60.97% of vari-
ability, Pearson’s correlation coefficient of ln(CS) and PC1 scores is 0.9995). For
chimpanzee and bonobo males, in the linear regression model (1) with q = 2, 3,
we can see a difference between θ̂S and θ̂l2 that is due to the outliers (Fig.3). For
bonobos, θ̂S = (−2.6871, 0.3929, 0)T , θ̂S = (−2.6871, 0.3929)T (domain bound-
ary with 3, resp. 5 vertices) and θ̂l2 = (−1.9845, 0.2914)T . For chimpanzees,
θ̂S = (−2.2673, 0.3343, 0)T , θ̂S = (−1.7566, 0.2610)T (domain boundary with 3,
resp. 4 vertices) and θ̂l2 = (−1.8704, 0.2772)T . For humans, all estimates are
very similar, where θ̂S = (−1.2585, 0.1666, 0)T , θ̂S = (−1.3205, 0.1753)T (do-
main boundary with 3, resp. 12 vertices) and θ̂l2 = (−1.2575, 0.1665)T . In the
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Figure 3. BD and OLS estimators (q = 3, Pan sp. and Homo sapiens).

sense of L2 minimization, for chimpanzees and bonobos we can see that θ̂BD is
better if q = 3 than if q = 2; for humans there is a smaller difference.

Assuming a linear regression model (1) with the parameter θ = (θ1, θ2, θ3)T

∈ R
3, we want to test the hypothesis that the true function is linear, i.e. H0 : θ

∈ Θ0 where Θ0 =
{
θ ∈ R

3; θ3 = 0
}
. For bonobos, chimpanzees and humans

the maximal simplicial depth supθ∈Θ0
dS(θ, z) = 0.117, 0.116 and 0.131, the test

statistic T (z) = −0.224, −0.266 and 0.415 and N = 27, 26, 68, respectively. If
the significance level is 10%, then, according to [6], we can not reject all null
hypotheses about linearity.

Although the data are not normally distributed, we apply the F -test to com-
pare OLS models for q = 2 and q = 3, it yields p-values of 0.635, 0.121, 0.379,
so we do not reject the null hypothesis about linearity for each hominid male
population.

If we compare growth trajectories of bonobo and chimpanzee males, we find
T (z1, z2) = −1.101, if q = 2, and T (z1, z2) = −0.744, if q = 3, in both cases more
than the 7% quantile of the asymptotic distribution [6]. We may assume that the
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regression lines are equal and described by one line, where the example of the es-
timate of the deepest parameter of such a line is θ̂S = (−2.4277, 0.3558, 0)T (tra-
jectories differ only in length). If we compare growth trajectories of bonobo and
human males and chimpanzee and human males, we find T (z1, z2) = −6.5091
and −7, if q = 2, and T (z1, z2) = −3.375 and −3.5, if q = 3, which is in both
cases less than the 1% quantile of the asymptotic distribution [6] (Fig.3) and
we can reject both null hypotheses—the trajectories have different ontogenetic
directions.

Although the data are not normally distributed, we apply the F -test to com-
pare the full nested model (polynomial with the degree 2) and the submodel
(linear), which provides p-values of 0.003, < 0.0001, < 0.0001 (all three spec-
imens). Contrary to the simplicial depth estimators for growth trajectories of
chimpanzee and bonobo males, we see strong rejection at α = 0.05 (p-value
< 0.001, difference in intercepts). For the other two tests (growth trajectories
of humans versus chimpanzees and humans versus bonobos) we have the same
result as from the simplicial depth estimators.

4. Conclusions

In this paper we compared the maximum simplicial depth estimators to OLS
estimators in examples from 2D and 3D shape analysis focusing on bivariate
and multivariate allometrical problems in zoology and biological anthropology.
We compared the behaviour of the two types of estimators in different subsets of
parametric space on the basis of linear regression models in practical situations.
We also discussed the monotonically decreasing linear regression model when
nonmonotonic models make no biological sense. Whenever outliers in the x- or
y-axis directions occur and residuals from the OLS linear regression model are
not normally distributed, we recommend use of the maximum simplicial depth
estimators. We also recommend analysis of not only the global growth of biolog-
ical organisms but also its separate organismal regions. When the variability of
the first two PCs does not exceed 90%, it is appropriate to use PC3 as well—to
evaluate growth trajectories in 3D space, as can be seen in [1], [2].
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