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ACCOUNTING FOR THE ESTIMATION OF

VARIANCES AND COVARIANCES IN PREDICTION

UNDER A GENERAL LINEAR MODEL:

AN OVERVIEW

David A. Harville

ABSTRACT. The problem considered is essentially that of predicting a linear
combination of the fixed and/or random effects of a linear mixed-effects model.
Applications are widespread; they include small-area estimation, the estimation
(or prediction) of breeding values, the estimation of treatment contrasts (from the
results of a comparative experiment), and the analysis of longitudinal data. The
best linear unbiased predictor (BLUP) depends on functions of variance compo-

nents and/or other such parameters. In practice, the values of these functions are
typically unknown, and resort is made to the predictor (the so-called empirical
BLUP) obtained from the BLUP by replacing the “true” values of the functions
with even translation-invariant estimators (such as the REML estimators). This
paper provides an overview of various results on the empirical BLUP (and in-
cludes a few extensions). The focus is on the mean squared error (MSE) of the

empirical BLUP and on the approximation and estimation of the MSE. Some
attention is given to prediction intervals.

1. Introduction

The estimation of a treatment contrast or a small-area mean or the estimation
or prediction of an animal’s breeding value is often based on a mixed-effects linear
model in which

y = Xβ + Zu + e, (1.1)
where y is an N × 1 observable random vector, X is an N ×P known matrix of
rank P ∗, β is a P ×1 vector of unknown parameters (called fixed effects), Z is an
N ×K known matrix, and u and e are unobservable random column vectors (of
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random effects and “errors”) with E(u) = 0, E(e) = 0, and cov(u, e) = 0, with
var(e) = σ2R for some strictly positive parameter σ and some known positive
definite matrix R, and with var(u) = σ2D for some nonnegative definite matrix
D that is functionally dependent on one or more unknown parameters. Typically,
each of the quantities of interest is expressible in the form of a linear combination
λ′β + δ′u of the model’s fixed and/or random effects.

It is instructive to regard the problem of predicting a linear combination of
the fixed and/or random effects of model (1.1) as a special case of the general
problem of predicting the value of an unobservable random variable w based on
the value of an N × 1 observable random vector y. In the general prediction
problem, it is assumed that E(w) = λ′β, E(y) = Xβ, var(w) = vw, cov(y, w) =
vyw, and var(y) = Vy. Here, vw and the elements of vyw and Vy are specified
functions of an unknown parameter vector θ = (θ1, θ2, . . . , θC)′, whose value
is restricted to a known set Ω, and Vy is assumed to be nonsingular (for all
θ ∈ Ω). At times, vw(θ), vyw(θ), and Vy(θ) are written for vw, vyw, and Vy,
respectively. It is assumed that λ′β is estimable or, equivalently, that λ = X′k
for some vector k.

Let t(y) represent a (point) predictor of w. The difference t(y) − w is called
the prediction error, and E

{
[t(y) − w]2

}
is termed the mean squared error

(MSE) of t(y). (Unless otherwise indicated, expectations are with respect to
the joint distribution of w and y.) The predictor t(y) is said to be unbiased if
E

[
t(y) − w

]
= 0—refer, for example, to B i b b y and T o u t e n b u r g (1977),

G o l d b e r g e r (1962), and H e n d e r s o n (1963).
If the joint distribution of w and y were known, then the conditional mean

E(w|y) could serve as a predictor of w. It would have minimum MSE among all
predictors of w and would be unbiased, as is well-known and as is easily verified.

If λ′β, Xβ, vyw, and Vy were known, then a possible predictor would be

λ′β + v′
ywV−1

y (y −Xβ) = τ + v′
ywV−1

y y, (1.2)

where τ = (λ′ − v′
ywV−1

y X)β. It would have minimum MSE among all linear
predictors of w (e.g., R a o 1973, sec. 4a.11) and would be unbiased. It and its
MSE coincide with what H a r t i g a n (1969) refers to as the linear expectation
and linear variance of w given y.

If vyw and Vy (but not λ′β and Xβ) were known (or, more generally, were
known up to a constant of proportionality), then a possible predictor, say w̃,
could be obtained from the quantity (1.2) by replacing τ by what would be the
best (minimum MSE) linear unbiased estimator (BLUE) of τ , which is

τ̃ = (λ′ − v′
ywV−1

y X)(X′V−1
y X)−X′V−1

y y.

By definition,
w̃ = τ̃ + v′

ywV−1
y y = h′y,
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where h′ =
[
(λ′−v′

ywV−1
y X)(X′V−1

y X)−X′ +v′
yw

]
V−1

y . The quantity w̃ would
(if vyw and Vy were known) be the best (minimum MSE) linear unbiased pre-
dictor (BLUP) of w (G o l d b e r g e r 1962; H e n d e r s o n 1963)—refer, for ex-
ample, to H a r v i l l e (1991, sec. 1) for a proof.

Let us write w̃(θ) or w̃(y; θ) for w̃. It is common practice to obtain a pre-
dictor of w by replacing θ in w̃(θ) with an estimator of θ, say θ̂. Let us sup-
pose that θ̂ is an even translation-invariant estimator such as P a t t e r s o n
and T h o m p s o n ’s (1971) restricted maximum likelihood (REML) estimator.
[A possibly vector-valued function f (y) of y is said to be translation-invariant if
f (y + Xb) = f (y) for every vector b (and every value of y); a possibly vector-
valued function g(t) of a vector t is said to be even if g(−t) = g(t) for every t
in the domain of g (and is said to be odd if g(−t) = −g(t) for every such t).]

Let z = L′y, where L is an N × (N − P ∗) matrix such that L′X = 0 and
rank(L) = N − P ∗. The vector z satisfies the definition of a maximal invariant
(with respect to transformations of the general form T (y) = y+Xb), and hence
a possibly vector-valued function f (y) is translation-invariant if and only if it
depends on y only through the value of z (e.g., L e h m a n n 1986, sec. 6.2).
Accordingly, θ̂ is expressible as an (even) function, say θ̂(z), of z. Substituting
θ̂ for θ in w̃(θ) = w̃(y; θ) gives the so-called empirical BLUP ŵEBLUP = w̃(θ̂) =
w̃(y; θ̂).

The empirical BLUP can be regarded as a special case of a predictor of the
form

∫
Ω

w̃(y; ω) dP(ω; z), (1.3)

where P(·; z) is a probability distribution defined on Ω that may depend on
z and is such that P(·;−z) = P(·; z). When P(·; z) is a degenerate probability
distribution that assigns probability one to the single point θ̂(z), the “integrated
BLUP” (1.3) reduces to the empirical BLUP ŵEBLUP. Nondegenerate choices for
P(·; z) include posterior distributions derived from various proper or improper
prior distributions via a Bayesian analysis of the observable random vector z.

The objective in what follows is essentially that of providing an overview of
various results on the prediction of w; many of these results are specific to the
empirical BLUP. The emphasis is on the expected value of the predictor, on the
MSE of prediction (and on its approximation and estimation), and on pivotal
quantities (for obtaining prediction intervals).
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2. Prediction error: Symmetry of distribution

Let ŵ = ŵ(y) represent a predictor of w. Suppose that ŵ is location-equivari-
ant in the sense that ŵ(y+Xb) = ŵ(y)+λ′b for every P ×1 vector b and every
value of y. Suppose further that ŵ(y) is an odd function of y. And observe that
the empirical BLUP ŵEBLUP is an odd location-equivariant predictor and so is
the integrated BLUP (1.3).

Let us consider the distribution of the prediction error ŵ−w. In doing so, we
will frequently need to make reference to one or the other of the following two
alternative assumptions about the joint distribution of y and w:

N. The joint distribution of y and w is multivariate normal (MVN).
S. The joint distribution of y and w is symmetric [in the sense that the joint

distribution of −(y−Xβ) and −(w −λ′β) is the same as that of y−Xβ
and w − λ′β.

K a c k a r and H a r v i l l e (1984) observed that, under Assumption S, the
distribution of ŵ − w is symmetric about 0. They noted that this result follows
from W o l f e ’s (1973) Theorem 2.1—in applying Wolfe’s Theorem 2.1, take
Z =

[
(y−Xβ)′, w−λ′β

]′, g(Z) = −Z, and U (Z) = ŵ(y−Xβ)− (w−λ′β), and
observe that ŵ(y −Xβ) − (w − λ′β) = ŵ(y) − w. Alternatively, the symmetry
of the distribution of ŵ − w can be verified directly: it suffices to observe that
ŵ(y) − w = ŵ(y −Xβ) − (w − λ′β) and that

ŵ(y −Xβ) − (w − λ′β) ∼ ŵ
[−(y −Xβ)

] − [−(w − λ′β)
]

= −ŵ(y −Xβ) − [−(w − λ′β)
]

= −[
ŵ(y −Xβ) − (w − λ′β)

]
.

A stronger result is obtainable. Take s to be any vector of even functions of
z—θ̂ is one such vector. Then, under Assumption S, the joint distribution of
−(ŵ − w) and s is the same as that of ŵ − w and s, and hence the conditional
distribution of ŵ − w given s is symmetric about 0. This result was presented
(for the special case where s is θ̂) by K a c k a r and H a r v i l l e (1984) and, as
pointed out by them, it can be deduced from W o l f e ’s (1973) Theorem 2.2. In
the special case where vw = 0 (and hence where w = λ′β with probability 1), it
is essentially the same as a result given by S e e l y and H o g g (1982, sec. 2).

The result that (under Assumption S) the distribution of ŵ−w is symmetric
about 0 extended a result obtained earlier by K a c k a r and H a r v i l l e (1981)
in the special case where ŵ is the empirical BLUP ŵEBLUP. The latter result
can in turn be regarded as an extension of results obtained even earlier in the
further special case where vw = 0 (i.e., where w = λ′β with probability 1). The
first such result appears to have been that of K a k w a n i (1967); it was followed
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by the results of F u l l e r and B a t t e s e (1973), G u i l k e y and S c h m i d t
(1973), and H a r t l e y and J a y a t i l l a k e (1973) (among others).

That ŵ − w is distributed symmetrically about 0 implies that ŵ is unbiased
provided the expected value of ŵ exists. J i a n g (1999, 2000) established the
existence of the expected value of ŵEBLUP for a class of linear mixed-effects
models with two variance components and subsequently for a much broader
class of linear mixed-effects models. Previously, existence had been established
in some relatively simple special cases (in which vw = 0) by W e i l e r and
C u l p i n (1970) and F u l l e r and B a t t e s e (1973).

3. Mean squared error of prediction

The prediction error of the odd location-equivariant predictor ŵ(y) can be
decomposed in accordance with the following identity:

ŵ(y) − w =
[
w̃(y; θ) − w

]
+

[
ŵ(y) − w̃(y; θ)

]
. (3.1)

The first component w̃(y; θ) − w represents the prediction error that would be
incurred if θ were known and the BLUP were used to predict w. The second
component ŵ(y) − w̃(y; θ) represents the effect on the prediction error of θ
being unknown. In the special case of the empirical BLUP ŵEBLUP, the second
component in the representation (3.1) is expressible in the form

w̃(y; θ̂) − w̃(y; θ) =
{
�
[
θ̂(z); θ

]}′
z , (3.2)

where �(θ̂; θ) is an (N−P ∗)×1 vector whose elements are functionally dependent
on θ̂ and θ—refer, for example, to H a r v i l l e (1985) or H a r v i l l e and J e s k e
(1992) for an explicit expression for �(θ̂, θ).

The second component ŵ(y) − w̃(y; θ) of the prediction error depends on
y only through the value of z and is an odd function of z. That this is so in
the special case of the empirical BLUP ŵEBLUP is evident from expression (3.2).
That it is so in general is evident upon observing that ŵ(y) − w̃(y; θ) is an
odd translation-invariant function of y [and upon recalling that z is a maximal
invariant for transformations of y of the general form T (y) = y + Xb].

Under Assumption S, the joint distribution of the two components of the
prediction error is symmetric about the (2-dimensional) null vector both uncon-
ditionally and conditionally on the vector s of even functions of z, as is verifiable
by, for example, making use of W o l f e ’s (1973) Theorems 2.1 and 2.2. Re-
gardless of the form of the joint distribution of w and y, the first component of
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the prediction error is such that its (unconditional) expected value is 0 and its
(unconditional) variance is

var
[
w̃(y; θ) − w

]
= vw − v′

ywV−1
y vyw +

(
λ −X′V−1

y vyw

)′(
X′V−1

y X
)−(

λ − X′V−1
y vyw

)
(3.3)

and is such that

cov
[
w̃(y; θ) − w, z

]
= h′VyL − v′

ywL = 0. (3.4)

Now, suppose that we adopt Assumption N. Then, the distribution of the first
component w̃(y; θ) − w is MVN [with mean 0 and variance (3.3)]. Moreover, it
follows from result (3.4) that w̃(y; θ)−w is statistically independent of z. Thus,
the distribution of w̃(y; θ)−w conditional on the vector s (of even functions of z)
is the same as its unconditional distribution, and [recalling that ŵ(y)− w̃(y : θ)
depends on y only through the value of z] the two components of the prediction
error are distributed independently, both unconditionally and conditionally on s.
These results extend to an arbitrary odd location-equivariant predictor results
obtained by, for example, K a c k a r and H a r v i l l e (1984) and H a r v i l l e
(1985) for the empirical BLUP ŵEBLUP and for predictors of the form (1.3).

The conditional (given s) and unconditional expected values of the second
component of the prediction error equal 0 [provided the expected value of ŵ(y)
exists]. The MSE of ŵ(y) is m(θ) = E

{
[ŵ(y) − w]2

}
. Corresponding to decom-

position (3.1) of the prediction error, we have the following decomposition of the
MSE:

m(θ) = m1(θ) + m2(θ), (3.5)
where m1(θ) = var

[
w̃(y; θ) − w

]
and m2(θ) = E

{
[ŵ(y) − w̃(y; θ)]2

}
. J i a n g

(2000) showed that, in the special case of the empirical BLUP, m(θ) is finite
[and hence m2(θ) is finite] for a broad class of linear mixed-effects models.

As an immediate consequence of identity (3.5), we have that m(θ) ≥ m1(θ),
in agreement with earlier results by, for example, K h a t r i and S h a h (1981),
K a c k a r and H a r v i l l e (1984), E a t o n (1985), and H a r v i l l e (1985). Note
that [assuming the existence of the expected value of ŵ(y)] m2(θ) = var

[
ŵ(y)−

w̃(y; θ)
]
. Except for very simple special cases, m2(θ) is not expressible in “closed

form.” Corresponding to the decomposition (3.5) for the unconditional MSE is
the decomposition for the conditional (on s) MSE given by

m∗(θ; s) = m1(θ) + m∗
2(θ; s), (3.6)

where
m∗(θ; s) = E

{
[ŵ(y) − w]2 | s}

and where

m∗
2(θ; s) is E

{
[ŵ(y) − w̃(y; θ)]2 | s} or (equivalently) var

[
ŵ(y) − w̃(y; θ) | s].
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Subsequently, let us suppose that the vector s of even functions of z is such
that θ̂ depends on z only through the value of s. In the special case of the
empirical BLUP ŵEBLUP, we have that

m∗
2(θ; s) =

[
�(θ̂; θ)

]′ var(z | s)�(θ̂; θ) (3.7)

and
m2(θ) = E

{[
�(θ̂; θ)

]′ var(z | s)�(θ̂; θ)
}

(3.8)
(H a r v i l l e and J e s k e 1992, sec. 3). H a r v i l l e and J e s k e (1992, sec. 5)
considered expressions (3.7) and (3.8) as applied to linear mixed-effects models
with two variance components, taking s to be a minimal sufficient statistic for z.
They obtained var(z | s) in “closed form” and outlined a procedure for evaluating
the expected value in expression (3.8) by numerical integration or by Monte
Carlo methods.

Among the various versions of formulas (3.7) and (3.8) are those obtained by
taking s to be θ̂. It is informative to consider those versions under the following
two conditions:

A. E
[
vw(θ̂)

]
= vw, E

[
vyw(θ̂)

]
= vyw, and E

[
Vy(θ̂)

]
= Vy.

B. The vector θ̂ is a complete sufficient statistic (for z).

Let Vz(θ) = var(z) = L′Vy(θ)L. H a r v i l l e and J e s k e (1992, sec. 3.2)
observed that, under Conditions A and B,

var(z | θ̂) = Vz(θ̂) with probability 1.

And, based on that result, they suggested the following approximations for
m∗

2(θ; s) and m2(θ) (when s is taken to be θ̂):

m∗
2(θ; θ̂) .=

[
�(θ̂; θ)

]′Vz(θ̂)�(θ̂; θ) (3.9)

and
m2(θ) .= E

{[
�(θ̂; θ)

]′Vz(θ̂)�(θ̂; θ)
}
. (3.10)

Conditions A and B tend to be at least somewhat hypothetical (especially B).
Results derived under such conditions are of interest for much the same reasons
that asymptotic results may be of interest; they suggest approximations and may
be helpful in discerning the circumstances under which the approximations are
likely to be satisfactory. Harville and Jeske carried out a small numerical study
of one-way-classification random-effects models in which approximation (3.10)
performed quite well.

K a c k a r and H a r v i l l e (1984, sec. 2) proposed an approximation to the
second component of the MSE of the empirical BLUP ŵEBLUP. Letting d(θ) =
∂w̃(θ)/∂θ, their approximation is

m2(θ) .= tr
[
A(θ)B(θ)

]
, (3.11)
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where A(θ) = var
[
d(θ)

]
and where B(θ) is either the MSE matrix E

[
(θ̂ − θ)

(θ̂ − θ)′
]

or some approximation to the MSE matrix. They based their approx-
imation on the observation that a second-order Taylor-series approximation for
the square of the second component of the prediction error is as follows:

[
ŵEBLUP − w̃(θ)

]2 =
[
w̃(θ̂) − w̃(θ)

]2 .=
{[

d(θ)
]′(θ̂ − θ)

}2

(3.12)

= tr
{
d(θ)

[
d(θ)

]′(θ̂ − θ)(θ̂ − θ)′
}
.

(3.13)

P r a s a d and R a o (1990) considered the variation on approximation (3.11)
that results from replacing

d(θ) by the vector d∗(θ) = ∂
{
[vyw(θ)]′[Vy(θ)]−1y

}
/∂θ.

Thus, the Prasad-Rao approximation is

m2(θ) .= tr
[
A∗(θ)B(θ)

]
, (3.14)

where A∗(θ) = var
[
d∗(θ)

]
. Their focus was on situations like those encountered

in small-area estimation where the sensitivity of τ̃ [which would be the BLUE of
τ = (λ′−v′

ywV−1
y X)β if θ were known] to changes in the value of θ tends to be

slight relative to that of v′
ywV−1

y y. Prasad and Rao obtained some asymptotic
results that establish the order of the error of approximation (3.14) [and show it
to be the same as the order of the error of approximation (3.11)]; these results
are specific to linear mixed-effects models (and to choices for the coefficient
vectors λ and δ) of the kind typically employed in small-area estimation—refer
also to S i n g h , S t u k e l , and P f e f f e r m a n n (1998), D a t t a and L a h i r i
(2000), R a o (2003), W a n g and F u l l e r (2003), and D a s , J i a n g , and
R a o (2004).

Let us now specialize to the case where θ̂ is the REML estimator. Denoting by
l(θ) the C × 1 vector whose ith element is the partial derivative with respect to
θi of the REML log-likelihood function, we have that l(θ̂) = 0 (provided θ̂ ∈ Ω).
Suppose that we take B(θ) to be the large-sample variance-covariance matrix
of θ̂ {so that

[−B(θ)
]−1 is the expected value of the C × C matrix whose ijth

element is the second-order partial derivative with respect to θi and θj of the
REML log-likelihood function}. Then, upon substituting from the approximation
θ̂ − θ

.= B(θ)l(θ) into expression (3.12), we obtain the approximation

[
ŵEBLUP − w̃(θ)

]2 .=
{[

d(θ)
]′
B(θ)l(θ)

}2

. (3.15)

8



ACCOUNTING FOR THE ESTIMATION OF VARIANCES AND COVARIANCES

Approximation (3.15) suggests the following approximation for the second com-
ponent of the MSE of the empirical BLUP ŵEBLUP:

m2(θ) .= E
({[

d(θ)
]′
B(θ)l(θ)

}2
)

. (3.16)

D a s et al. (2004) obtained some asymptotic results that establish the or-
der of the error of approximation (3.16) for various linear mixed-effects mod-
els (and choices of λ and δ). They further established that tr

[
A(θ)B(θ)

]
and

tr
[
A∗(θ)B(θ)

]
differ from E

({[d(θ)]′B(θ)l(θ)}2
)

only to an extent that is of
the same order as the order of the error of approximation (3.16) and that, con-
sequently, the errors of approximations (3.11) and (3.14) are of the same order
as the error of approximation (3.16). Similar results were obtained by D a t t a
and L a h i r i (2000).

It is worth mentioning that the first component of the prediction error can
be further decomposed as follows:

w̃(y; θ) − w =
[
E(w |y) − w

]
+

[
τ + v′

ywV−1
y y − E(w |y)

]
+ (τ̃ − τ). (3.17)

Regardless of the form of the joint distribution of w and y, the three components
defined by identity (3.17) are uncorrelated, and each has an expected value of 0.
These three components could be regarded as an “inherent component” [as in
the error that would be incurred even if E(w |y) were known and were used to
predict w], a “nonlinearity component”, and an “unknown-means component”
(a contribution to the error attributable to the estimation of τ). Corresponding
to the decomposition (3.17) of w̃(y; θ) − w is the following decomposition of
m1(θ):

m1(θ) = m11 + m12 + m13, (3.18)
where

m11 = var
[
E(w |y) − w

]
= E

[
var(w |y)

]
,

m12 = vw − v′
ywV−1

y vyw − E
[
var(w |y)

]
,

and

m13 =
(
λ − X′V−1

y vyw

)′(X′V−1
y X

)−(
λ −X′V−1

y vyw

)
(H a r v i l l e 1985).

4. Estimation of mean squared error

Let us consider the estimation of the MSE m(θ) of the predictor ŵ(y) (under
Assumption N). And, in doing so, let us restrict attention to the case where
ŵ(y) is the empirical BLUP ŵEBLUP = w̃(y; θ̂).
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It has been common practice to estimate m(θ) by m1(θ̂). This practice does
not account for the contribution to m(θ) of m2(θ) and, as a consequence, might
be expected to result in the underestimation of m(θ). In fact, not only does
m1(θ̂) tend to underestimate m(θ), but it tends to underestimate m1(θ). In that
regard, H a r v i l l e and J e s k e (1992) showed that if Condition A is satisfied,
then

E
[
m1(θ̂)

]
= m1(θ) − E

{[
�(θ̂; θ)

]′
Vz(θ̂)�(θ̂; θ)

}
, (4.1)

and that if Conditions A and B are both satisfied, then

E
[
m1(θ̂)

]
= m1(θ) − m2(θ). (4.2)

Result (4.1) implies that E
[
m1(θ̂)

] ≤ m1(θ), which is an inequality given by
E a t o n (1985, sec. 8). Result (4.2) indicates that, under certain conditions,
m1(θ̂) tends to underestimate m1(θ) by exactly twice the amount that might
have been anticipated.

Let k(θ) represent the C × 1 vector whose ith element is ki = ∂m1(θ)/∂θi,
and Λ(θ) the C ×C matrix whose ijth element is λij = ∂2m1(θ)/∂θi∂θj . Then,
a second-order Taylor-series approximation to m1(θ̂) is

m1(θ̂) .= m1(θ) + (θ̂ − θ)′k(θ) + 1
2 (θ̂ − θ)′Λ(θ)(θ̂ − θ).

Upon taking expectations, we obtain the approximation

E
[
m1(θ̂)

] .= m1(θ) +
[
E(θ̂) − θ

]′k(θ) + 1
2 tr

[
Λ(θ)B(θ)

]
, (4.3)

and, under the assumption that E(θ̂) .= θ, we obtain the further approximation

E
[
m1(θ̂)

] .= m1(θ) + 1
2 tr

[
Λ(θ)B(θ)

]
. (4.4)

It can be shown that

ki =
(

h
−1

)′(
∂Vy/∂θi ∂vyw/∂θi

∂v′
yw/∂θi ∂vw/∂θi

)(
h

−1

)
(4.5)

and, letting aij represent the ijth element of A(θ), that

λij = −2aij +
(

h
−1

)′(
∂2Vy/∂θi∂θj ∂2vyw/∂θi∂θj

∂2v′
yw/∂θi∂θj ∂2vw/∂θi∂θj

)(
h

−1

)
(4.6)

(H a r v i l l e and J e s k e 1992, sec. 4).
If vw(θ), vyw(θ), and Vy(θ) are linear in θ1, θ2, . . . , θC , then expression (4.6)

reduces to −2aij, so that Λ(θ) = −2A(θ). Thus, if vw(θ), vyw(θ), and Vy(θ)
are approximately linear in θ1, θ2, . . . , θC , we obtain, as an alternative to ap-
proximation (4.3), the “simplified” approximation

E
[
m1(θ̂)

] .= m1(θ) +
[
E(θ̂) − θ

]′
k(θ) − tr

[
A(θ)B(θ)

]
; (4.7)
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and if in addition E(θ̂) .= θ (in which case Condition A is approximately satis-
fied), we obtain, as an alternative to approximations (4.4) and (4.7), the even
more simplified approximation

E
[
m1(θ̂)

] .= m1(θ) − tr
[
A(θ)B(θ)

]
. (4.8)

P r a s a d and R a o (1990) proposed an estimator of m(θ) for use in vari-
ous applications of a kind encountered in small-area estimation. The proposed
estimator is

m̂∗
PR = m1(θ̂) + 2 tr

[
A∗(θ̂)B(θ̂)

]
, (4.9)

which can be regarded as a “simplified” version of the estimator

m̂PR = m1(θ̂) + 2 tr
[
A(θ̂)B(θ̂)

]
. (4.10)

The motivation for estimator (4.9) or (4.10) comes from results like (4.8) and
(3.11) or (3.14) and the presumption that tr

[
A∗(θ̂)B(θ̂)

]
or tr

[
A(θ̂)B(θ̂)

]
is a

“reasonable” estimator of tr
[
A∗(θ)B(θ)

]
or tr

[
A(θ)B(θ)

]
.

Some formal justification for the use of estimator (4.9) or (4.10) is pro-
vided by asymptotic results obtained (in the context of small-area estimation)
by Prasad and Rao and subsequently by D a t t a and L a h i r i (2000) and
D a s et al. (2004). Those results are for situations in which the variance com-
ponents of the underlying linear mixed-effects model are estimated by meth-
ods such as REML or the method of fitting constants. They serve to justify
the approximation E

{
tr[A∗(θ̂)B(θ̂)]

} .= tr
[
A∗(θ)B(θ)

]
, and ultimately the

approximation E(m̂∗
PR) .= m(θ), by establishing the order of the error of the

approximations. The estimator m̂∗
PR is a member of classes of estimators of

a more general form considered by D a t t a and L a h i r i (2000) and D a s
et al. (2004).

Some information about the performance of estimator (4.9) or (4.10) is pro-
vided by, for example, the numerical studies of H u l t i n g and H a r v i l l e
(1991), H a r v i l l e and J e s k e (1992), and S i n g h et al. (1998). It appears
that (at least in the case of conventional linear mixed-effects models) the ex-
pected value of the estimator is reasonably close to m(θ) unless the value of θ is
close to a boundary of the parameter space Ω. When θ is close to a boundary,
E(θ̂) may differ significantly from θ and [depending on the choice of B(θ)] B(θ̂)
may tend to be overly “large,” with the consequence that the estimator (4.9) or
(4.10) may tend to exceed m(θ) by a considerable amount.

H a r v i l l e and J e s k e (1992) discussed various estimators of m(θ) including
ones of the form

m̂HJ = m̂1 + EB

{[
�(θ̂; θ)

]′ var(z | s)�(θ̂; θ)
}
, (4.11)
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where m̂1 is an exactly or approximately unbiased estimator of m1(θ) and where
EB is the expectation operator for the posterior distribution of θ obtained by re-
garding z as the data vector and adopting some possibly vague prior distribution.
They also discussed estimators of the somewhat more tractable form

m̂∗
HJ = m̂1 + EB

{[
�(θ̂; θ)

]′
Vz(θ̂)�(θ̂; θ)

}
. (4.12)

Moreover, for linear mixed-effects models with two variance components, they
described procedures for implementing m̂HJ and m̂∗

HJ. And they carried out a
small numerical study in which m̂HJ and m̂∗

HJ were found to perform quite well.
Numerous other procedures have been proposed for estimating m(θ), many of

which have features associated with Bayesian statistics, with Monte Carlo meth-
ods, and/or with resampling methods and some of which do not require Assump-
tion N. Refer, for example, to H u l t i n g and H a r v i l l e (1991), H a r v i l l e
and J e s k e (1992), S i n g h et al. (1998), J i a n g , L a h i r i , and W a n (2002),
and H a l l and M a i t i (2006).

5. Prediction intervals

Let us now consider the problem of obtaining a prediction interval for w
(under Assumption N). Define

t = (ŵ − w)/
√

m̂,

where ŵ is the empirical BLUP ŵEBLUP or some other odd location-equivariant
predictor of w and where m̂ is m̂PR or m̂∗

PR or some other estimator of m(θ) that
is expressible in the form m̂ = ṁ(θ̂) [for some strictly positive function ṁ(θ)
of θ]. A prediction interval for w is obtainable by treating t (whose distribution
is symmetric about 0) as a pivotal quantity.

Based on asymptotic results, t is sometimes assigned a standard normal distri-
bution (e.g., S i n g h et al. (1998), sec 6.2). Alternatively, as discussed by J e s k e
and H a r v i l l e (1988) and [in the special case where vw = 0 and ṁ(θ) = m1(θ)]
by G i e s b r e c h t and B u r n s (1985), t can be assigned a Student’s t distribu-
tion with degrees of freedom, say ν̂, determined empirically via a Satterthwaite
approximation. Specifically, ν̂ is taken to be an estimate of the quantity

ν = 2
[
E(m̂)

]2
/ var(m̂) = 2

[
E(m̂2) − var(m̂)

]
/ var(m̂)

obtained by equating the mean and variance of a scalar multiple of m̂ to the
mean and variance of a chi-square distribution with ν degrees of freedom.

Following Jeske and Harville and Giesbrecht and Burns, we could take

ν̂ = 2m̂2/vm(θ̂),

12
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where vm(θ) equals or approximates var(m̂). Alternatively, we could take

ν̂ = max
{
2
[
m̂2/vm(θ̂)

] − 2, c
}

for some small positive constant c. One choice for vm(θ) [based on a first-order
Taylor-series approximation to ṁ(θ̂)] is

vm(θ) =
(
∂ṁ(θ)/∂θ

)′
B(θ)

(
∂ṁ(θ)/∂θ

)
;

another (based on a second-order Taylor-series approximation) is

vm(θ) =
(
∂ṁ(θ)/∂θ

)′
B(θ)

(
∂ṁ(θ)/∂θ

)
+ 1

2 tr
{[

B(θ)(∂2ṁ(θ)/∂θ∂θ′)
]2}

.

Instead of assigning t a standard normal or Student’s t distribution (or some
other distribution), the relevant features of the distribution of t (e.g., quantiles)
could be determined by simulation (with θ = θ̂). This possibility was considered
by Jeske and Harville.

It is sometimes desired to make simultaneous inferences for two or more, say L,
unobservable random variables w1, w2, . . . , wL. Let w = (w1, w2, . . . , wL)′, and
take w̃ = w̃(θ) to be the L × 1 vector whose ith element is (for θ known) the
BLUP of wi. Further, define ŵ = w̃(θ̂) (so that ŵ is the L× 1 vector whose ith
element is the empirical BLUP of wi).

The various results on the empirical BLUP of the unobservable random vari-
able w can be readily extended to the vector ŵ of empirical BLUPs. For example,
result (3.11) becomes

M2(θ) =
C∑

i=1

C∑
j=1

bij(θ) cov
[
∂w̃(θ)/∂θi, ∂w̃(θ)/∂θj

]
,

where M2(θ) = E
{
[ŵ−w̃(θ)][ŵ−w̃(θ)]′

}
and where (for i, j = 1, 2, . . . , C) bij(θ)

is the ijth element of B(θ).
Let M̂ represent an estimator of the MSE matrix

(
i.e., an estimator of the

matrix E[(ŵ − w)(ŵ − w)′]
)

of the general form M̂ = Ṁ(θ̂) [where Ṁ(θ) is a
positive definite matrix that is functionally dependent on θ]. And define

F = (1/L)(ŵ −w)′M̂−1(ŵ −w).

K e n w a r d and R o g e r (1997) considered [in the special case where
var(w) = 0] the use of F as a pivotal quantity for making simultaneous in-
ferences for w1,w2,. . . ,wL. They took θ̂ to be the REML estimator of θ, took
M̂ to be the matrix analogue of the estimator m̂PR, and took B(θ) to be the
asymptotic variance-covariance matrix of θ̂. And they took the distribution of
the quantity F to be such that λF has Snedecor’s F distribution with L and ν

degrees of freedom; in doing so, they took the value of λ to be λ(θ̂) and that
of ν to be ν(θ̂), where λ(θ) and ν(θ) are functions of θ obtained by comparing
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the mean and variance of λF with those of the F distribution. They reported
the results of a simulation study of several situations in which their approach
performed well. Refer to E l s t o n (1998) for some related results and discus-
sion. Presumably, Kenward and Roger’s formulas for the quantities λ(θ) and
ν(θ) (and hence their approach) could be generalized (to cover the case where
var(w) �= 0).
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