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ESTIMATION OF ENTROPIES AND DIVERGENCES

VIA NEAREST NEIGHBORS

Nikolai Leonenko — Luc Pronzato — Vippal Savani

ABSTRACT. We extend the results in [L. F. Kozachenko, N. N. Leonenko: On
statistical estimation of entropy of random vector, Problems Inform. Transmission
23 (1987), 95–101; Translated from Problemy Peredachi Informatsii 23 (1987),
9–16 (in Russian)] and [M. N. Goria, N. N. Leonenko, V. V. Mergel, P. L. Novi
Inverardi: A new class of random vector entropy estimators and its applications

in testing statistical hypotheses, J. Nonparametr. Statist. 17 (2005), 277–297] and
show how kth nearest-neighbor distances in a sample of N i.i.d. vectors distributed
with the probability density f can be used to estimate consistently Rény and
Tsallis entropies of the unknown f under minimal assumptions. The method is
extended to the estimation of statistical distances between two distributions in
the case when one i.i.d. sample from each is available.

1. Introduction

Let X ∈ R
m be a random vector with probability measure μ having the

density f with respect to the Lebesgue measure μL. The R é n y i entropy [24]
of f is defined by

H∗
q =

1
1 − q

log
∫

Rm

fq(x) dx , q �= 1 , (1)
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and the H a v r d a—C h a r v á t entropy [8] (also called T s a l l i s entropy [25])
by

Hq =
1

q − 1

(
1 −

∫
Rm

fq(x) dx

)
, q �= 1 . (2)

When q tends to 1, both Hq and H∗
q tend to the Shannon entropy

H1 = −
∫

Rm

f(x) log f(x) dx . (3)

We consider the estimation of H∗
q and Hq from a sample of N independent and

identically distributed (i.i.d.) random variables X1, . . . , XN , N ≥ 2, extending
the approach proposed by K o z a c h e n k o and L e o n e n k o , see [12], [7], for
the estimation of H1. The method is based on nearest-neighbor distances in the
sample (when m = 1, it is thus related to sample-spacing methods; see, e.g., [29]
for Shannon entropy and [2] for a survey on entropy estimation). It is connected
with the random-graph approach of R e d m o n d and Y u k i c h [23] who, sup-
posing that the distribution is supported on [0, 1]m and with some smoothness
assumptions on f , construct a strongly consistent estimator of H∗

q for 0 < q < 1
(up to an unknown bias term independent of f , related to the graph properties).
For q �= 1 our construction relies on the estimation of the integral

Iq = Iq(f) = IE
{
fq−1(X)

}
=
∫

Rm

fq(x) dx (4)

through the computation of conditional moments of nearest-neighbor distances
(IE will always denote the expectation for f). It thus possesses some similarities
with [6] where the asymptotic behavior of the moments of kth nearest-neighbor
distances is considered: under the conditions that f is continuous, f > 0 on
a compact convex subset C of R

m, with f having bounded partial derivatives on
C, the weak consistency of the estimator of Iq is established, N → ∞, for m ≥ 2
and q < 1. Comparatively, our results cover a larger range of values for q and
do not rely on regularity or bounded support assumptions for f . The results for
the estimation of the Shannon entropy (3) are derived from those obtained for
q �= 1.

The method can also be applied to the estimation of statistical distances.
Here we only consider the Kullback-Leibler relative entropy, defined by

K(f, g) =
∫

Rm

f(x) log
f(x)
g(x)

dx = H̆1 − H1 , (5)
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where H1 is given by (3) and

H̆1 = −
∫

Rm

f(x) log g(x) dx . (6)

The estimation of H1 and H̆1 is then based on N independent observations
X1, . . . , XN distributed with the density f and M observations Y1, . . . , YM dis-
tributed with g. Estimation of other statistical distances is considered in [14].

Section 2 gives some properties of Iq, H∗
q and Hq and lists some applications

of entropy estimation. The main results of the paper are presented in Section 3,
where the nearest-neighbor estimators of the quantities (1–5) are defined and
their asymptotic properties are summarized.

2. Some properties of Iq, Hq, H∗
q and applications

One may notice that H∗
q can be expressed as a function of Hq, H∗

q = log
[
1−

(q − 1)Hq

]
/(1 − q), with d(H∗

q )/d(Hq) = 1/Iq and d2(H∗
q )/d(Hq)2 = (q − 1)/I2

q

for any q. H∗
q is thus a strictly increasing concave (resp. convex) function of Hq

for q < 1 (resp. q > 1). A distribution that maximizes H∗
q therefore also maxi-

mizes Hq and will be called q-entropy maximizing. The entropy Hq is a concave
(resp. convex) function of the density for q > 0 (resp. q < 0). Hence, q-entropy
maximizing distributions, under some specific constraints, are uniquely defined
for q > 0. For instance, when the constraint is that the distribution is finitely
supported, then the q-entropy maximizing distribution is uniform. Also, for any
dimension m ≥ 1 the q-entropy maximizing distribution with a given covariance
matrix is of the multidimensional Student-t type if m/(m + 2) < q < 1 and
has a finite support if q > 1, see [30]. This generalizes the well-known prop-
erty that Shannon entropy H1 is maximized for the normal distribution. Such
entropy-maximization properties can be used to derive nonparametric statistical
tests, following the same approach as in [29] where normality is tested with H1;
see also [7]. The q-entropy maximizing property of the Student distribution can
be used to test that a given sample is Student distributed, which finds appli-
cations in financial mathematics, see [11]. The entropy (2) is of interest in the
study of nonlinear Fokker-Planck equations, see [26]. Values of q ∈ [1, 3] are
used in [1] to study the behavior of fractal random walks. Applications for quan-
tizer design, characterization of time-frequency distributions, image registration
and indexing, texture classification, image matching etc., are considered in [10],
[9], [20]. Entropy minimization is used in [22], [32] for parameter estimation in
semi-parametric models. Entropy estimation is a basic tool for independent com-
ponent analysis in signal processing, see, e.g., [18]. The Kullback-Leibler relative
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entropy (5) can be used to construct a measure of mutual information (MI) be-
tween statistical distributions, with applications in image [31], [20] and signal
processing [18].

3. The estimators and their properties

3.1. The estimators

Suppose that X1, . . . , XN , N ≥ 2, are i.i.d. with a probability measure μ hav-
ing a density f with respect to the Lebesgue measure. Let ρ(x, y) denote the Eu-
clidean distance between two points x, y of R

m. For a given sample X1, . . . , XN ,
and a given Xi in the sample, from the N − 1 distances ρ(Xi, Xj), j = 1, . . . , N ,
j �= i, we form the order statistics ρ

(i)
1,N−1 ≤ ρ

(i)
2,N−1 ≤ · · · ≤ ρ

(i)
N−1,N−1, so that

ρ
(i)
k,N−1 is the kth nearest-neighbor distance from Xi to some other Xj in the

sample, j �= i. We estimate Iq (4) for q �= 1, by

ÎN,k,q =
1
N

N∑
i=1

(ζN,i,k)1−q , (7)

with ζN,i,k = (N − 1) Ck Vm

(
ρ
(i)
k,N−1

)m, where Vm = πm/2/Γ(m/2 + 1) is the

volume of the unit ball B(0, 1) in R
m and Ck =

[
Γ(k)/Γ(k+1−q)

]1/(1−q). Then
we estimate H∗

q (1) and Hq (2) respectively by

Ĥ∗
N,k,q = log(ÎN,k,q)/(1 − q) , (8)

ĤN,k,q = (1 − ÎN,k,q)/(q − 1) . (9)

For the estimation of H1 (3) we take the limit of ĤN,k,q as q → 1, which gives

ĤN,k,1 =
1
N

N∑
i=1

log ξN,i,k (10)

with ξN,i,k = (N − 1) exp
[−Ψ(k)

]
Vm

(
ρ
(i)
k,N−1

)m, where Ψ(z) = Γ′(z)/Γ(z) is
the digamma function.

Suppose now that X1, . . . , XN are i.i.d. with the density f and that Y1, . . . , YM

are i.i.d. with the density g. For any Xi in the sample, i ∈ {1, . . . , N}, consider
ρ̆(Xi, Yj), j = 1, . . . , M , and form the order statistics ρ̆

(i)
1,M ≤ ρ̆

(i)
2,M ≤ · · · ≤

ρ̆
(i)
M,M , so that ρ̆

(i)
k,M is the kth nearest-neighbor distance from Xi to some Yj ,
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j ∈ {1, . . . , M}. Then we estimate H̆1 (6) and K(f, g) (5) respectively by

H̆N,M,k =
1
N

N∑
i=1

log
{

M exp
[−Ψ(k)

]
Vm

(
ρ̆
(i)
k,M

)m}
, (11)

K̂N,M,k = H̆N,M,k − ĤN,k,1 = m log

[
N∏

i=1

ρ̆
(i)
k,M

ρ
(i)
k,N

]1/N

+ log
M

N − 1
. (12)

3.2. Asymptotic properties

The properties of the estimators ÎN,k,q (7) are summarized in Table 1, from
which one can deduce those of Ĥ∗

N,k,q (8) and ĤN,k,q (9). Table 2 gives the
properties of the estimators ĤN,k,1 (10) and H̆N,M,k (11), from which those of
the estimator K̂N,M,k (12) can be read directly. As indicated, L2 (and thus weak)
consistency is obtained without any smoothness assumption on the underlying
density f (or densities f and g) or any bounded-support assumption, which
improves the results of existing methods, see [2]. The proofs are rather technical
and are omitted due to space limitation, see [14]. They rely on an application
of Lebesgue’s bounded convergence theorem, on Theorem 2.5.1 of [4], p. 34, on
the generalized Helly-Bray Lemma, see [16], p. 187 and on the following.

Lemma 1 (L e b e s g u e , [13]). If g ∈ L1(Rm), then for any sequence of open
balls B(x, Rk) of radius tending to zero as k → ∞ and for μL-almost any x ∈ R

m,
lim

k→∞
[
1/(VmRm

k )
] ∫

B(x,Rk)
g(t) dt = g(x).

Table 1. Asymptotic properties of the estimator (7) as N → ∞.

q assumption on f ÎN,k,q

q < 1 IE
{
fq−1(X)

}
< ∞ asympt. unbiased

q < 1 IE
{
f2(q−1)(X)

}
< ∞ L2-consistent

1 < q < k + 1 f bounded asympt. unbiased
1 < q < (k + 1)/2 f bounded, k ≥ 2 L2-consistent
1 < q < 3/2 f bounded, k = 1 L2-consistent

Table 2. Asymptotic properties of the estimators (10) and (11).

assumptions on f and g property

f bounded, ∃ε > 0: IE
{
f−ε(X)

}
< ∞ ĤN,k,1 is L2-consistent, N → ∞

g bounded, ∃ε > 0: IE
{
g−ε(X)

}
< ∞ H̆N,M,k is L2-consistent, N, M → ∞
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Figure 1. H∗
q (solid line) and Ĥ∗

N,k,q (dashed lines) as functions of q for

the Student distribution T (5, I3) in R
3 with zero-mean and identity scaling

matrix (N = 1000).

Example. Figure 1 presents H∗
q as a function of q (solid line) for the three-

dimensional (m = 3) Student distribution T (ν, I3) with zero mean, scaling ma-
trix the identity I3 (and covariance matrix ν/(ν − 2) times the identity) and
ν = 5 degrees of freedom, the p.d.f. of which is

fν(x) =
1

(νπ)m/2

Γ
(

m+ν
2

)
Γ
(

ν
2

) 1
[1 + x�x/ν](m+ν)/2

, x ∈ R
m.

The associated Rényi entropy H∗
q is given by

H∗
q =

1
1 − q

log
B
( q(m+ν)

2 − m
2 , m

2

)
Bq
(

ν
2
, m

2

) +
1
2

log
[
(πν)m

]− log Γ
(m

2

)

with B(u, v) = Γ(u)Γ(v)/Γ(u + v) the Beta function, and is defined for q >

m/(m + ν) = 3/8 = 0.375. The estimates Ĥ∗
N,k,q for k = 1, . . . , 5 obtained from

a sample of size N = 1000 are plotted on the same figure. Note that Ĥ∗
N,k,q is

defined only for q < k + 1.
Further developments. Here nearest neighbors are defined for the Euclidean
distance, but the metric could be adapted to the observed sample. Indeed, for
X1, . . . , XN a sample having a non-spherical distribution, its empirical covari-
ance matrix Σ̂N could be used to define a new metric through ‖x‖2

Σ̂N
= x�Σ̂−1

N x,

the volume Vm of the unit ball in this metric becoming |Σ̂N |1/2πm/2/Γ(m/2+1).
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Few results exist concerning
√

N -consistency of entropy estimators. For in-
stance,

√
N -consistency of an estimator of H1 based on nearest-neighbor dis-

tances (k = 1) is proved in [27] for m = 1 and sufficiently regular densities f with
unbounded support. Concerning the method proposed here,

√
N -consistency of

the estimator ÎN,k,q is still an open issue. As for the case of spacing methods,
where the spacing m can be taken as an increasing function of the sample size N ,
see, e.g., [29], [28], it seems reasonable to let k = kN increase with N. Properties
of nearest-neighbor distances with kN → ∞ are considered for instance in [17],
[19], [5], [15].

A central limit theorem for functions h(ρ) of nearest-neighbor distances is
obtained in [3] for k = 1 and in [21] for k ≥ 1. However, these results are
restricted to the case of bounded functions, which does not cover the situation
h(ρ) = ρm(1−q), see (7), or h(ρ) = log(ρ), see (10). Conditions for the asymptotic
normality of ÎN,k,q are under current investigation.
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