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REFERENCE VALUE
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ABSTRACT. We discuss the problem of evaluating measurement results from
interlaboratory comparisons in metrology. Here we permit the laboratories to have
systematic errors that are assumed to be uniformly distributed. Two approaches
for modeling the measurement results are introduced and compared, and the

associated problems connected with estimation of the quantity in question are
analyzed. The first is a classical (frequentist) statistical approach resulting in
a heteroscedastic one-way random effects model. The second approach is based
on metrological methodology. In both cases the comparison reference value (an
estimate of the unknown measured quantity) with the approximate interval esti-

mators is proposed.

1. Introduction

Here we consider the metrological problem of combining measurements of
an unknown quantity μ from several laboratories and/or measurement meth-
ods known in metrology as interlaboratory comparisons. The outcome of the
interlaboratory comparisons is the comparison reference value, normally taken
as a close approximation to the value μ, see [1]. In this paper, we formulate
and illustrate two different approaches for modelling the measurement results
from interlaboratory comparisons, see, e.g., the paper by K a c k e r , D a t l a
and P a r r [8]:

• the classical (frequentist) statistical approach resulting in a heteroscedastic
one-way random effects model.
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• the approach based on metrological methodology.

In both cases the comparison reference value (an estimate of the unknown mea-
sured quantity) is proposed together with the interval estimator for μ. Both
approaches are numerically illustrated by an example of the key interlaboratory
comparisons on charge sensitivity of the back-to-back accelerometer for 500 Hz,
taken from the Final report on key comparison CCAUV.V-K1 [11].

2. Classical (frequentist) statistical approach

Let k ≥ 2 be the number of independent laboratories or measurement meth-
ods. Assume that each laboratory repeats independently ni times the measure-
ment of the same object (quantity), μ being the true value, ni ≥ 2, i = 1, . . . , k.

For the interlaboratory comparisons we will consider the following heterosce-
dastic one-way random effects model:

Yij = μ + Bi + εij . (1)

Yij denotes the jth measurement in the ith laboratory, μ represents the (un-
known) common mean, εij ∼ N (0, σ2

(A),i) is the mutually independent normally
distributed measurement error, σ(A),i being the unknown standard deviation.
Bi ∼ Ui(−δi, δi), i = 1, . . . , k are the laboratory biases (systematic errors) which
are independently uniformly distributed with δi =

√
3σ(B),i, where σ(B),i are

the known standard deviations.
The model (1) with Bi ∼ N (0, σ2

0) and σ2
(A),1 = · · · = σ2

(A),k is basically
the one-way random-effects ANOVA model, broadly studied by S e a r l e [10],
G r a y b i l l and H u l t q u i s t [4], G r a y b i l l [3], H a r v i l l e [6], and others.
The problem of deriving the confidence interval for the common mean μ in
the model (1) with heteroscedastic errors was studied, e.g., by R u k h i n and
V a n g e l [9], H a r t u n g , B ö c k e n h o f f and K n a p p [5], I y e r , W a n g
and M a t h e w [7], and W a n g and I y e r [12].

Here we suggest an approximate (1−α)×100% confidence interval for the com-
mon mean μ based on an approach similar to that one used by F a i r w e a t h e r
in [2]. The outcome of the experiment is given by the laboratory sample means
(the estimators of μi = μ + bi, where by bi we denote the realization of random
variable Bi) and sample variances (the estimators of σ2

(A),i):

Ȳi =
1
ni

ni∑
j=1

Yij ,
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and

S2
i =

1
ni − 1

ni∑
j=1

(Yij − Ȳi)2.

Note that Ȳi and S2
i , for i = 1, . . . , k, are mutually independent random vari-

ables. Assuming the model (1) we have:

(Ȳi − μ) ∼ Bi + ε̄i, independent of
(ni − 1)S2

i

σ2
(A),i

∼ χ2
ni−1 , (2)

with

ε̄i =
1
ni

ni∑
j=1

εij ,

ε̄i ∼N (0, σ2
(A),i/ni) ,

where Bi and ε̄i are independent random variables. Assuming further that δi =√
3 γiσ(A),i, where γi = σ(B),i/σ(A),i is a known ratio of the standard deviations,

we get

T ∗
i =

Ȳi − μ√
S2

i

ni

∼
(√

3ni γi

)
Ui + Zi√

Qi

(ni−1)

, (3)

where Ui ∼ U(−1, 1), Zi ∼ N (0, 1), and Qi ∼ χ2
ni−1 are mutually independent

random variables.
Let us denote

W ∗ =
k∑

i=1

ω∗
i T ∗

i ,

where ω∗
i are non-stochastic coefficients, e.g., ω∗

i = 1/Var(T ∗
i ), and let q∗1−α/2

denote the (1 − α/2)-quantile of the distribution of W ∗, such that

Pr
(|W ∗| < q∗1−α/2

)
= 1 − α . (4)

From that, the exact (1 − α) × 100% confidence interval for μ is given by

k∑
i=1

√
ni

S2
i

ω∗
i Ȳi

k∑
i=1

√
ni

S2
i

ω∗
i

±
q∗1−α/2

k∑
i=1

√
ni

S2
i

ω∗
i

. (5)

The theoretical distribution function of W ∗ =
k∑

i=1

ω∗
i T ∗

i is intractable as the
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probability density function f(t) of T ∗
i is expressed by non-standard integral

f(t) =
2−ν/2

√
ν Γ(ν

2 )a

∞∫
0

e−
z
2 z

ν−1
2

{
Φ
(
t
√

z ν − a
)− Φ

(−t
√

z ν − a
)}

dz , (6)

a =
√

3ni γi, ν = ni − 1, and Φ(·) being the standard normal cdf. However,
for given γi, the critical value q∗1−α/2 could be approximated by Monte Carlo
simulations.

The distribution of W ∗ depends on the parameters

γi = σ(B) , i/σ(A) , i , i = 1, . . . , k

which are unknown. They could be naturally estimated by

γ̂i = σ(B),i/
√

S2
i .

In this situation, a reasonable guess of the (1 − α) × 100% confidence interval
for μ could be obtained by using γ̂i instead of γi in (3) and (5).

3. Metrological approach

The outcome of the interlaboratory comparisons is the comparison reference
value—an estimate of μ. The metrological approach combines the posterior infor-
mation (in the form of the state-of-knowledge distributions, see, e.g., [8]) about
the true value of the μ, given the observed data from each of the laboratories.
Although this approach is closely related to the methods of the Bayesian statis-
tical inference, it is not a fully Bayesian solution to the problem of estimation of
the parameter μ. In this approach, the value of the comparison reference value
is frequently given as a weighted mean or an arithmetic mean of the laboratory
sample means ȳi.

Assuming the model (1), let μi = μ + bi denote the value of the measurand
drifted by the systematic laboratory effect (bi represents the realization of the
random variable Bi). The value bi is directly unobservable, and so, it remains to
be an unknown constant. However, if we know the true value of the ith laboratory
mean μi, then our knowledge about the true value of the measurand μ based
on the full available information (i.e., the model (1) and the information on μi

from the ith laboratory) is given by the probability distribution of the random
variable

μ̃(i) = μi − Bi . (7)

The value of the parameter μi is unknown and could be estimated by the ith
laboratory sample mean Ȳi together with its sample standard deviation, which
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is given by
√

S2
i /ni. Note that under the model assumptions (1) the random

variable Ti = (Ȳi − μi)/
√

S2
i /ni has the Student’s t distribution with ni − 1

degrees of freedom.
Given the observed values of the sample statistics ȳi and s2

i , our knowledge
about μi could be represented by the probability distribution of the random
variable

μ̃i = ȳi −
√

s2
i

ni
Ti , (8)

Assuming Bi ∼ U(−δi, δi) with δi =
√

3σ(B),i , and by combining (7) and (8),
we can express our knowledge about the true value of the measurand μ (based
on the information from the ith laboratory) by the probability distribution of
the random variable

˜̃μ(i) = μ̃i − Bi = ȳi −
√

s2
i

ni
Ti − Bi . (9)

In the final step of this metrological approach the state-of-knowledge distri-
bution about μ, based on information from all laboratories, is expressed by the
probability distribution of a random variable ˜̃μ, which is a weighted mean of the
random variables ˜̃μ(i)

˜̃μ =
k∑

i=1

wi
˜̃μ(i) =

k∑
i=1

wiȳi −
k∑

i=1

wi

√
s2

i

ni
Ti −

k∑
i=1

wi

√
3σ(B) , iUi , (10)

where wi,
k∑

i=1

wi = 1, are properly chosen weights, and Ui ∼ U(−1, 1). The

natural weights are those that are inversely proportional to Var
( ˜̃μ(i)

)
, however,

we suggest to use the weights wi

wi =

1(√
s2

i

ni

√
s2
0

ni

ni−1
ni−3 + σ2

(B),i

)
k∑

l=1

⎛
⎝ 1√

s2
l

nl

√
s2
0

nl

nl−1
nl−3 + σ2

(B),l

⎞
⎠

, (11)

where s2
0 is the pooled variance estimate

s2
0 =

k∑
i=1

(ni − 1)s2
i /

(
k∑

i=1

ni − k

)
.
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Given the observed values of the sample statistics ȳi and s2
i , i = 1, . . . , k,

the comparison reference value, say μCRV , is given as the expected value of the
random variable ˜̃μ, i.e.,

μCRV =
k∑

i=1

wiȳi . (12)

The interval 〈
μCRV + qα/2, μCRV + q1−α/2

〉
, (13)

could be considered as a reasonable approximation of the (1 − α) × 100% con-
fidence interval estimate for μ, where qα/2 and q1−α/2 are the quantiles of the
distribution ˜̃μ − μCRV . These quantiles could be exactly evaluated by the al-
gorithm tdist, for more details on an earlier version of the algorithm see
W i t k o v s k ý [13].

4. Example

Table 1. Sample means, number of replications, and corresponding stan-
dard deviations si and σ(B),i of charge sensitivity measurements of the
back-to-back accelerometer for 500 Hz.

No. Laboratory Country ȳi ni si σ(B),i

1 PTB Germany 0.12662 9 0.0000429 0.0000617
2 BNM-CESTA France 0.12690 5 0.0005477 0.0003164
3 CSIRO-NML Australia 0.12670 5 0.0000837 0.0001864
4 CMI Czech Republic 0.12670 5 0.0002321 0.0003260
5 CSIR-NML South Africa 0.12710 5 0.0000837 0.0003795
6 CENAM Mexico 0.12657 5 0.0000826 0.0003142
7 NRC Canada 0.12650 5 0.0002688 0.0002650
8 KRISS Korea 0.12659 6 0.0000361 0.0002274
9 NMIJ Japan 0.12655 4 0.0000818 0.0003137

10 VNIIM Russia 0.12694 5 0.0001140 0.0002746
11 NIST United States 0.12640 5 0.0002000 0.0001954
12 Nmi-VSL The Netherlands 0.12662 5 0.0001171 0.0001560

The data taken from the Final report on key comparison CCAUV.V-K1 are
presented in Table 1, see [11]. The key interlaboratory comparisons were taken
by 12 national metrology institutes in the area of vibration (quantity of ac-
celeration) on the measurements of the charge sensitivity of the accelerometer
standards (back-to-back accelerometer) at different frequencies and acceleration
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amplitudes. For chosen α = 0.05, the resulted interval estimate (5) for μ is
0.1266369 ± 1.8238e-004, the interval estimate (13) is 0.1266327± 0.9628e-004.
The interval (5) was evaluated with estimated γ̂i = σ(B),i/

√
s2

i , the required
variances Var(T ∗

i ) and the quantiles were calculated from simulated values of
T ∗

i , i = 1, . . . , k.
Further, 10000 realizations from the model (1) were simulated with μ = 0,

and the true parameters ni, σ(A),i, and σ(B),i were taken from the Table 1, i.e.,
we set σ(A),i =

√
s2

i .
The confidence interval (5) with γi = σ(B),i/σ(A),i is an exact one with em-

pirical coverage probability 0.9507 and average length 0.0003083. If we use γ̂i

instead of γi in (5), the interval seems to be too conservative, with the coverage
probability 0.9962 and average length 0.0003744.

The approximate interval (13) with the weights (11) indicates good proper-
ties, with the coverage probability 0.9534 and average length 0.0001919. Further
research is necessary for full characterization of the frequentist behaviour of the
interval estimator (13) based on the metrological approach. However, based on
our preliminary simulation studies, the metrological approach is superior to the
above mentioned frequentist approach and might be applied to construct a con-
fidence interval on the common mean in the one-way, heteroscedastic, random-
effects model, in situation when the random effects are characterized by the
completely known probability distributions.
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Institute of Measurement Science
Slovak Academy of Sciences
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Banská Bystrica
SLOVAKIA

Masaryk University Brno

CZECH REPUBLIC

E-mail : wimmer@mat.savba.sk

60


