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ASYMPTOTIC DISTRIBUTIONS FOR ESTIMATORS

AND STATISTICS IN MIXED POISSON PROCESSES

Vippal Savani — Anatoly A. Zhigljavsky

ABSTRACT. Mixed Poisson processes provide natural and popular models in
many applied areas including market research, insurance and disease modeling.
This paper derives the joint asymptotic distributions of statistics and parameter
estimates which are computed in different time intervals from data generated by
mixed Poisson processes. These distributions can be used, for example, to test

the adequacy of the mixed Poisson process against data.

1. Introduction

The class of mixed Poisson processes has been used as a natural model for
events occurring in continuous or discrete time in many fields. The mixed Poisson
process has been successfully applied in the modeling of accidents and sickness,
consumer buying, non-life related insurance and risk theory, to name a few ex-
amples (see, e.g., [2]–[4] and references therein).

In this paper we consider the joint asymptotic distributions between statis-
tics and estimators which are computed in different time intervals when the
underlying process is mixed Poisson.

The fitting of mixed Poisson processes to observed data has mainly focussed
on fitting the one-dimensional mixed Poisson distribution when considering data
observed over fixed time intervals. Fitting the one-dimensional distribution does
not fully justify the adequacy of the process; in particular, the dynamical be-
havior of the mixed Poisson process is not validated. The derivation of the joint
asymptotic distributions of statistics and estimators allows testing the hypothesis
as to whether parameter estimates computed in the two different time intervals
could have been generated from the same process. This will allow us to verify
the dynamical properties of the underlying model against data.
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Note that it is easy to construct methods of testing the adequacy of mixed
Poisson processes which are based on testing whether each individual realization
follows the standard Poisson process; the distribution of the intensities of the
individual Poisson processes can then be checked against a specified structure
distribution. However, in practice the individual behavior basically never follows
the pure Poisson model (see, e.g., [1], [2]) and therefore the related tests would
almost certainly reject the Poisson process assumption. At the same time, it is
widely known that the Poisson and mixed Poisson models often work fairly well
when the data is aggregated over either time or realizations, or both.

The asymptotic distributions derived in this paper allow us to test the mixed
Poisson model hypotheses using the aggregated data. We are not aware of any
other procedure of testing the dynamics of the mixed Poisson models, except
those based on testing individual realizations (which is not practical). Further-
more, when only a few events are registered in each individual realization, testing
the pure Poisson hypothesis is meaningless as there is not enough data. However,
the methodology described in this paper can be perfectly suitable for testing the
mixed Poisson model if there are enough realizations in the multiple realization
scheme and a suitable aggregation is made.

The structure of the paper is as follows. We introduce mixed Poisson pro-
cesses in this section. In Section 2 we formulate a general scheme of parameter
estimation and derive an expression for the asymptotic covariance matrix of the
estimators. In Sections 3 and 4 we derive the main results of the paper, the
asymptotic distributions between different statistics and estimators computed
in different time intervals.

Mixed Poisson processes

Let Z =
{
Z(t1), Z(t2), . . . , Z(tn)

}
be a random vector, let x = {x1, x2, . . . , xn}

be a set of non-negative integers with 0 = x0 � x1 � . . . � xn and let 0 = t0
� t1 � . . . � tn represent an increasing sequence of time points; the multivariate
Poisson distribution is defined as

P (Z = x|Λ = λ) =
n−1∏
i=0

[
λ(ti+1 − ti)

]xi+1−xi

(xi+1 − xi)!
exp

(−λ(ti+1 − ti)
)
, (1)

where λ > 0 is the intensity. The mixed Poisson process is then defined as
a process whose finite-dimensional distributions are

P (Z = x) =

∞∫
0−

P (Z = x|Λ = λ) dUΛ(λ; θ). (2)
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Here UΛ(λ; θ) is the distribution function for the random variable Λ and θ is
a vector of unknown parameters. The function UΛ(λ; θ) is commonly known as
the structure distribution of the mixed Poisson process. A common distribution
for Λ is the Gamma distribution, in which case Z has a multivariate negative
binomial distribution. Other distributions include the beta, shifted-Gamma, gen-
eralized inverse Gaussian and lognormal distributions (see, e.g., [3, p. 27]).

2. Asymptotic properties of a general estimator

This section considers the asymptotic distribution of a general class of esti-
mators. The main result can be considered as a reformulation of known results
on M- and Z-estimators, see [6, Chapters 3–5]. We need this reformulation to
unify notation and simplify exposition in the next sections.

2.1. General estimation scheme

Let ζ be a random variable taking values in some set Z and let ζ have prob-
ability mass function p(z; θ), z ∈ Z, where θ = (θ1, . . . , θd)T (d ≥ 1) is a vector
of parameters taking values in some set Θ ⊆ R

d with non-empty interior int(Θ).
For the purpose of this paper we only need to consider Z = {0, 1, . . .}, but
the results of this section can be extended to arbitrary sets Z; in the case of
continuous distributions, p(z; θ) is a density. We now define a general method
of estimating θ∗ = (θ∗1 , . . . , θ∗d)T ∈ int(Θ), the true parameter values of the
sampling distribution, by using an i.i.d. sample {z1, . . . , zN} of values of ζ.

Let f = (f1, . . . , fd)T ∈ R
d where fi : Z×Θ → R (i = 1, . . . , d) are some func-

tions which are smooth enough and possibly depend on θ; set f̄ = (f̄1, . . . , f̄d)T

∈ R
d with fi = 1

N

N∑
l=1

fi(zl; θ). Since {z1, . . . , zN} form an i.i.d. sample of values

of ζ, we have Efi = Efi(ζ; θ). The estimator θ̂ = (θ̂1, . . . , θ̂d)T is then defined
to be the solution to the equations

Gi(θ, fi) = 0, i = 1, . . . , d , (3)

where Gi(θ, fi) = Efi(ζ; θ) − fi.
Let us give examples of possible functions fi (i = 1, . . . , d):

Example 2.1.1. fi(z; θ) = ∂ log(p(z; θ))/∂θi implying Efi(ζ; θ) = 0;

Example 2.1.2. fi(z; θ) = fi(z) so that the functions fi do not depend on θ.

The system of equations (3) may be represented in vector form as

G(θ, f̄) =
(
G1(θ, f1), . . . , Gd(θ, fd)

)T = 0 . (4)
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For each i, we can represent Gi(θ, fi) as Gi(θ, fi) = 1
N

N∑
l=1

gi(zl, θ) = ḡi, where
gi(z, θ) = Efi(ζ; θ) − fi(z; θ).

2.2. Asymptotic normality of estimators

������� 2.1� Assume that the function G is invertible as a function of θ

in some neighbourhood of (θ∗,Ef) and let θ̂ be the solution of G(θ, f̄) = 0.
Assume that E |∂gi(ζ, θ)/∂θj | < ∞ for all i, j. Additionally, assume that the
estimator θ̂ is a consistent estimator of θ and

√
N(f̄ − Ef) is asymptotically

normally distributed N (0,Df), where

Df = E(f − Ef)(f − Ef)T =
∥∥Cov

(
fi(ζ; θ), fj(ζ; θ)

)∥∥ d

i,j=1
.

Then asymptotically as N → ∞,
√
N(θ̂ − θ∗) D⇒ N (0,V (Df)V T

)
(5)

where

V =
[

lim
N→∞

∂G(θ, f̄)
∂θ

∣∣∣∣
θ=θ∗

]−1

. (6)

P r o o f. According to the weak law of large numbers as N → ∞, f̄ → Ef in
probability and for any θ there exists the weak limit

lim
N→∞

∥∥∥∥∂G(θ, f̄)
∂θ

∥∥∥∥ = lim
N→∞

∥∥∥∥∥ 1
N

N∑
l=1

∂gi(zl, θ)
∂θj

∥∥∥∥∥
which is a non-random matrix.

Since G is invertible as a function of θ in the neighbourhood of (θ∗,Ef),
for N large enough the inverse

(
∂G(θ,f̄)

∂θ

)−1

exists in the neighbourhood of θ∗.
We approximate equation (4) using the first order Taylor expansion:

G(θ, f̄) 	 G(θ∗, f̄) +
∂G(θ, f̄)

∂θ

∣∣∣∣
θ=θ∗

(θ − θ∗) = 0. (7)

According to the well-known δ-method (see, e.g., [5]) the asymptotic distribution
of θ̂ is the same as the asymptotic distribution of θ̃, which is the solution to
equation (7). Solving equation (7) we obtain

θ∗ − θ̃ =
(
∂G(θ, f̄)

∂θ

)−1
∣∣∣∣∣
θ=θ∗

G(θ∗, f̄) .

The asymptotic (N → ∞) distribution of
√
N(θ̂ − θ∗) can be related to the

asymptotic distribution of
√
NG(θ∗, f̄) using Slutsky’s theorem, which allows
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the replacement of(
∂G(θ, f̄)

∂θ

)−1
∣∣∣∣∣
θ=θ∗

with V =
[

lim
N→∞

∂G(θ, f̄)
∂θ

∣∣∣∣
θ=θ∗

]−1

and we obtain that the asymptotic distributions of
√
N(θ̂−θ∗) and

√
NV G(θ∗, f̄)

coincide. Note that
√
N(f̄ − Ef ) =

√
NG(θ, f̄) and therefore

√
NG(θ, f̄) is

asymptotically normally distributed N (0,Df). This implies that
√
N(θ̂− θ∗) is

asymptotically normally distributed N (0,V (Df)V T
)
. �

Example 2.2.1. Maximum likelihood. We have fi(z; θ) = ∂ log
(
p(z; θ)

)
/∂θi

(i = 1, . . . , d) so that
Efi = Efi(ζ; θ) = 0

and

Df =
∥∥∥∥E ∂

∂θi
log p(ζ; θ)

∂

∂θj
log p(ζ; θ)

∥∥∥∥ = I(θ),

V −1 = − lim
N→∞

∥∥∥∥∥ ∂

∂θj

1
N

N∑
l=1

∂

∂θi
log p(zl; θ)

∥∥∥∥∥ = I(θ),

where I(θ) is the Fisher information matrix. The covariance matrix of the max-
imum likelihood estimators is therefore Dθ̂ = I(θ)−1I(θ)I(θ)−1 = I(θ)−1.

Example 2.2.2. General method of moments. We have fi(z, θ) = fi(z) (i =
1, . . . , d) so that the functions fi do not depend on the unknown parameters θ.
This implies

Df =
∥∥Cov

(
fi(ζ), fj(ζ)

)∥∥ and V −1 = ‖∂Ef(ζ)/∂θ‖ .

3. Covariances between statistics

In this section we derive the asymptotic distributions between different sta-
tistics f̄ , as defined in Section 2, computed in two different time intervals. All
the results can be easily generalized to any number of intervals.

3.1. Non-overlapping intervals

Note that since the Poisson process is a stationary and homogenous process,
considering covariances of two statistics computed over the intervals [t1, t2) and
[t3, t4) with 0 ≤ t1 < t2 ≤ t3 < t4 is equivalent to considering covariances of the
same statistics over the time intervals [0, t) and [t, t + s), so that t1 = 0, t2 =
t3 = t and t4 = t+ s.
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Let us consider the covariance between the statistics

φ̄0,t =
1
N

N∑
l=1

φ
(
zl(0, t)

)
and ψ̄t,t+s =

1
N

N∑
l=1

ψ
(
zl(t, t+ s)

)
,

where
{
z1(0, t), . . . , zN(0, t)

}
and

{
z1(t, t + s), . . . , zN (t, t + s)

}
are i.i.d. data

from a mixed Poisson process observed over two adjacent time intervals [0, t)
and [t, t + s) respectively (t, s > 0). Here φ and ψ are some functions possibly
dependent upon the vector of parameters θ.

We note that for fixed u and v the observations zl(u, u + v) (l = 1, . . . , N)
are mutually independent. For fixed l, the observations zl(0, t) and zl(t, t + s)
are conditionally independent and Poisson distributed with means λlt and λls,
respectively. Here, λl is random for l = 1, . . . , N , but is the same for fixed l as
time varies. The samples

{
z1(0, t), . . . , zN (0, t)

}
and

{
z1(t, t+s), . . . , zN(t, t+s)

}
are dependent since, for each l, zl(0, t) and zl(t, t + s) are Poisson distributed
with common λl. Let ζu,v be a random variable whose distribution is identical to
the distribution of the i.i.d. random variables zl(u, v) (l = 1, . . . , N), the number
of events occurring in the time interval [u, v). Then

NCov
[
φ̄0,t, ψ̄t,t+s

]
= Cov

[
φ(ζ0,t), ψ(ζt,t+s)

]
. (8)

Let L(c) = Ee−cΛ be the Laplace transform of the random variable Λ. Then
L′(c) = ∂

∂cEe−cΛ = −E[Λe−cΛ]. Additionally, let p[u,v)(z; θ) denote the mixed
Poisson distribution over the time interval [u, v). We have the following cases:

Case 1: φ(z) = zα, ψ(z) = zβ:

Cov
[
φ(ζ0,t), ψ(ζt,t+s)

]
= Eμα(λt)μβ(λs) − Eμα(λt)Eμβ(λs),

where μα(ν) = Eκα
ν and κν is a Poisson random variable with intensity ν.

Case 1a: φ(z) = z, ψ(z) = z:

Cov
[
φ(ζ0,t), ψ(ζt,t+s)

]
= EΛ2ts− EΛtEΛs = tsVarΛ.

Case 1b: φ(z) = z, ψ(z) = z2:

Cov
[
φ(ζ0,t), ψ(ζt,t+s)

]
= ts2Cov[Λ,Λ2] + tsVarΛ.

Case 2: φ(z) = ∂
∂θi

log p[0,t)(z; θ), ψ(z) = ∂
∂θj

log p[t,t+s)(z; θ):

Cov
[
φ(ζ0,t), ψ(ζt,t+s)

]
= E

∂

∂θi
log p[0,t)(ζ0,t; θ)

∂

∂θj
log p[t,t+s)(ζt,t+s; θ)

= E
1

p[0,t)(ζ0,t; θ)p[t,t+s)(ζt,t+s; θ)
∂

∂θi
p[0,t)(ζ0,t; θ)

∂

∂θj
p[t,t+s)(ζt,t+s; θ).
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To compute the derivative ∂
∂θi
p[u,v)(z; θ) we can use the formula

∂

∂θi
p[u,v)(z; θ) =

∂

∂θi

∞∫
0−

(
λ(v − u)

)z exp
(−λ(v − u)

)
z!

dUΛ(λ; θ).

3.2. Overlapping intervals

In this section we consider covariances between statistics in the most general
case when the intervals are possibly overlapping. This includes the cases when
the intervals do not overlap and also when the intervals coincide. To derive the
results of this section we use the results of Section 3.1.

Let us consider the covariance between the statistics

φ̄t1,t3 =
1
N

N∑
l=1

φ
(
zl(t1, t3)

)
and ψ̄t2,t4 =

1
N

N∑
l=1

ψ
(
zl(t2, t4)

)
,

where
{
z1(t1, t3), . . . , zN(t1, t3)

}
and

{
z1(t2, t4), . . . , zN(t2, t4)

}
are data from

a mixed Poisson process observed over two possibly overlapping intervals [t1, t3)
and [t2, t4) with 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4. Similarly to (8) we have

NCov
[
φ̄t1,t3 , ψ̄t2,t4

]
= Cov

[
φ(ζt1,t3), ψ(ζt2,t4)

]
.

Computing these covariances for different functions, φ and ψ can be simplified
using the fact that the Poisson process has stationary and independent incre-
ments. Some covariances are given below.

Case 1a: φ(z) = z, ψ(z) = z:

Cov
[
φ(ζt1,t3), ψ(ζt2,t4)

]
= Eζt1,t3ζt2,t4 − Eζt1,t3Eζt2,t4

=Cov(ζt1,t2 , ζt2,t3) + Cov(ζt1,t2 , ζt3,t4)

+ Cov(ζt2,t3 , ζt3,t4) + Var(ζt2,t3)

and using the results of case 1a Section 3.1 we obtain

Cov
[
φ(ζt1,t3), ψ(ζt2,t4)

]
= (t4 − t2)(t3 − t1)VarΛ + (t3 − t2)EΛ.

Case 1b: φ(z) = z, ψ(z) = z2:

Cov
[
φ(ζt1,t3), ψ(ζt2,t4)

]
= Eζt1,t3ζ

2
t2,t4− Eζt1,t3Eζ2

t2,t4

and using the results of case 1b Section 3.1 we obtain

Cov
[
φ(ζt1,t3), ψ(ζt2,t4)

]
= (t4 − t2)2(t3 − t1)Cov(Λ,Λ2)

+ (t4 − t2)(t3 − t1)VarΛ

+ 2(t4 − t2)(t3 − t2)EΛ2

+ (t3 − t2)EΛ .
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4. Covariances between parameter estimators

Let θ̂
(1)

and θ̂
(2)

be estimators of θ in the intervals [t1, t3) and [t2, t4) con-
structed using the general scheme of Section 2.1 with the sets of functions{
f

(1)
i (z; θ)

}d

i=1
and

{
f

(2)
i (z; θ)

}d

i=1
, respectively. Assume that Theorem 2.1 ap-

plies to θ̂
(1)

and θ̂
(2)

so that both estimators are asymptotically normal and let

V (1), V (2), Df (1) and Df (2) be the matrices associated with θ̂
(1)

and θ̂
(2)

. We
have

√
N(f̄ − Ef) is asymptotically normal N (0,Df), where

f(z; θ) =

(
f (1)(z; θ)
f (2)(z; θ)

)
, f̄ =

(
f̄

(1)

f̄
(2)

)
, Ef =

(
Ef (1)(ζt1,t3 ; θ)
Ef (2)(ζt2,t4 ; θ)

)

and

Df =

(
Df (1)

C(f (1),f (2))
C(f (1),f (2))T Df (2)

)
(9)

with

C
(
f (1),f (2)

)
=
∥∥Cov

(
f

(1)
i (ζt1,t3 ; θ), f (2)

j (ζt2,t4 ; θ)
)∥∥d

i,j=1
.

The components of the matrix C
(
f (1),f (2)

)
are computed using the results of

Section 3.
Consider the problem of estimating the vector θ∗ =

(
θ(1), θ(2)

)T with θ̂∗ =(
θ̂

(1)
, θ̂

(2))T where θ(1) and θ(2) are two different copies of θ. The fact that
θ(1) and θ(2) are two different copies of θ implies that the matrix of partial
derivatives V , defined by equation (6) with θ∗ substituted for θ∗, has a block
diagonal structure

V =
(

V (1) 0
0 V (2)

)
. (10)

Using Theorem 2.1 we obtain that
√
N(θ̂∗ − θ∗) is asymptotically normal

N (0,V (Df)V T
)
, where Df and V are defined by (9) and (10). The asymptotic

covariance matrix is therefore

V (Df)V T =

⎛
⎝ V (1)

Df (1)
(
V (1)

)T
V (1)

C
(
f (1),f (2)

) (
V (2)

)T
V (2)

(
C
(
f (1),f (2)

))T (
V (1)

)T
V (2)

Df (2)
(
V (2)

)T
⎞
⎠ .

(11)

The Figure below shows estimates of normalized means when fitting the mixed
Poisson process with a Gamma structure distribution to product purchases in
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two different categories. The data, containing purchases of 35 000 households
over a year, was kindly provided by ACNielsen BASES. Points of normalized
sample means computed in two consecutive time intervals of equal length are
plotted against each other. A 95% theoretical confidence ellipse constructed us-
ing (11), replacing parameters with parameter estimates obtained by standard
method of moments, is also shown. In this case, the mean values computed in
different intervals and the covariances between these means are exactly what
one would expect from the mixed Poisson model. In some other categories we
observe seasonality in the data which causes the theoretical confidence ellipses
to shift to one side of the data, although the shape is still retained.

In conclusion, the main result of the paper is the derivation of the joint
asymptotic distributions of statistics and parameter estimates in different time
intervals in the general mixed Poisson model. These results allow construction of
tests for confirming the adequacy of the mixed Poisson model without using the
assumptions of individual Poisson processes which are difficult to use in practice
due to the lack of data.

Figure 1.
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