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TESTING THE DIFFERENCE OF THE ROC CURVES

IN BIEXPONENTIAL MODEL

Martin Betinec

ABSTRACT. Receiver Operating Characteristics (ROC) curves are a useful in-

strument for evaluation of supervised classifiers performance. The classic form
of ROC curve is applicable only to the two-state classification. Nevertheless, it
covers a broad spectrum of applications (clinical diagnostics in medicine, compu-
tational linguistics, machine learning, data mining, etc.)

In this contribution we will derive a test of equivalence of two ROC curves in
biexponential ROC model for unpaired design of data. The result will be illus-

trated on real data coming from a sociological research.

1. Introduction

The Reciever Operating Characteristic (ROC) curve is mainly used to assess
the quality of a classifier in the following classification situation. Objects of in-
terest are classified by the classifier γ either to the group G1 or to the group
G0, where G1 ∩ G0 = ∅. For simplicity of notation we identify each object with
a vector of its features X. The classifier γ makes predictions Ĝ using the score
function (sometimes called also marker, diagnostic variable, etc.) Y = γ(X) and
an arbitrary cut-point θ ∈ R, such as

Ĝ =

{
1 if Y > θ ,

0 if Y ≤ θ .
(1)

Denote the distribution functions of Y conditional by the membership of objects
as follows

F0(y) = P(Y ≤ θ|X ∈ G0) and F1(y) = P(Y ≤ θ|X ∈ G1) . (2)
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Traditional measures of classifiers quality, such as the misclassification error,
accuracy or the risk, fail when the prevalence of the G1-objects in population is
small. In these situations it is necessary to evaluate the performance of the classi-
fier separately on G0 and on G1. For θ ∈ R define the True Positive Rate (TPR)—
also called Hit, Recall or Sensitivity—and the False Positive Rate (FPR)—also
called Fallout, Alarm rate or Non-specificity—as

TPR(θ) = P
(
Ĝ(θ) = 1 | X ∈ G1

)
= 1 − F1(θ) , (3)

FPR(θ) = P
(
Ĝ(θ) = 1 | X ∈ G0

)
= 1 − F0(θ) . (4)

For each cut-point θ ∈ R we obtain a decision of the classifier that can be
displayed as a point in so-called ROC space. In the ROC space FPR is plotted on
the horizontal coordinate and TPR on the vertical one. The best classification
corresponds to the top-left corner. Images of useless classifications (so-called
random ones) are on the main diagonal. A random classifier predicts an object
X to be from G1 with fixed probability p, where p ∈ [0, 1], regardless to the
features of X, for more details see [1]. The ROC curve combines FPR and TPR
managing them for all possible cut-points θ ∈ R at once, i.e.,

ROC ≡
{[

FPR(θ); TPR(θ)
]
, θ ∈ R

}
. (5)

This approach allows to select the best cut-point θ for a given criterion, see
[4] or [5]. It is useful to express the ROC curve as a function of the horizontal
coordinate of ROC graph

ROC(t) = 1−F1

(
F−1

0 (1 − t)
)
, t ∈ [0, 1] . (6)

There are several approaches to the problem of the ROC curve estimation.
Among the parametric ones, there belongs the well-known binormal model as-
suming normality of the score in G1 and G0. In fact, it is more widely applicable
thanks to the invariancy of the ROC curves to the increasing transformation
of the score function, see [4]. The binormal model can be hence used if there exists
such an increasing transformation φ of Y that φ(Y ) is normal. For the purpose
of classifiers comparison, there is a test of equivalency of ROC curve proposed by
M e t z and K r o n m a n , see [3]. Nevertheless, for our data—see Section 3—it
cannot be used. But it is possible to use another parametric model—the biex-
ponential one. In Section 2 we derive its estimators, their distribution and the
distribution of the equivalency test statistic. Finally, in Section 3, we apply the
model to sociological data.
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2. Biexponential model

Supposing an exponential distribution of the scores in both groups, we obtain
one of the simplest parametric model. The choice of the single parameter λ = E Y
determines all the moments of the distribution. This simplicity allows to derive
the exact distribution of the parameter estimates. On the other side, it constrains
the use of the model.

Let us denote the scores in group Gj , j = 0, 1 as Yj . Assume that Y0 and Y1

are independent and exponentially distributed, i.e., Yj has the density

fj(y) =
1
λj

e−
y

λj , y > 0, λj > 0, j = 0, 1 . (7)

Consequently, the ROC curve can be expressed in a functional form as

ROC(t) = 1 − F1

(
F−1

0 (1 − t)
)

= exp
{

λ0

λ1
log(t)

}
= tζ , (8)

where t ∈ [0, 1] and ζ = λ0
λ1

.
If λ0 = λ1, the curve (8) is the random classifier ROC curve. If λ0 < λ1,

the ROC curve is concave, lying above the main diagonal, and the correspond-
ing classifier is better than the random one. The last option, λ0 > λ1, leads
to a convex ROC curve indicating that the labels of groups G0, G1 are possibly
swapped. All the above mentioned situations are displayed in Figure 1.

2.1. Estimation of the parameter ζ

Let Yj1, . . . , Yjnj

iid∼ Exp(λj), for j = 0, 1. Both the use of the method of mo-
ments (MoM) and the maximum likelihood method (ML) lead to the following
estimators of λj , i.e.,

λ̂j = Y j =
1
nj

nj∑
i=1

Yji , j = 0, 1 . (9)

Thanks to the plug-in principle of ML estimates (Zehna), the ML estimator
of parameter ζ is

ζ̂ =
Y 0

Y 1

=
n1

n0

U0

U1
, where Uj =

nj∑
i=1

Yji , j = 0, 1 . (10)

We will further deal with the random variable B = ζ̂
ζ , because the distribution

of ζ̂ depends on ζ. The following theorem summarizes the properties of B.
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Figure 1. Dependence of the ROC curve on intensities λ0 and λ1. In the left column of the
figure there are densities for different choices of λ0 and λ1. The solid lines correspond to
the group G0, while the dashed lines to the group G1. The relevant ROC curves are shown in
the right of the figure.

������� 1� The random variable B = ζ̂
ζ

has the density

fB(b) =
bn0−1

β(n0, n1)

(
n0

n1

)n0
(

1 +
n0

n1
b

)−(n0+n1)

, b > 0 . (11)

P r o o f. Using the expression (10), the random variable B can be rewritten as

B =
ζ̂

ζ
=

n1

n0

U0

λ0

λ1

U1
. (12)

From the well-known properties of the exponential distribution it follows that
Uj ∼ Gamma

(
1
λj

, nj

)
, j = 0, 1. The statistics U0 a U1 are independent, thus

it is possible to derive the density of the variable Q = U0
U1

by means of the
density-transformation theorem.
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There is an alternative approach using the properties of the Gamma distri-
bution. It is easy to show that if G ∼ Gamma(a, p), for a, p > 0, then aG ∼
Gamma(1, p). Hence, the random variable 2Uj

λj
has the distribution Gamma

(
1
2 , nj

)
which is the chi-square distribution with 2nj degrees of freedom. Consequently,
the statistic B has the Fisher-Snedecor distribution with 2n0 and 2n1 degrees
of freedom, i.e., the density given by (11). �

Remark� The knowledge of the distribution of B can be used for a one-sample
test of the hypothesis H0 : ζ ≥ ζ0 vs. H1 : ζ < ζ0. Notice that the choice of ζ0 = 1
enables comparison of any classifier with the random one, see Figure 1.

2.2. Test of the equivalence of two classifiers in unpaired design

If we compare a pair of classifiers, say A and B, we can use the corresponding
ROC curves not only for visualization of their behaviour, but also for the testing
whether there is any significant difference between them.

Let us assume that the scores Y A, Y B of both classifiers fulfill (at least after
some increasing transformation) the biexponential model (7), i.e.,

Y C
j1 , . . . , Y C

jnC
j

iid∼ Exp
(
λC

j

)
, for j = 0, 1 , and C ∈ {A, B} . (13)

The null hypothesis of the classifiers equivalence can be expressed as H0 : ζA

= ζB . Let the experiment be unpaired, i.e., for j = 0, 1 the scores Y A
j1 , . . . , Y A

jnA
j

and Y B
j1 , . . . , Y B

jnB
j

are independent.

After we establish the notation, we can formulate the main theorem, which
allows us to test the hypothesis of equivalence H0. Put

T =
BA

BB
=

ζ̂A

ζA

ζ̂B

ζB

,

R =
nA

0 nB
1

nA
1 nB

0

, (14)

β∗ =
β
(
nA

0 + nB
0 , nA

1 + nB
1

)
β
(
nA

0 , nA
1

)
β
(
nB

0 , nB
1

) ,

where β(., .) is a beta function.
For b > 0, c > 0 and |x| < 1 let 2F1(a, b; c; x) denotes a Gaussian hypergeo-

metric function, for more details see [2].

������� 2� Under H0, the statistic T has the density

fT (t) = β∗RnA
0 tn

A
0 −1

2F1

(
nA

0 + nA
1 , nA

0 + nB
0 ; N ; 1 − Rt

)
, 0 < t <

2
R

, (15)
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where
N = nA

0 + nA
1 + nB

0 + nB
1 .

Especially, if
nA

0 = nB
0 = n0 and nA

1 = nB
1 = n1,

then

fT (t) =
β(2n0, 2n1)
β(n0, n1)2

tn0−1 · 2F1

(
n0 + n1, 2n0; 2(n0 + n1); 1 − t

)
, (16)

for 0 < t < 2.

P r o o f. Thanks to the independence of A and B, the joint density of B =
(BA, BB)T is the product of marginal densities of BA and BB given by (11).
We define the transformation t : (BA, BB)T → (BA/BB , BB)T = (T, Y )T and
its inverse τ : (T, Y )T → (TY, Y )T = (BA, BB)T . It holds B ∈ R+ × R+ from
where T > 0 and Y > 0. In addition

det
(
τ ′(t, y)

)
=

∥∥∥∥y t
0 1

∥∥∥∥ = y .

For t = (t, y)T ∈ R+ × R+, the random vector T = (T, Y )T has the density

fT (t) = y · fB

(
τ(t)

)
= y · fBA

(yt) · fBB
(y) , (17)

so that for t > 0 the density of T is of the form

fT (t) =
KAKBtn

A
0 −1

β
(
nA

0 , nA
1

)
β
(
nB

0 , nB
1

) +∞∫
0

yb−1

(1 + KAty)LA(1 + KBy)LB
dy , (18)

where
b = nA

0 + nB
0 ,

LA = nA
0 + nA

1 , LB = nB
0 + nB

1 ,

KA =
nA

0

nA
1

, KB =
nB

0

nB
1

.

The integral in (18) can be easily transformed into the form
1∫

0

vb−1(1 − v)LA+LB−b−1(
1 − v(1 − Rt)

)LA
dv (19)

using the transformations y → z = KBy → v = z
(1+z) . Finally, we use the

Euler’s integral representation of the hypergeometric function 2F1(a, b; c; x)

2F1(a, b; c; x) =
Γ(c)

Γ(b)Γ(c − b)

1∫
0

vb−1(1 − v)c−b−1

(1 − xv)a
dv , (20)
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which is valid for b > 0, c > 0 and |x| < 1. �

Remark� The representation (15) of the density fT based on the hypergeometric
function 2F1(a, b; c; x) diverges for t ≥ 2

R . This constraint can be overcome by
the use of slightly modified version of the test statistic T , i.e., using

T ∗ =
min(BA, BB)
max(BA, BB)

, (21)

so that 0 < T ∗ ≤ 1 and we are concerned with the lower part of critical region.

3. Application to the data

Social scientists of the Department of Sociology of the Faculty of Arts and Phi-
losophy of the Charles University in Prague performed a large survey called
Akter in 2005. One of the problems they dealt with was the prediction of the
respondents’ anxiety of the security situation in their neighborhood by means
of some set of predictors that can be measured more easily, especially in smaller
surveys. Anxiety is treated as binary variable Anx with asymmetric prevalence
of its modalities

(
P(Anx = 1) = 0.32

)
. The predictors, selected through Principal

Component Analysis, are variables such as Sex, Education, Trust, etc.
We used this data set to compare two classic classifiers—Linear Discriminant

Analysis (LDA) and Support Vector Machines (SVM). The data set contains
1849 observations that were randomly split into the training set (1387 obs.) and
the test set (462 obs.), such that the prevalence of anxiety was preserved in both
sets.

Consequently, to keep the classifiers independent, the test set was divided into
two independent samples once again, preserving the same ratio (Anx=1)

(Anx=0) . Then,
the score YLDA was transformed into Y ∗

LDA = Y 2
LDA to have the exponential

distribution. and computational simplicity.
The ROC curves of the classifiers are in Figure 2. They seem to be very close.

However, the LDA looks slightly better. The question is whether there is any
significant difference between them. In the right part of Figure 2, there is plotted
the distribution of the test statistic T computed by the statistical package R,
using the function hypergeo from the library Davies. The performance of the
function is much better for t < 1 than for t > 1, which is good for the test
statistic T ∗. Its value is T = 0.9379, which is much larger than the 2.5%-quantile
(in accordance, the p-value is 0.7483), hence the test does not reject the null
hypothesis on the 5% significance level. Neither of the classifiers outperforms
significantly the other, thus we can use the LDA because of its comprehensibility
to non-mathematicians
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Figure 2. Result of the test for Akter data. ROC curves of the classifiers are in the
left subfigure. Distribution of the test statistic T is on the right. The observed value

of T = 0.9379 is denoted as T̂ .

4. Discussion

This paper has presented a parametric model for the ROC curve of a classifier
with exponentially distributed scores. This model can be applied in the situations
when the other well-known parametric models (e.g., the binormal one) cannot
be used.

To distinguish between a pair of classifiers, the test of equivalency of two ROC
curves has been developed and applied to sociological data.

REFERENCES

[1] FAWCETT, T.: ROC Graphs: Notes and Practical Considerations for Data Mining Re-

searchers. Hewlett-Packard Laboratories Palo Alto, 2003.
[2] JOHNSON, N. L.—KOTZ, S.—KEMP, A. W.: Univariate Discrete Distributions, (2nd

ed.), John Wiley & Sons, New York, 1993.
[3] METZ, CH. E.—KRONMAN, H. B.: Statistical significance tests for binormal ROC

curves. Journal of Mathematical Psychology 22 (1980), 218–243.

[4] PEPE, M. S.: The Statistical Evaluation of Medical Tests for Classification and Prediction.
Oxford University Press, New York, 2003.

222



TESTING THE DIFFERENCE OF THE ROC CURVES IN BIEXPONENTIAL MODEL

[5] ZHOU, X. H.—OBUCHOVSKI, N. A.—McCLISH, D. K.: Statistical Methods in Diag-
nostic Medicine. John Wiley & Sons, New York, 2002.

Received October 2, 2006 Department of Sociology
Faculty of Philosophy and Arts
Charles University Prague

Celetná 20
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