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REMARKS ON UNBIASED ESTIMATION OF THE

SUM-OF-PROFILES MODEL PARAMETERS

Ivan Žežula

ABSTRACT. The extended growth curve model (sum-of-profiles model) with
two fixed effects is considered. Some results on the estimability of its parameters
are presented.

1. Introduction

Let us consider a special form of the general extended growth curve model
(ECGM), so called sum-of-profiles model with two components:

Y = X1B1Z1 + X2B2Z2 + e ,

E e = 0 , var (vec e) = Σ ⊗ I

(dimensions of Y , e, Xi, Bi and Zi are n× p, n× p, n× mi, mi × ri, and ri × p,
respectively).

This model was introduced by V o n R o s e n [6] with arbitrary number of
components k. Usually Xi are ANOVA design matrices and Zi are regression
constants matrices. There are two main goals in this model: estimation of the
unknown parameters and their testing. In the case of normality, V o n R o s e n
[7] derived maximum likelihood estimators of the parameters Bi under the con-
dition that ranges of matrices Xi are ordered:

R (Xk) ⊆ · · · ⊆ R (X1) .

However, these estimators are only half-explicit, computed by a complicated
recurrence formula. Also, as usually, MLE of the variance matrix is not unbiased,
and the bias is only to be estimated by approximate methods.
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Supported by grants VEGA MŠ SR No. 1/7471/20, 1/0385/03, 1/3129/06, and Oxford
University.

45



IVAN ŽEŽULA

Therefore, we would like to derive explicit formula for unbiased estimators of
Bi. Their form can reveal their geometric properties, and help us to generalize
them to more complicated models. Also, they can help us to assess small sample
properties of MLE.

We suppose R (X2) ⊆ R (X1) throughout the paper. This assumption is in-
evitable for the method we use and it seems to be also a necessary condition for
the existence of such estimators.

We shall denote by PG orthogonal projector on column space R(G) of a matrix
G and by MG = I − PG orthogonal projector on its orthogonal complement. If
the corresponding (semi)metrics is given by a p.s.d. matrix A, these projectors
will be denoted by PA

G and MA
G .

2. Structure of unbiased estimators

When we vectorize the model, we get

vecY = (Z ′
1 ⊗ X1) vecB1 + (Z ′

2 ⊗ X2) vecB2 + vec e

= (Z ′
1 ⊗ X1, Z

′
2 ⊗ X2)

(
vecB1

vecB2

)
+ vec e

df= Xβ + e .

This is a standard univariate linear model. We know that least squares estimators
are unbiased and under normality have optimal properties. In order to get LSE,
we need to have explicit formula for

(
X ′V −1X

)−, where V = var e = Σ ⊗ I,
possibly preserving the Kronecker structure. According to M a r s a g l i a and
S t y a n [3], we have

(
X ′V −1X

)− =
[(

Z1 ⊗ X ′
1

Z2 ⊗ X ′
2

)(
Σ−1 ⊗ I

)
(Z ′

1 ⊗ X1, Z
′
2 ⊗ X2)

]−

=
[
Z1Σ−1Z ′

1 ⊗ X ′
1X1 Z1Σ−1Z ′

2 ⊗ X ′
1X2

Z2Σ−1Z ′
1 ⊗ X ′

2X1 Z2Σ−1Z ′
2 ⊗ X ′

2X2

]−

=
[
a + bdc −bd
−dc d

]
,

46



REMARKS ON UNBIASED ESTIMATION OF SUM-OF-PROFILES MODEL PARAMETERS

where

a =
(
Z1Σ−1Z ′

1

)− ⊗ (X ′
1X1)

−
,

b =
(
Z1Σ−1Z ′

1

)−
Z1Σ−1Z ′

2 ⊗ (X ′
1X1)

−
X ′

1X2 ,

c = Z2Σ−1Z ′
1

(
Z1Σ−1Z ′

1

)− ⊗ X ′
2X1 (X ′

1X1)
−

,

d =
(
Z2Σ−1Z ′

2 ⊗ X ′
2X2 − Z2Σ−1PΣ−1

Z′
1

Z ′
2 ⊗ X ′

2PX1X2

)−
.

Main problem here is the g-inversion of the difference in d. But the assumption
about ordering of R (Xi) implies that PX1X2 = X2 and therefore

d =
(
Z2Σ−1MΣ−1

Z′
1

Z ′
2 ⊗ X ′

2X2

)−
=
(
Z2Σ−1MΣ−1

Z′
1

Z ′
2

)−
⊗ (X ′

2X2)
−

.

Using this, we easily get

β̂ =
(

vec B̂1

vec B̂2

)
=
(

K1

K2

)
vecY,

where

K1 =
(
Z1Σ−1Z ′

1

)−
Z1Σ−1 ⊗ (X ′

1X1)
−

X ′
1

− (Z1Σ−1Z ′
1

)−
Z1Σ−1P

Σ−1MΣ−1

Z′
1

Z′
2

⊗ (X ′
1X1)

−
X ′

1PX2 ,

K2 =
(
Z2Σ−1MΣ−1

Z′
1

Z ′
2

)−
Z2Σ−1MΣ−1

Z′
1

⊗ (X ′
2X2)

−
X ′

2 .

De-vectorization of this expression is easy. Thus, we have unbiased LS-estimat-
ors of Bi in a closed form:

B̂1 = (X ′
1X1)

−
X ′

1Y Σ−1Z ′
1

(
Z1Σ−1Z ′

1

)−
− (X ′

1X1)
−

X ′
1PX2Y

(
P

Σ−1MΣ−1

Z′
1

Z′
2

)′
Σ−1Z ′

1

(
Z1Σ−1Z ′

1

)−
,

B̂2 = (X ′
2X2)

−
X ′

2Y Σ−1MΣ−1

Z′
1

Z ′
2

(
Z2Σ−1MΣ−1

Z′
1

Z ′
2

)−
.

In fact, speaking about unbiasedness is correct only in the case when all matrices
X1, X2, Z1, Z2 have full rank, and all g-inverses turn into regular inverses. In
most cases, Zis are of full rank. However, ANOVA matrices Xis need not have
full rank. If Bis are estimable then these expressions are invariant (and we could
use MP-inversion). If not, these formulas produce unbiased estimators for all
estimable functions of Bis.

ML estimators are much more complicated and lead only to asymptotic un-
biasedness of estimable functions (see V o n R o s e n [8]).
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It is worth noting that under normality, if Zi are full-rank matrices, the statis-
tic (X ′

1Y, X ′
2Y, Y ′Y ) is complete sufficient statistic for all unknown parameters.

Thus, in this case the estimators proposed are functions of complete sufficient
statistic.

Naturally, we want to estimate Σ as well, since the estimators depend on it.
Using the same method as before, we can derive that the projection matrix in
the vectorized model can be expressed as

PΣ−1⊗I

(Z′
1⊗X1,Z′

2⊗X2) = PΣ−1

Z′
1

⊗ PX1 +
(
PΣ−1

(Z′
1,Z′

2)
− PΣ−1

Z′
1

)
⊗ PX2

(we made use of the formula MΣ−1

Z′
1

M
Σ−1MΣ−1

Z′
1

Z′
2

= MΣ−1

(Z′
1,Z′

2)
). This matrix is also

useful when working with estimable functions, see Ž e ž u l a [10]. It follows that

Ŷ = X1B̂1Z1 + X2B̂2Z2 = PX1Y
(
PΣ−1

Z′
1

)′
+ PX2Y

(
PΣ−1

(Z′
1,Z′

2)
− PΣ−1

Z′
1

)′
.

It is natural to base an estimator of Σ on the expression (Y −Ŷ )′(Y −Ŷ ). In fact,
the last expression—but with more complicated Ŷ —is equal to nΣ̂ML. Using the
expression for Ŷ , after some computation we get

(Y − Ŷ )′(Y − Ŷ ) = Y ′MX1Y

+ MΣ−1

Z′
1

Y ′ (MX2 − MX1) Y
(
MΣ−1

Z′
1

)′
+ MΣ−1

(Z′
1,Z′

2)
Y ′PX2Y

(
MΣ−1

(Z′
1,Z′

2)

)′
.

According to G h a z a l and N e u d e c k e r [2], we obtain

E(Y − Ŷ )′(Y − Ŷ ) =

=
(
n − r(X1)

)
Σ +

(
r(X1) − r(X2)

)
MΣ−1

Z′
1

Σ + r (X2) MΣ−1

(Z′
1,Z′

2)
Σ .

We see that an unbiased estimator of Σ is

Σ̂ =
1

n − r (X1)
Y ′MX1Y,

which is also the REML estimator in the normal case.
It is logical that it makes use only of X1, since X2 contains less information,

and MX1 = M(X1,X2). In a less general situation, but without range ordering,
V o n R o s e n [9] used matrix M(X1,X2) to get an unbiased estimator. Neverthe-
less, there is a situation when we can use the whole “residual squares matrix”.
It is the situation when the correlation structure is known, i.e., Σ = σ2R with R
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known. In such a case, the above expression for mean value immediately implies
that

σ̂2 =
1
m

Tr
[(

Y − Ŷ
)′(

Y − Ŷ
)]

,

where

m =
(
n − r (X1)

)
Tr(R)

+
(
r (X1) − r (X2)

)
Tr
(
MR−1

Z′
1

R
)

+ r (X2)Tr
(
MR−1

(Z′
1,Z′

2)
R
)

,

is an unbiased estimator of residual variance σ2.

3. Generalization

Let us consider the sum-of-profiles model with k components:

Y =
k∑

i=1

XiBiZi + e ,

with other assumptions as in the previous sections. We stress that we also sup-
pose

R (Xk) ⊆ · · · ⊆ R (X1) .

Let us define

Ŷ = PX1Y
(
PΣ−1

Z′
1

)′
+ PX2Y

(
PΣ−1

(Z′
1,Z′

2)
− PΣ−1

Z′
1

)′
+ . . .

. . . + PXk
Y
(
PΣ−1

(Z′
1,...,Z′

k)
− PΣ−1

(Z′
1,...,Z′

k−1)

)′
.

Because
R (Z ′

1) ⊆ R (Z ′
1, Z

′
2) ⊆ · · · ⊆ R (Z ′

1, . . . , Z
′
k)

and
PΣ−1

(Z′
1,...,Z′

i)
− PΣ−1

(Z′
1,...,Z′

i−1)
= PΣ−1

(Z′
1,...,Z′

i)
MΣ−1

(Z′
1,...,Z′

i−1)

is the projector on R (Z ′
1, . . . , Z

′
i) ∩ R (Z ′

1, . . . , Z
′
i−1

)⊥ ∀ i, we can see the geo-
metric structure of the estimator: it adds successive projections of Y on ordered
subspaces R (Xi) and difference subspaces R (Z ′

1, . . . , Z
′
i) ∩ R (Z ′

1, . . . , Z
′
i−1

)⊥.
Again, if all Zis are full-rank matrices, under normality this is a function of
complete sufficient statistic.
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Since

E PXi
Y
(
PΣ−1

(Z′
1,...,Z′

i)
− PΣ−1

(Z′
1,...,Z′

i−1)

)′

= PXi

⎛
⎝ k∑

j=1

XjBjZj

⎞
⎠ ×

(
PΣ−1

(Z′
1,...,Z′

i)
MΣ−1

(Z′
1,...,Z′

i−1)

)′

=

⎛
⎝ k∑

j=i

XjBjZj

⎞
⎠(PΣ−1

(Z′
1,...,Z′

i)
− PΣ−1

(Z′
1,...,Z′

i−1)

)′

(notice that PXi
disappeared due to ordering of R (Xi)), we get

E Ŷ =X1B1Z1

(
PΣ−1

Z′
1

)′
+ X2B2Z2

(
PΣ−1

Z′
1

+ PΣ−1

(Z′
1,Z′

2)
− PΣ−1

Z′
1

)′
+ . . .

+ XkBkZk

(
PΣ−1

Z′
1

+ PΣ−1

(Z′
1,Z′

2)
− PΣ−1

Z′
1

+ . . .

+ PΣ−1

(Z′
1,...,Z′

k)
− PΣ−1

(Z′
1,...,Z′

k−1)

)′

=
k∑

i=1

XiBiZi

(
PΣ−1

(Z′
1,...,Z′

i)

)′

=
k∑

i=1

XiBiZi .

Thus, Ŷ is an unbiased estimator of E Y in general sum-of-profiles model with
Von Rosen’s condition. Unfortunately, this cannot be used for the estimation
of individual components. Straightforward vectorization of the general model is
also not usable, because g-inverse (or inverse) of block-wise Kronecker structured
matrix is not necessarily Kronecker structured.

However, we can (and should) use this estimator for the estimation of the
variance matrix. Using the same way as before, we get

(Y − Ŷ )′(Y − Ŷ ) =Y ′MX1Y

+
k−1∑
i=1

MΣ−1

(Z′
1,...,Z′

i)
Y ′ (MXi+1 − MXi

)
Y
(
MΣ−1

(Z′
1,...,Z′

i)

)′

+ MΣ−1

(Z′
1,...,Z′

k)
Y ′PXk

Y
(
MΣ−1

(Z′
1,...,Z′

k)

)′
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and

E(Y − Ŷ )′(Y − Ŷ ) =
(
n − r(X1)

)
Σ

+
k−1∑
i=1

(
r(Xi) − r(Xi+1)

)
MΣ−1

(Z′
1,...,Z′

i)
Σ

+ r (Xk)MΣ−1

(Z′
1,...,Z′

k)
Σ .

This implies the expected result that we should not change anything on our
estimator Σ̂ from the previous section. Changes required in the estimator of σ̂2

in the case Σ = σ2R are obvious.
These results, even if they do not cover the whole scope we would like to,

are substantially simpler them the ML-estimators or estimators using restricted
parameter space (see, e.g., F u j i k o s h i [1]). The method of forming projectors
on sequentially joined matrices seems to be effective in other cases, too. Whole
area is open to further investigation.
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