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A PARAMETRIC MODEL FOR DISCRETE-VALUED

TIME SERIES

Martin Janžura — Lucie Fialová

ABSTRACT. A parametric model for statistical analysis of Markov chains type
models is constructed. Within the proposed model we can estimate the unknown
parameter by simultaneous optimization of a collection of short-range objective
functions. The estimate is proved to be consistent and asymptotically normal.

Under mild conditions the estimate agrees with the standard maximum likelihood
one, and, therefore, it is also asymptotically efficient.

1. Introduction

A natural probabilistic model for time series with discrete (categorial) data
is a Markov chain of some order, see, e.g., the classical references [2] or [1]. But
whenever the order of the Markov property is considerably high, the general
non-parametric model is extremely complex and hardly tractable, in particular
from the statistical analysis point of view. Therefore a reasonable parametric
model is needed. As standard parametric families we can consider the well-known
logistic regression models, or, (see, e.g., [7]) the Gibbs-Markov distributions with
pair-wise interactions which can be understood as two-sided logistic regression
models. But all these models are numerically feasible only up to a certain (not
very high) range.

In the present paper we introduce a parametric model which deals with small-
dimensional sufficient statistics and which makes possible block-wise (separate)
estimation of the multi-dimensional vector parameter. Thus, even a higher order
model can be identified from a rather short data series. The proposed model
corresponds, in fact, to Gibbs distribution with interactions that depend non-
linearly on the unknown parameter. First, the problem of existence and unique-
ness of such distributions is discussed. Then the estimator is constructed and
its (mostly asymptotic) properties are investigated, namely the consistency and
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the asymptotic normality are proved. Moreover, it is shown that under some
additional assumptions the estimate coincides with the standard maximum like-
lihood one which also yields to its asymptotic efficiency. For general results on
Gibbs distribution we refer to [5], [6], and [10], for limit theorems to [4]. The
statistical inference aspects are partly adapted from [7] and [9].

2. Preliminaries

2.1. Basic definitions

Let X denote some fixed finite state space, and Z the set of integers. For every
V ⊂ Z we denote by FV = σ(ProjV ) the σ-algebra of cylinder sets, i.e., the σ-
algebra generated by the projection function ProjV : XZ → X V , and by LV the
space of real-valued cylinder functions, i.e., every f ∈ LV is FV -measurable or,
equivalently, it depends only on the coordinates from the set V ⊂ Z.

Further, let P denote the set of all probability measures (quoted as random
processes) on the space

(XZ ,FZ
)
, and PS ⊂ P the subset of shift-invariant

probability measures (quoted as stationary random processes), i.e. P ∈ PS iff
P = P ◦ τ−1, where τ : XZ → XZ is the shift defined by

(
τ(x)

)
s

= xs+1 for
every s ∈ Z, x ∈ XZ . Moreover, P ∈ PS is ergodic if P (E) ∈ {0, 1} for every
E ∈ E = {E ∈ FZ ; τ(E) = E}. We write P ∈ PE.

For every V ⊂ Z we denote by PV = P/FV the restriction of the random
process to the σ-algebra of cylinder sets FV , i.e., the corresponding marginal
distribution. Finally, we shall denote by V =

{
W ⊂ Z; 0 < |W | < ∞}

the
system of finite non-void subsets of Z.

2.2. Entropy and entropy rate

For a pair of discrete probability measures μ, ν let H(μ) =
∫

[− log μ] dμ and
I(μ|ν) =

∫
log μ

ν dμ denote (whenever the integrals exist) the entropy and the in-
formation divergence (relative entropy, Kullback–Leibler number), respectively.

Nevertheless, for the random processes we have to deal with the asymptotic
versions of the quantities, i.e., with the entropy rate

H(P ) = lim
N→∞

(2N + 1)−1 H
(
P[−N,N ]

)
,

and the asymptotic I-divergence (relative entropy rate)

I(P |Q)
= lim

N→∞
(2N + 1)−1 I

(
P[−N,N ] |Q[−N,N ]

)
for P, Q ∈ P , provided the integrals and limits exist. Let us note that the entropy
rate H(P ) exists for every P ∈ PS, while the relative entropy rate I(P |Q)
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exists only under some additional conditions (e.g., the Markov property) on the
reference random process Q (see, e.g., [5]).

2.3. Gibbs distributions

The functions from L =
⋃

V ∈V LV will be quoted as (finite range) potentials.
For a potential Φ ∈ LV , V ∈ V, we define the Gibbs specification as the family
of probability kernels ΠΦ = {ΠΦ

Λ}Λ∈V where

ΠΦ
Λ(xΛ|xΛc) = ZΦ

Λ (xΛc) exp

⎧⎨
⎩

∑
j∈Λ−V

Φ ◦ τj(x)

⎫⎬
⎭

with the normalizing constant

ZΦ
Λ (xΛc) =

∑
yΛ∈XΛ

0

exp

⎧⎨
⎩

∑
j∈Λ−V

Φ ◦ τj(yΛ, xΛc)

⎫⎬
⎭

for every Λ ∈ V. Here, Λ−V = {λ−v; v ∈ V, λ ∈ Λ} =
{
j ∈ Z; (j+V )∩Λ �= ∅}.

A random process P ∈ P is a Gibbs distribution with the potential Φ ∈ L if

PΛ|Λc (xΛ|xΛc) = ΠΦ
Λ (xΛ|xΛc) a. s. [P ]

for every Λ ∈ V. The set of such P ’s will be denoted by G(Φ), and, in general,
G(Φ) �= ∅. Thanks to the absence of phase transitions in the one-dimensional
short-range systems (see, e.g., [10], Theorem 5.6.2) we have the Gibbs measure
given uniquely, i.e., G(Φ) = {PΦ} for every Φ ∈ L. Moreover, PΦ ∈ PE, i.e.,
the respective Gibbs random process is ergodic.

Remark�

i) From the above definition we observe that the Gibbs distributions represent
the infinite-dimensional counterparts to the exponential distributions.

ii) If Φ ∈ LA, we have PΦ
V |V c ∈ LV with V = V − A + A and therefore

PΦ
V |V c = PΦ

V |∂V a.s., where ∂V = V \ V , i.e., PΦ obeys the “bilateral”
Markov property, which is equivalent (see, e.g., [6], Chapter 10) to the
usual “unilateral” one.

iii) The Gibbs distribution is determined equivalently by the variational prin-
ciple

PΦ = argmaxQ∈PS

[
H(Q) −

∫
Φ dQ

]
.

For details see, e.g., [10]. �
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3. Problem

3.1. Statistical estimation

Suppose we are given a sequence of data x̂[1,n] = (x̂1, . . . , x̂n) ∈ X [1,n] and
a parametric family of stationary random processes

PΘ =
{
P θ

}
θ∈Θ

⊂ PS

with Θ ⊂ RK , where K is a finite set of indices. In addition, we usually assume
that each P θ ∈ PΘ is also r-Markov with some fixed order r ≥ 1, i.e.

P θ
(
x0|x−1, . . . , x−r−�

)
= P θ

(
x0|x−1, . . . , x−r

)
for every � = 0, 1, . . .. Then, the standard statistical estimator assumes the form

θ̂n = argminθ∈Θ

∫
F θ dP̂n,

where P̂n is the empirical random process given for every f ∈ LA, A ⊂ Z
finite, by ∫

f dP̂n = |nA|−1
∑
i∈nA

f(x̂A+i)

whenever nA �= ∅, where nA =
{
i; A + i ⊂ [1, n]

}
, and F θ is a suitable func-

tion, e.g.,
F θ

(
x[−r,0]

)
= − logP θ (x0 |x−1, . . . , x−r)

for the maximum likelihood estimator.
Apparently, with such an approach there might be troubles, in particular,

when the range r of the Markov property is rather large. Then, consequently,
the number of parameter |K| is also large, and we can have, first of all, compu-
tational problems with evaluating the function F θ and with the stability of the
optimization procedure. If, moreover, the data size n is rather small, we have
also a statistical problem with the “over-parametrization”.

3.2. Goal

We would like to introduce a parametric model that will enable us to avoid,
at least to some extend, the problems indicated above.

Suppose there exists a partition {Kj}j∈J of the index set K (i.e., K =⋃
j∈J Kj, Kj ∩ Kj′ �= ∅ for j �= j′). Then we may write θ = (θj)j∈J , where

θj ∈ RKj is the block corresponding to the index set Kj ⊂ K for every j ∈ J .
Further, for every j ∈ J let us suppose a function

F θj

j ∈ LAj

with Aj ⊂ Z finite, where |Aj | is small enough to be compared with the range
r of the Markov property.
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We intend to estimate the parameter θ ∈ Θ block-wise separately, i.e., θ̂n =
(θ̂n,j)j∈J , where

θ̂n,j = argminθj∈RKj

∫
F θj

j dP̂n

for each j ∈ J simultaneously. In the following section we show that such an
approach can make sense. In particular, under what relations between the para-
metric distribution P θ and the collection of objective functions {F θj

j }j∈J such
an approach really works.

4. Solution

4.1. Parametric model

From now, let us assume that

(A1) F θj

j is a smooth strongly convex function of θj for every j ∈ J.

Then, we may denote

fθ =
(
fθj

j

)
j∈J

=
(
fθj

j,i

)
i∈Kj , j∈J

,

where f
θj

j,i = ∂F θj

j

∂θj
i

for every i ∈ Kj, j ∈ J .

Let Pα,θ be the Gibbs measure with respect to the potential 〈α, fθ〉, i.e.,
(see Section 2.3),

Pα,θ
V |V c(xV |xV c) =

exp
{ ∑

t∈V −A

〈
α, fθ ◦ τ t(x)

〉}
∑

yV ∈XV

exp
{ ∑

t∈V −A

〈
α, fθ ◦ τ t(yV , xc

V )
〉}

holds a. s. for every V ∈ V, where A =
⋃

j∈J Aj and V − A = {v − a; v ∈ V,

a ∈ A} =
{
s ∈ Z; (s + A) ∩ V �= ∅}. Or, equivalently,

Pα,θ = argmaxQ∈PS

[
H(Q)−

∫ 〈
α, fθ

〉
dQ

]
.

Now, let us introduce the function U : RK × RK → RK given by

U (α, θ) =
∫

fθdPα,θ

for every α, θ ∈ RK , and define α(θ) implicitly by

U
(
α(θ), θ

)
= 0.
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Let Θ denote the set where α(θ) is defined. We have to assume the basic regu-
larity (identifiability) condition

(A2) U (α1, θ) = U (α2, θ) iff α1 = α2.

The condition is closely related to the notion of equivalence of potentials. Po-
tentials Φ1, Φ2 are equivalent, we write Φ1 ≈ Φ2, if G(Φ1) = G(Φ2). Potentials
Φ = (Φ1, . . . , ΦK) are mutually non-equivalent if 〈α,Φ〉 ≈ 0 yields α = 0.

Thus, the condition (A2) is satisfied whenever potentials fθ are mutually
non-equivalent, which is a bit stronger condition than the standard linear inde-
pendence for finite systems. The mutual non-equivalence can be checked with
the aid of some characteristics (see [8]).

Finally, we have to assume

(A3) Θ �= ∅,
since otherwise our system would be empty. Again, for a finite system the as-
sumption reads as: 0 belongs to the relative interior of the set of all possible
values of the statistics. Here, it is more complicated, e.g., (A3) holds if Cθ(·)
assumes its minimum for some fixed θ ∈ RK , where

Cθ(α) = max
Q∈PS

[
H(Q) +

∫ 〈
α, fθ

〉
dQ

]

is a smooth convex function with ∇αCθ(α) = U (α, θ) (see, e.g., [6], Chapter 16).

����������	 1� Let (A1), (A2), and (A3) hold. Then

i) ∇αU (α, θ) = Bα

(
fθ

)
=

∑
t∈Z

covPα,θ

(
fθ, fθ ◦ τ t

)
> 0,

ii) Θ ⊂ RK is open, and α : Θ → RK is well-defined smooth function.

P r o o f.

i) follows from the strong convexity of the function Cθ(·) for the mutually
non-equivalent fθ (see [3]).

ii) is a standard result of mathematical calculus (theorem on the “implicit
function”).

�

Thus, we shall deal with the parametric family{
P

θ
}

θ∈Θ
, where P

θ
= Pα(θ),θ for every θ ∈ Θ.
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4.2. Estimate

Since by definition we have
∫

fθdP
θ

= 0 for θ ∈ Θ, or, equivalently

θ
j

= argminθj∈RKj

∫
F

θj

j dP
θ

for every j ∈ J and θ ∈ Θ,

we may follow our intention and define the estimate θ̂n = (θ̂n,j)j∈J precisely as
introduced in Section 3.2, i.e.,

θ̂n,j = argminθj∈RK

∫
F

θj

j dP̂n for all j ∈ J simultaneously.


����� 2� Under (A1), (A2), and (A3), the estimate θ̂n = (θ̂n,j) exists with
probability tending to 1, it is consistent and asymptotically normal with the co-
variance matrix

Cθ =
[∫

∇fθ dP
θ
]−1

B
α
(

θ
)(fθ

) [∫ ∇fθ dP
θ
]−1

.

If, in addition, ∇fθ is non-random, then θ̂n agrees with the maximum likelihood
estimate, and it is also asymptotically efficient.

P r o o f. By the ergodic theorem (cf., e.g., Theorem 14.A8 in [6]), for a. e.[
P

θ0]
x ∈ XZ and every j ∈ J the (strongly) convex functions

∫
F

θj

j dP̂n

tend to the (strongly) convex function
∫

F
θj

j dP
θ0

. Therefore the convergence

is uniform on compact subsets of Θ, and, consequently, argminθ∈Θ

∫
F

θj

j dP̂n →
argminθ∈Θ

∫
F

θj

j dP
θ0

a. s.
(
P θ0)

for n → ∞. That proves the existence and
consistency. For the asymptotic normality let us observe

n
1
2

∫
fθ0

dP̂n = n
1
2

(∫
fθ0

dP̂n −
∫

f θ̂n

dP̂n

)
= −

∫
∇f θ̃n

dP̂n
[
n

1
2
(
θ̂n − θ0

)]
,

where θ̃n = εnθ̂n + (1 − εn) θ0 with some εn ∈ [0, 1]. Since

n
1
2

∫
fθ0

dP̂n ⇒ NK

(
0, Bα(θ)

(
f θ

))
for n → ∞ in distribution [P

θ0

]

by the central limit theorem (see [4]), and∫
∇f θ̂n

dP̂n →
∫

∇fθ0
dP

θ0

for n → ∞ a. s. [P
θ0

]

again by the ergodic theorem, we obtain the claimed asymptotic normality.
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Since we have asymptotically −n−1 log P
θ

[1,n]
.= Cθ

(
α(θ)

) − ∫ 〈
α(θ), fθ

〉
dP̂n

(see, e.g., [9]), we shall define the maximum likelihood estimate in the form

ˆ̂
θn = argminθ∈Θ

{
Cθ

(
α(θ)

)−∫ 〈
α(θ), fθ

〉
dP̂n

}
.

Standardly, by differentiating we obtain the system of normal equations∫ [∇α(θ) fθ −∇fθα(θ)
] (

dP
θ − dP̂n

)
= 0 , where, by definition∫

∇fθ dP
θ

+
∑
t∈Z

cov
P

θ

(
fθ,

[∇α(θ) fθ + ∇fθα(θ)
] ◦ τ t

)
= 0.

Whenever ∇fθ is a non-random function, the system of normal equations turns
to ∇α(θ)

∫
fθdP̂n = 0, where now

−∇α(θ) = Bα(θ)

(
fθ

)−1
∫
∇fθdP

θ
> 0.

Therefore the MLE ˆ̂
θn is given implicitly by

∫
f

ˆ̂
θn

dP̂n = 0, and, thus, coincides
with our estimate. The asymptotic Fisher’s information matrix is given by

J (θ) = lim
n→∞

∫
∇2

θ

(
Cθ

(
α(θ)

)−∫ 〈
α(θ), fθ

〉
dP̂n

)
dP

θ

= Bα(θ)

(∇α(θ) fθ + ∇fθα(θ)
)

which for non-random ∇fθ turns to

∇α(θ) Bα(θ)

(
fθ

)
, θ)∇α(θ) =

[∫
∇f θdP

θ
] [

Bα(θ)

(
fθ

)]−1
[∫

∇fθdP
θ
]

.

�

Example. Suppose X = {0, 1}, K = {0, 1, . . . , r}, J={1,. . . ,r}, K1 = {0, 1},
and Kj = {j} for j = 2, . . . , r. Let

F θ0,θ1
1 (x0, x1) = − log

eθ0x0+θ1x0x1

2 + eθ0 + eθ0+θ1
with A1 = {0, 1},

F
θj

j (x0, xj) = − log
eθjx0xj

3 + eθj
with Aj = {0, j}

for j = 2, . . . , r, then P
θ ∈ G

(
α0(θ) x0 +

r∑
k=1

αk(θ) x0xk

)
is r-Markov Gibbs dis-

tribution with “pair-wise interactions” depending non-linearly on the unknown
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parameter, i.e., it is a“curved exponential distribution”. Then all assumptions
are satisfied, and the estimate now assumes the form:

θ̂n
0 = log

[
2

P̂n
00 − P̂n

01

1 − P̂n
00

]
, θ̂n

1 = log

[
P̂n

01

P̂n
00 − P̂n

01

]
, and θ̂n

j = log

[
3P̂n

0j

1 − P̂n
0j

]

for j = 2, . . . , r, where P̂n
0j = P̂n(x0 = 1, xj = 1) for j = 0, . . . , r.
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