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ASYMPTOTIC LOCAL POWER OF THE LR TEST

FOR SOME HOMOGENEITY HYPOTHESES ON

NORMAL DISTRIBUTIONS

Frantǐsek Rubĺık

ABSTRACT. Explicit formulas for the non-centrality parameters of the asymp-
totic chi-square distribution of the LR statistic are presented for testing the hy-
pothesis of equality of the means and of the covariance matrices, and also for the
Behrens-Fisher problem of testing the equality of means without any restriction
on covariances of the underlying normal distributions.

Suppose that the probabilities {P γ ; γ ∈ Ξ } are defined by means of densities{
f(x, γ); γ ∈ Ξ

}
with respect to a measure ν on (X,S), and x(j, nj) denotes

random sample of size nj from jth distribution P θj
, j = 1, . . . , q. Thus the

pooled random sample x(n1,...,nq) = (x(1, n1), x(2, n2), . . . , x(q, nq)), the para-
metric set describing its distribution Θ = Ξq and in θ = (θ1, . . . , θq) ∈ Θ the jth
component θj denotes the parameter of the jth population.

Consider testing of the hypothesis Ω ⊂ Θ by Tn1,...,nq
= Tn1,...,nq

(x(n1,...,nq))
with large values significant (the hypothesis is rejected if T > t). We shall deal
with the likelihood ratio test statistic

Tn1,...,nq
= 2 log

L
(
x(n1,...,nq), Θ

)
L
(
x(n1,...,nq), Ω

) , (1)

where with the notation x(j, nj) =
(
x

(j)
1 , . . . , x

(j)
nj

)
,

L
(
x(n1,...,nq), Ω

)
= sup

{
q∏

j=1

nj∏
i=1

f
(
x

(j)
i , θj

)
; θ = (θ1, . . . , θq) ∈ Ω

}
. (2)

Quality of the test can be judged by various criteria, one is the value of ex-
act slope. LR statistic (1) is shown to be optimal in the sense of exact slopes
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for every null hypothesis closed in the parameter set Θ for various probability
classes, including the normal distributions, in the papers [5], [6]. Another possi-
ble criterion is the value of the noncentrality parameter of the limiting chi-square
distribution of test statistic when the true parameters are Pitman alternatives.
Since LR test is optimal in the sense of exact slopes, its noncentrality param-
eter can be used as a base for measuring the asymptotic efficiency of various
tests. General formulas for the noncentrality parameter of the LR statistic in
this multisample setting are in [8] derived by means of the following conditions.

(C 1) Ξ is an open subset of Rm, for each x ∈ X there exist partial derivatives
∂2f(x,γ)
∂γi∂γj

, i, j = 1, . . . , m and they are continuous on Ξ .

(C 2) The equality
∫ ∂2f(x,γ)

∂γi∂γj
dν(x) = 0 holds for all γ ∈ Ξ and i, j = 1, . . . , m .

(C 3) The function f(., .) is positive on X × Ξ and for each parameter γ ∈ Ξ
there exist a P γ integrable function hγ and a neighbourhood Uγ ⊂ Ξ of
the point γ such that the inequality∣∣∣∣∣ ∂

2 log f(x, γ∗)
∂γ∗

i ∂γ∗
j

∣∣∣∣∣ ≤ hγ(x)

holds for all γ∗ ∈ Uγ , x ∈ X and i, j = 1, . . .m .

(C 4) For every γ ∈ Ξ the function ∂ log f(x,γ)
∂γ =

(
∂ log f(x,γ)

∂γ1
, . . . , ∂ log f(x,γ)

∂γm

)T
belongs to L2(P γ) and the matrix

J(γ) =

(
Eγ

(
∂ log f(x, γ)

∂γi

∂ log f(x, γ)
∂γj

))m

i,j=1

is positive definite and continuous on Ξ.

(C 5) Let P
(n)

γ be the product measure of n copies of P γ and L(x1, . . . , xn, γ)=
n∏

i=1

f(xi, γ). There exist measurable mappings γ̂n : Xn → Ξ such that for

each parameter γ ∈ Ξ and every real number ε > 0 ,

lim
n→∞ P

(n)

γ

{‖γ̂n(x1, . . . , xn) − γ‖ ≥ ε
}

= 0 ,

lim
n→∞

P
(n)

γ

{
L(x1, . . . , xn, Ξ) = L

(
x1, . . . , xn, γ̂n(x1, . . . , xn)

)}
= 1 .

Let u = 1, 2, . . . denote the index of the experiment, i.e., the sample size from
the jth population nj = n

(u)
j , j = 1, . . . , k , and total sample size

Nu = n
(u)
1 + . . . + n(u)

q . (3)
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Now suppose that the relative sample sizes

p̂j =
n

(u)
j

Nu
→ pj > 0 , n

(u)
j → +∞ , j = 1, . . . , q (4)

as u → ∞. Let the null hypothesis

Ω =
{

θ∗ ∈ Θ; g1(θ∗) = 0, . . . , gk0(θ
∗) = 0

}
, (5)

and the functions gj : Θ → R1 belong to C1. Further, assume that the mq-
dimensional parameter θ belongs to Ω and the matrix

∂0(θ) =

⎛
⎜⎜⎜⎜⎜⎝

∂g1(θ)
∂θ1

, . . . ,
∂g1(θ)
∂θmq

...
...

∂gk0(θ)
∂θ1

, . . . ,
∂gk0(θ)
∂θmq

⎞
⎟⎟⎟⎟⎟⎠ (6)

is of rank k0. For h =
(
hT

1 , . . . , hT
q

)T ∈ Rmq, where hj ∈ Rm for all j, let
πj(h) = hj denote the projection onto the jth coordinate space Rm. Suppose
that the vectors {hu}∞u=1 from Rmq are such that

lim
u→∞

hu = h ∈ Rmq. (7)

If the product measure corresponding to the uth experiment (cf. (3))

P ∗
u = P

(n
(u)
1 )

θ(1,u) × . . . × P
(n(u)

q )

θ(q,u) , θ(j, u) = πj(θ) +
πj(hu)√

Nu

, (8)

i.e., in the uth experiment the size of the sample from the jth population is n
(u)
j

and this sample is drawn from P θ(j,u) with θ(j, u) described in (8), then appli-
cation of Corollary 1.2, p. 583 of [8] yields that for the LR statistic (cf. (1))

Tu = T
n

(u)
1 ,...,n

(u)
q

(9)

the weak convergence of probabilities

L[Tu

∣∣P ∗
u

]
−→ χ2

k0
(λ) (10)

to the chi-square distribution with k0 degrees of freedom and the noncentrality
parameter λ holds as u → ∞, and (cf. (4), (7))

λ = hT ∂0(θ)T
(
F0J(θ)−1FT

0

)−1

∂0(θ)h , F0 = ∂0(θ)D(p)−1/2
,

D(p)1/2 = diag
(√

p1Im, . . . ,
√

pqIm

)
, J(θ) = diag

(
J
(
π1(θ)

)
, . . . ,J

(
πq(θ)

))
,

(11)
provided that the regularity conditions (C 1)–(C 5) are fulfiled and with proba-
bility tending to 1 there exists ML estimator of the unknown parameter θ ∈ Ω
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(i.e., under the restrictions Ω) which is consistent under the validity of the null
hypothesis Ω (Im in (11) denotes the m × m identity matrix). We remark that
the results in [8] are proved by means of the Le Cam lemmas on the contigu-
ity of probabilities and the asymptotic distribution under the local alternatives,
and by means of the results on the uniform LAN property from the monograph
[1]. An important tool of proofs carried out in [8] is also the concept of the set
sequentially approximable by the cone, presented in [2] and [3].

In what follows, the vector e(Σ) = (Σ11, . . . , Σkk, Σ12, . . . , Σ1k, . . . , Σk−1k)T

denotes the elements of symmetric k × k matrix Σ which are not below the
diagonal, and

Ξ =
{(

μ
e(Σ)

)
; μ ∈ Rk, Σ is symmetric positive definite k × k matrix

}
,

(12)

f(x, γ) =
1

(2π)k/2|Σ|1/2
exp
(
−1

2
(x− μ)T Σ−1(x−μ)

)
, γ =

(
μT , e(Σ)T

)T
,

(13)
where |Σ| denotes the determinant of Σ, denote the parameter set of k-dimen-
sional normal distributions and their densities.

����� 1� Let
{
f(x, γ); γ ∈ Ξ

}
be the family of normal densities (13) indexed

by the set (12). Then the regularity conditions (C 1)–(C 5) hold and for γ =(
μT , e(Σ)

)T ∈ Ξ the Fisher information matrix

J(γ) =
(

Σ−1 0k×c

0c×k V

)
, (14)

where c = k(k + 1)/2 and V is a regular c × c matrix.

P r o o f. The conditions (C 1)–(C 3) can be verified by means of the formulas
for derivatives of the determinant and of the inverse matrix, validity of (C 5) is
well-known and the rest of the proof follows from Theorem 2 on pp. 317–318 of
[4] and from Theorem 14 on p. 50 of [4]. �

Throughout the rest of the text suppose that k is a positive integer, θj denotes
the parameter of the jth normal distribution Nk(μj ,Σj), j = 1, . . . , q, i.e.,
Θ = Ξq is the set of overall parameters of the sampled normal populations, and
for the relative sample sizes (4) holds.

����	�� 2� Suppose that the null hypothesis

Ω =
{
(θ1, . . . , θq); μ1 = . . . = μq , Σ1 = . . . = Σq

}
(15)
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and that θ = (θ1, . . . , θq) belongs to Ω, i.e., θ1 = . . . = θq is the parameter of
Nk(μ,Σ) distribution. If the Pitman alternatives θ(j, u) = θj + πj(δu), where

δu =
1√
Nu

((
M1

e(W1)

)
, . . . ,

(
Mq

e(Wq)

))
,

πj denotes the projection onto the jth component, Mj ∈ Rk and Wj is a sym-
metric k × k matrix, j = 1, . . . , k, then for the LR statistic (cf. (9), (8))

L[Tu

∣∣P ∗
u

]
−→ χ2

(q−1)m(λ) (16)

as u → ∞, where m = k + k(k+1)
2 and the noncentrality parameter

λ =
q∑

j=1

pj

(
Mj−M

)T
Σ−1

(
Mj−M

)
+

q∑
j=1

pje
(
Wj−W

)T
Ve
(
Wj−W

)
, (17)

M =
q∑

j=1

pjMj , W =
q∑

j=1

pjWj (18)

and V is the matrix appearing in the Fisher information matrix J(γ), γ =(
μT , e(Σ)T

)T , described by (14); for q = 2 the parameter (17)

λ = p1p2

[
(M1 −M2)T Σ−1(M1 −M2) + e(W1 −W2)T Ve(W1 −W2)

]
. (19)

If k = 1, then V = 1/(2Σ2
11), and (16) holds with (q − 1)m = 2(q − 1) and

λ =
q∑

j=1

pj

(
Mj − M

)2
Σ11

+
q∑

j=1

pj

(
Wj − W

)2
2Σ2

11

. (20)

P r o o f. Throughout the proofs assume that the Cartesian product is written
not as rows, but as columns, i.e.,

θ =
(
θT
1 , . . . , θT

q

)T
, Θ = Ξq =

{(
θ∗T
1 , . . . , θ∗T

q

)T
; θ∗T

j ∈ Ξ , j = 1, . . . , q

}
.

(21)
Since in (5) and (15) the functions gj(θ) = πj(θ) − πj+1(θ), the matrix (6)

∂0(θ) = U⊗ Im ,

where the (q − 1) × q matrix U has the elements Uij = 1 if i = j, Uij = −1 if
j = i + 1 and Uij = 0 otherwise, and k0 = rank

(
∂0(θ)

)
= m(q − 1). But the

formula on MLE for one sample implies that the MLE under the null hypothesis
is consistent, which together with Lemma 1 means that (10) and (11) hold with

h =
(
h1T , . . . , hT

q

)T
, hj =

(
MT

j , e
(
Wj

)T)T
, j = 1, . . . , q. (22)
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As J(θ) = Iq⊗J, where J is the matrix (14), after some computation one obtains

F0J−1(θ)FT
0 = L ⊗ J−1 ,

where the symmetric (q − 1)× (q − 1) matrix L has the elements

Lij =
1
pi

+
1

pi+1
if i = j, Lij = − 1

pj
if j = i + 1, and Lij = − 1

pi
if j = i − 1

and Lij = 0 otherwise. Hence(
F0J−1(θ)FT

0

)−1

= L−1 ⊗ J, L−1 = C ,

where the matrix C has the elements

Cij =
j∑

s=1

ps

q∑
t=i+1

pt if 1 ≤ j ≤ i ≤ q − 1

and

Cij =
q∑

t=j+1

pt

i∑
s=1

ps if 1 ≤ i ≤ j ≤ q − 1.

We see that

∂0(θ)T
(
F0J−1(θ)FT

0

)−1

∂0(θ) =
(
U⊗ Im

)T (C⊗ J
)(

U⊗ Im

)
=
(
UT CU

)⊗ J ,

(23)
UT CU = diag(p) − ppT , p = (p1, . . . , pq)T (24)

and substituting (23), (24) and (22) into (11) and employing the formula (14)
one obtains (17), the rest of the proof is obvious. �

Usually the one-dimensional normal distributions are described by the densi-
ties and the parameter set

f(x, μ, σ) =
(√

2πσ
)−1

exp
(−0.5(x − μ)2/σ2

)
, Ξ =

{
(μ, σ)′ ∈ R2; σ > 0

}
.

(25)
If the Pitman alternatives θu = θ + δu, where θ = (μ, σ, . . . , μ, σ)′ ∈ Ξq and
πj(δu) = (Mj, Wj)′/

√
Nu, then

(
σ+Wj/

√
Nu

)2 = σ2+2σWj/
√

Nu +o
(
N

−1/2
u

)
and the application of (7)–(10) and of (20) of Theorem 2 yields that

λ =
q∑

j=1

pj

(
Mj − M

)2
σ2

+ 2
q∑

j=1

pj

(
Wj − W

)2
σ2

. (26)

The next theorem deals with testing the equality of means of the normal
distributions without any assumptions on their variances, which is known as the
Behrens-Fisher problem.
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����	�� 3� Suppose that the null hypothesis

Ω = ΩBF =
{
(θ1, . . . , θq); μ1 = . . . = μq

}
(27)

and that θ = (θ1, . . . , θq) ∈ Ω, i.e., θj is the parameter of Nk(μ,Σj) distribution.
(I) Let k = 1, i.e., the normal distributions are defined on the real line. If the

Pitman alternatives

θ + δu , δu =
1√
Nu

((
M1

W1

)
, . . . ,

(
Mq

Wq

))
,

where Mj, Wj , j = 1, . . . , k are real numbers, then for the LR statistic (cf. (9),
(8))

L[Tu

∣∣P ∗
u

]
−→ χ2

(q−1)(λ) (28)

as u → ∞, and the noncentrality parameter

λ =
q∑

j=1

pj

(
Mj − M

)2
Σj

, M =
1
d

q∑
j=1

pj
Mj

Σj
, d =

q∑
j=1

pj

Σj
. (29)

If q = 3, then

λ =
Σ3
p3

(M1 − M2)2 + Σ2
p2

(M1 − M3)2 + Σ1
p1

(M2 − M3)2

Σ1Σ2
p1p2

+ Σ1Σ3
p1p3

+ Σ2Σ3
p2p3

(30)

and if q = 2, then

λ =
(M1 − M2)2

Σ1
p1

+ Σ2
p2

. (31)

(II) Do not assume that k = 1. Let q = 2. If the Pitman alternatives

θu = θ + δu , δu =
1√
Nu

((
M1

e(W1)

)
,

(
M2

e(W2)

))
, (32)

where Mj ∈ Rk and Wj is a symmetric k × k matrix, j = 1, 2, then for the LR
statistic (cf. (9), (8))

L[Tu

∣∣P ∗
u

]
−→ χ2

k(λ) , (33)

where

λ = (M1 − M2)′
(

Σ1

p1
+

Σ2

p2

)−1

(M1 −M2) . (34)

P r o o f. Since the explicit formula for the MLE of the parameters from ΩBF

is not known, the condition of consistency of the MLE of the parameter from
(27) under validity of the null hypothesis cannot be verified directly. However,
if An1,...,nq

denotes the set of realizations of the pooled sample x(n1,...,nq) for
which the sample covariance matrix Sj of the jth sample, j = 1, . . . , q, is positive

211
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definite, then according to Corollary 1.4 on p. 53 of [7] there exists measurable
MLE under the restriction ΩBF defined on An1,...,nq

and any measurable version
of this MLE is consistent; hence the condition on consistency of MLE of the
unknown parameter from (27) is fulfilled.

(I) Use the notation (21) and (5) to describe (27). Then the matrix (6)

∂0(θ) =

⎛
⎜⎜⎜⎝

1 0 −1 0 0 . . . 0 0 0 0
0 0 1 0 −1 . . . 0 0 0 0
...

...
0 0 0 0 0 . . . 1 0 −1 0

⎞
⎟⎟⎟⎠ (35)

is of full rank k0 = q − 1, which together with Lemma 1 means that (10) and
(11) hold with

h =
(
h1T , . . . , hT

q

)T
, hj = (Mj , Wj)T , j = 1, . . . , q. (36)

As J(θ) = Iq ⊗ J, where J is the matrix (14), putting Σ∗
i = Σi/pi after some

computation one obtains that the (q − 1) × (q − 1) matrix

F0J−1(θ)FT
0 = L ,

where the matrix L has the elements Lij = −Σ∗
j if j = i + 1, Lij = Σ∗

i + Σ∗
i+1 if

j = i, Lij = −Σ∗
i if j = i − 1 and Lij = 0 otherwise. Hence

L−1 =
1

d
G , d =

q∑
i=1

1

Σ∗
i

, Gij =

⎧⎪⎪⎨
⎪⎪⎩

j∑
s=1

1
Σ∗

s

q∑
t=i+1

1
Σ∗

t
, 1 ≤ j ≤ i ≤ q − 1 ,

q∑
t=j+1

1
Σ∗

t

i∑
s=1

1
Σ∗

s
, 1 ≤ i ≤ j ≤ q − 1 ,

the matrix
S = ∂0(θ)T L−1∂0(θ) (37)

has the elements

Srt =

⎧⎪⎨
⎪⎩

0 if at least one of the integers r, t ∈ {1, . . . , 2q} is even,
1

Σ∗
i
− 1

d(Σ∗
i
)2

, r = t = 2i − 1 , i = 1, . . . , q ,

− 1
dΣ∗

i Σ∗
j
, r = 2i − 1 , t = 2j − 1 , r �= t .

(38)

Substituting (35)–(38) into (11) after some computation one obtains that (28)
holds with (29).

(II) The proof is similar to the previous case. Obviously

∂0(θ) = (Ik,0,−Ik,0) , F0J−1(θ)FT
0 =

Σ1

p1
+

Σ2

p2
,

which together with (32), (10) and (11) implies (I). �
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One may conjecture that for the general dimension k the 1-dimensional for-
mula (29) holds not only for q = 2 as stated in (34), but as the multiplication
of matrices is not commutative, the steps of the proof of (29) cannot be simply
extended to this general multidimensional setting when q > 2.
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[7] RUBLÍK, F.: On consistency of the MLE, Kybernetika 31 (1995), 45–64.
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