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PRIMAL AND DUAL FORMULATIONS RELEVANT

FOR THE NUMERICAL ESTIMATION OF A

PROBABILITY DENSITY VIA REGULARIZATION

Roger Koenker — Ivan Mizera

ABSTRACT. General schemes relevant for the estimation of a probability den-
sity via regularization—primal and dual versions in the discretized setting—are
investigated. Conditions for the dual solution to be a probability density are given,

and a strong duality theorem is proved.

We study various instances of the problem

−wTLh + sTΨ(g) + J(−Ph) = min
g,h

! , subject to h � g , (P)

where L and w are evaluation operator and averaging functional described later
in the text; Ψ(g) indicates the application of a real convex function ψ to the
components of g, while J(h) is a general convex function applied to the whole
vector −Ph, the negative of the result of a linear operator P applied on h. We
assume that vectors w and s have nonnegative elements; hereafter, � and �
denote componentwise inequalities. If ψ is nondecreasing, the primal formulation
(P) can be simplified—it is equivalent to the unconstrained problem

−wTLg + sTΨ(g) + J(−Pg) = min
g

! . (U)

Convex functions are allowed to attain +∞ as a value; the domain, domΦ, is
the set where Φ is finite. We assume that all convex functions in (P) and (U)
have domains with nonempty interiors. Concave functions are handled in an
analogous manner, only the role of +∞ is played by −∞.

A conjugate of a convex function Φ is

Φ∗(y) = sup
x

(
yTx − Φ(x)

)
= sup

x∈dom Φ

(
yTx − Φ(x)

)
,
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the latter formulation avoiding the need to compute with infinite values. The
conjugate of the function λ‖ · ‖p, where ‖ · ‖p stands for the �p norm, is the
indicator of the ball in the dual norm, {x : ‖x‖q ≤ λ}, where q is the (Hölder)
conjugate of p (that is, q = ∞ for p = 1, and (1/p) + (1/q) = 1 for p > 1)
and the indicator of a convex set E is defined to be 0 for all x ∈ E and +∞
otherwise. The conjugate of the indicator of the cone {x : x � 0} is the indicator
of the polar cone {x : x � 0}. Finally, the function (1/2)‖ · ‖2

2 is conjugate to
itself; and consequently, λ‖ ·‖2

2 to 1/(4λ)‖ ·‖2
2. Our references for convex analysis

are R o c k a f e l l a r [10], B o y d and V a n d e n b e r g h e [1].
We claim that the dual of (P), or when equivalent, (U) is the problem

−sTΨ∗(f)− J∗(e) = max
f,e

! ,

subject to Sf = LTw + PTe and f � 0 ,
(D)

where S = diag(s) and Ψ∗(f) indicates the componentwise application of ψ∗.
Both (P)–(U) and (D) are relevant in the study of discretized, numerical for-

mulations of regularized density estimation. The estimated density is represented
by the vector f of its values on some collection of points, referred to as a grid.
The evaluation operator L then expresses the position of n datapoints with re-
spect to the grid via interpolation; for instance, if the datapoints are among
gridpoints, then the ith row assigns 1 to a gridpoint equal to the ith datapoint
and zero otherwise. The vector w assigns weights to the datapoints—as a rule,
1/n to each. Finally, s is the vector of integration weights attached to gridpoints:
the identity sTf = 1 expresses the fact that the estimated density integrates to 1.
Estimated probability densities are approximated by the densities with respect
to the dominating measure on the grid whose atoms are given by s.

As for the penalization term, a typical P is a discretized version of a dif-
ferential operator appearing in the continuous formulation of the regularization
proposal. Typical J involves an �p norm and a tuning constant, λ, customary in
this context: say, J(u) = λ‖u‖1 or J(u) = λ‖u‖2

2.
Regularization may be also expressed in a constrained form, in which J is the

indicator of a set
{
u : ‖u‖p ≤ Λ

}
.

All these examples are symmetric: J(−u) = J(u). An asymmetric example is
provided by J equal to the indicator of {u : u � 0}, the style of penalization used
in density estimation under monotonicity or convexity constraints.

The fact that the estimated f is indeed a probability density can be most
conveniently verified through the dual formulation (D).

������� 1� Suppose that wTL1 = 1 and P1 = 0. Then the solution f of (D)
satisfies

∑
j sjfj = 1 and fj ≥ 0 for every j.
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P r o o f. The nonnegativity constraint is directly included in the formulation of
(D); it remains to verify that

sTf = 1TSf = 1T(LTw + PTe) = wTL1 + eTP1 = 1.

�

In the simplest case, when matrix L is composed of zeros, except for a single
1 in each row corresponding to a datapoint, wTL makes these 1’s multiplied by
1/n; further multiplying by 1 makes them sum to 1. More generally, common
interpolation schemes yield evaluation operators satisfying the assumption of
Theorem 1. As far as potential operators P are concerned, they are discrete,
difference versions of differential operators; as such, they annihilate constants—
as can be directly verified for difference operators acting on sequences.

Compared to the dual (D), the relationship of the variables appearing in the
primal formulations (P) or (U) to the estimated density is not explicit. However,
once a strong duality of (P) and (D) is demonstrated true, then the relationship
of g to f for qualified ψ is given by

f = Ψ′(g) , (E)

where Ψ′(g) indicates the componentwise application of ψ′, the derivative of ψ.

������� 2� Problem (D) is a strong dual of the problem (P). If ψ is differen-
tiable on the interior I of its domain, then the corresponding solutions of (D)
and (P) satisfy (E), whenever g and f are componentwise from I and the image
of I under ψ′, respectively.

P r o o f. We take a formulation equivalent to (P), obtained by rewriting it in
terms of new variables u and v,

− wTL(g − v) + sTΨ(g) + J(u) = min
g,u,v

! ,

subject to v � 0 and − P(g − v) = u .
(1)

The Lagrange dual of (1) is

inf
g,u,v

L(p, e; g, u, v) = max
p,e

! , subject to p � 0 , (2)

where (p used here has no relationship to the parameter p used elsewhere)

L(p, e; g, u, v) = −wTL(g − v) + sTΨ(g) + J(u) + pT(−v) + eT
[−u − P(g − v)

]
is the Lagrangean of (1). The linear part of L, in v, leads to a feasibility constraint

LTw + PTe = p , (3)
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preventing the objective function of (2) from becoming −∞. Under (3), the
minimization of the simplified Lagrangean can be done separately in g and u,

inf
g,u

L(p, e; g, u) = inf
g,u

(−wTLg − eTPg + sTΨ(g) − eTu + J(u)
)

= inf
g

(−(LTw + PTe)Tg + sTΨ(g)
)

+ inf
u

(−eTu + J(u)
)
,

= inf
g

(−pTg + sTΨ(g)
)− J∗(e) .

(4)

Minimizing in g is done by expanding into components,

inf
g

(−pTg + sTΨ(g)
)

= inf
g

(
−

∑
j

pjgj +
∑

j

sjψ(gj)
)

=
∑

j

sj inf
gj

(
−pj

sj
gj + ψ(gj)

)
= −

∑
j

sjψ
∗
(

pj

sj

)
.

(5)

The dual formulation (D) is obtained as the summary of (2)–(5), rewritten
in terms of fj = pj/sj . Finally, (1) satisfies the Slater constraint qualification
condition; therefore strong duality holds.

For fixed y, the domain of the concave function ϕ(x) = yx−ψ(x) is the same
as the domain of ψ. If ψ has a derivative on I, so does ϕ; if y belongs to a range
of I under ψ′, then there is x∗ in I, depending on y, such that y = ψ′(x∗).
That is, ϕ′(x∗) = 0, and consequently ϕ attains its global maximum at x∗,
because ϕ is concave. Hence, the conjugate is ψ∗(y) = yx∗ − ψ(x∗) and can be
obtained via taking the derivative of ψ and setting it equal to zero. Applying
this procedure componentwise in (5) yields ψ′(gj) = pj/sj = fj, whenever the
additional assumptions of the theorem are satisfied. �

Example (Maximum Likelihood). In continuous version, this primal formula-
tion can be traced back to L e o n a r d [7] and S i l v e r m a n [12]. The latter
proposed

−
∫
gdPn +

∫
eg dx+ λ

∫ (
g(k)

)2 dx = min
g

! (6)

using the third (k = 3) derivative to estimate the logarithm, g, of a density
f , with the symbol Pn denoting the empirical probability supported by the
datapoints; G u [3] and others championed second (k = 2) derivative instead.
The total variation penalty ∫ ∣∣g(k)

∣∣dx =
∨
g(k−1)

was considered by K o e n k e r and M i z e r a [5, 6] for k = 1, 2, 3. R u f i b a c h
and D ü m b g e n [11] investigated maximum likelihood estimation of a log-
concave density, which in our setting corresponds to k = 2 and the penalty
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in the form of the non-positivity constraint on the second derivative (with no
tuning parameter λ).

In the discrete setting, the kth derivative operator is replaced by an appro-
priate difference operator P, and the evaluation operator L and vector of weights
w by their typical instances described above. Since ψ(x) = ex is nondecreasing,
(P) is equivalent to the unconstrained formulation (U), whose specific form is,
for symmetric J(u) = λ‖u‖p

p and p = 1, 2,

−wTLg + sTeg + λ‖Pg‖p
p = min

g
! , (7)

where eg is understood componentwise. The additional assumptions of Theo-
rem 2 are satisfied, so that indeed f = eg, and

ψ∗(y) =

⎧⎪⎨
⎪⎩
y log y − y , for y > 0 ,
0 , for y = 0 ,
+∞ , otherwise .

The feasibility requirement related to the fact that domψ∗ = [0,+∞) indepen-
dently enforces the nonnegativity constraint on f. S i l v e r m a n [12] showed,
via an argument based on the specific properties of the exponential function,
that the result of (6) is a probability density; the same conclusion follows, in the
discrete setting, from our Theorems 1 and 2 for all formulations of the type (7).
If the assumptions of Theorem 1 regarding P, L, and w are satisfied, then the
dual objective function

−
∑

j

sj fj log fj +
∑

j

sj fj ,

can be further simplified, because the second sum is equal to 1, a constant. The
resulting dual of (7), cast in the minimization form, is, for p = 1,∑

sj fj log fj = min
f,e

! ,

subject to Sf = LTw + PTe, f � 0, and ‖e‖∞ ≤ λ ,
(8)

and for p = 2,
∑

sj fj log fj +
1
4λ

‖e‖2
2 = min

f,e
! ,

subject to Sf = LTw + PTe , and f � 0 .
(9)

The dual of the penalty-constrained version of the primal (7),

−wTLg + sTeg = min
g

! , subject to ‖Pg‖p ≤ Λ , (10)

259



ROGER KOENKER — IVAN MIZERA

is (p and q being conjugate)∑
j

sj fj log fj + Λ‖e‖q = min
f,e

! ,

subject to Sf = LTw + PTe , and f � 0 .
(11)

Finally, the dual of the shape-constrained formulation,

−wTLg + sTΨ(g) = min
g

! , subject to Pg � 0 (12)

(yielding log-concave f when P is a second-order difference operator), is∑
j

sj fj log fj = min
f,e

! ,

subject to Sf = LTw + PTe , f � 0 , and e � 0 .
(13)

The essence of all the dual variants is the maximization of the Shannon entropy
of f, or, equivalently, the minimization of the Kullback-Leibler divergence

K(f, σ−1) =
∑

j

sj fj log
fj
σ−1

=
∑

j

sj fj log
sj fj

sjσ−1
=

∑
j

sj fj log fj + log σ ,

where σ−1 = (
∑

j sj)−1 can be viewed as a discretization of the uniform density.

The dual formulation of the penalized likelihood problem as a maximum
entropy problem can be generalized by replacing the Shannon entropy term
by some of the Rényi entropies, indexed by a parameter α > 0; similarly to
the Kullback-Leibler case, the appropriate minimum divergence interpretations
follow. Formally, Rényi’s entropies include the Shannon one for α = 1; the
R é n y i [9] entropy with exponent α 	= 1 is defined as (1−α)−1 log

(
sTfα

)
, where

fα is interpreted componentwise. The maximization of this function is equivalent
to the maximization of − sign(α− 1)sTfα or, equivalently, − sign(α− 1)sTfα/α.

Let ψp be a function equal to xp/p for x ≥ 0 and to 0 for x < 0. The
conjugate, ψ∗

p, of ψp is for p > 1 equal to yq/q for y ≥ 0 (p and q conjugate),
and to +∞ otherwise. Note that ψp is nondecreasing, hence (P) is equivalent to
(U) whenever ψ = ψp.

Example (Minimum Pearson χ2). The special case of the Rényi system for
α = 2 yields ψ(x) = ψ2 and ψ∗

2 = y2/2 for y ≥ 0. The dual is obtained by
replacing the entropy term

∑
j sj fj log fj in the objective function of (8), (9),

(11), and (13) by sTf2, and eliminating the redundant constant in the objective.
The corresponding primal results from replacing

∑
j sjegj in (7), (10), and (12)

by
∑

j sjψ2(gj). Minimizing the dual (and in this case also primal) objective is
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equivalent to minimizing the χ2-divergence

χ2(f, σ−1) =
∑

j

sj
(fj − σ−1)2

σ−1
=

∑
j

(sj fj − sjσ
−1)2

sjσ−1
= σ

⎛
⎝∑

j

sj f
2
j

⎞
⎠ − 1 .

If instead of ψ2 we consider ψ(x) = (1/2)x2 for all x, we can cast both primal
and dual in a quadratic programming form. However, the correct primal has to
be written in the constrained form (P) now, because ψ is no longer monotone.
In particular, the correct formulation for the setting corresponding to (7) is

−wTLh + 1
2 sTg2 + λ‖Ph‖p

p = min
g,h

! , subject to h � g .

In all variants, both primal and dual yield directly f = g, because ψ′(x) = x.

Example. Another special case of the Rényi scheme, with α = 3/2, puts sTf3/2

into the objective function of (8), (9), (11), and (13). For the primal, we may
take either

∑
j sjψ

3(gj) in (7), (10), and (12); or we may use ψ(x) = (1/3)|x|3
instead, leaving the dual unchanged, but making the primal constrained; for
instance, the formulation (7) becomes

−wTLh + 1
3 sTg3 + λ‖Ph‖p

p = min
g,h

! , subject to h � g .

Due to the fact that f = g2 in any of these variants, we could nickname this
example “Silverman for Good”. Apart from the additional middle term, the
objective function differs from the original proposal of G o o d [2] also in the
first term; ours is not based on the logarithm of the square root of the estimated
density, but on the square root itself. It would be interesting to know whether
there is any Bayesian justification for such an approach, whether in “mufti”
or “full regalia”. In any case, the primal formulation yields a square root of a
probability density, a “rootogram” in Tukey’s terminology.

Example (Minimum Hellinger). Another example from the Rényi system, with
α = 1/2, sets ψ(x) = −1/x, for x < 0 and +∞ elsewhere. The conjugate is
ψ∗(y) = −2

√
y, for y ≥ 0, and ∞ elsewhere. The dual (for p = 1) has, in the

minimization form and after the elimination of the redundant constant, −sT
√

f
in the objective of (8), (9), (11), and (13);

√
f is again applied componentwise.

The dual objective minimizes the Hellinger distance

H(f, σ−1) =
∑

j

sj

(√
fj −

√
σ−1

)2

=
∑

j

(√
sj fj −

√
sjσ−1

)2

= 2 − 2
√
σ−1

∑
sj

√
fj .
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Since ψ is nondecreasing, the primal can be cast in its unconstrained version
(U), just replacing the

∑
j sjegj term in (7), (10), or (12) by −sTg−1, where g−1

is the componentwise reciprocal value of g; however, the domain restriction for
ψ has to be included as a feasibility constraint. The resulting primal analog of
(7) is

−wTLg − sTg−1 + λ‖Pg‖1 = min
g

! , subject to g � 0 .

For symmetric penalties, it is more convenient to recast the primal in terms of
h = −g:

wTLh + sTh−1 + λ‖Ph‖1 = min
h

! , subject to h � 0 .

The estimated density f = 1/g2 = 1/h2; hence h could be called, in the Tukey
spirit, a “rootosparsity”, and g, being negative, a “hanging rootosparsity”.

In our implementations, we observed that numerical performance may be im-
proved by adding the (theoretically redundant) nonnegativity constraint f � 0
also in the primal formulation. However, this is rather an unimportant detail,
because dual formulations always ran significantly faster and were more numer-
ically stable than their primal counterparts.

Example (Maximum empirical likelihood). The limiting variant of the Rényi
system for α = 0 is ψ(x) = −1/2 − log(−x) for x < 0, and +∞ otherwise. The
dual puts −sT log f into the objective function of (8), (9), (11), and (13), while
the primal (unconstrained, but with a feasibility constraint) puts −sT log(−g)
into in (7), (10), or (12). For instance, recasting (7) in terms of h = −g gives

wTLh − sT log h + λ‖Ph‖1 = min
h

! , subject to h � 0 .

The dual objective is equivalent to the reversed Kullback-Leibler divergence

K(σ−1, f) =
∑

j

sjσ
−1 log

σ−1

fj

=
∑

j

sjσ
−1 log

sjσ
−1

sj fj

= −σ−1
∑

j

sj log fj − log σ ,

whose minimizing is known to be equivalent to maximizing the so-called em-
pirical likelihood in the sense of O w e n [8]; see H a l l and P r e s n e l l [4]. The
salient feature of this example is that the function h penalized in the primal is
“sparsity”, the reciprocal of the estimated density f.
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Example. One can easily come to the idea to employ the popular and simple
total variation distance in the minimum divergence formulation, choosing the
dual objective to minimize

V (f, σ−1) =
∑

j

sj|fj − σ−1| ,

a formulation leading to a linear programming problem. However, the primal in
this case would involve a function ψ(x) equal to x/σ for x in the interval [−1, 1],
and +∞ elsewhere. This indicates difficulties and likely explains the strange
results we observed in our implementations.

Acknowledgement� We are indebted to Xuming H e for valuable discussions,
to Erling D. A n d e r s e n for creating MOSEK, a convex optimization tool-
box for MATLAB, and to the anonymous referee for the careful reading of the
manuscript.

REFERENCES

[1] BOYD, S.—VANDENBERGHE, L.: Convex Optimization. Cambridge University Press,

Cambridge, 2004.

[2] GOOD, I. J.: A nonparametric roughness penalty for probability densities, Nature 229

(1971), 29–30.

[3] GU, C.: Smoothing Spline ANOVA Models. Springer-Verlag, New York, 2002.

[4] HALL, P.—PRESNELL, B.: Density estimation under constraints, J. Comput. Graph.

Statist. 8 (1999), 259–277.

[5] KOENKER, R.—MIZERA, I.: The alter egos of the regularized maximum likelihood den-

sity estimators: deregularized maximum-entropy, Shannon, Renyi, Simpson, Gini, and

stretched strings. In: Proceedings of 7th Prague Symposium on Asymptotic Statistics and

15th Prague Conference on Information Theory, Statistical Decision Functions and Ran-

dom Processes—Prague Stochastics ’06 (M. Huškova, M. Janžura, eds.), Prague, August
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