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THE VELOCITY OF THE RIVER FLOW

Pavel Tuček — Jaroslav Marek

ABSTRACT. The aim of this paper is to contribute to a statistical solution of
the estimation problem of a water flow.

The most essential objective of hydrometry still lies, according to the widely
recognized opinion, in a precise determination of velocity of the water flow in
a particular river basin.

In order to measure the water speed, a hydrometric propeller and Pitot’s tube
are frequently used. In the real situation we have measured the velocity of the
points and the coordinates of these points in I places of the river basin.

The aim of the measurement is to find the estimators of the streamline, the
estimator of the maximal velocity on the streamline, the parameter κ1, κ2 and
κ3, describing the decrease of the velocity according to the distance from the
streamline in x, y and z direction.

The model described above could be studied by the theory of linear models.

1. Introduction

In hydrometric research we encounter the problems of determining the length
and width of the river basin by planimetric (topographic) and altitudinal mea-
surements, which then results in determination of transversal and longitudinal
profile of the water system. Apart from this, however, the most essential objec-
tive of hydrometry is the determination of velocity of the river flow.

We have taken the truly mathematical problem and we have described it with
the help of a general linear model with linear constraints on model parameters
where constraints contain additional unknown parameters that are not distribu-
tional parameters.

The biggest advantage of this model is its possible modification to the case
where the stream of the river will change a lot according to the distances from
the measured points. We can use this model also with the assumption that
the velocity of the streamline will be the function of the plane coordinates. All
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these results should be in the future compared with some of the interpolation
geostatistical methods like Kriging or IDW.

The initial need for such a research has been proposed as one of the outcomes
of the research project, taking place at Universität für Boden Kultur (BOKU)
in Austria.

2. The model

The model of incomplete and indirect measurement of the vector parameter
with the condition system of the Type II is given as:

Y ∼ (FΘ,Σ), b + CΘ + Bβ = 0 , (1)

where Y = (Y1, . . . ,Yn)′ is a random observation vector; θ ∈ Rk1 is a vector
of the measured parameters; β ∈ Rk2 is a vector of the additional unmeasured
parameters.

If h(Fn,k) = k1 < n, h
(
C(q,k1),B(q,k2)

)
= q < k1 + k2, h(B) = k2 < q, a Σ is

positive definite, then the model is called regular.
In this paper we will work only with this regular model.

������� 1� BLUE (Best Linear Unbiased Estimator) of the vector
(

Θ
β

)
is( ˆ̂Θ

ˆ̂
β

)
= −

( (
F′Σ−1F

)−1B′Q1,1

Q2,1

)
b +

(
I− (F′Σ−1F

)−1C′Q1,1C
−Q2,1B1

)
Θ̂,

(2)
where Θ̂ =

(
F′Σ−1F

)−1F′Σ−1Y (the estimator does not respect the condition
relating to the parameters of Θ, β); its covariance matrix takes the form

var

( ˆ̂Θ
ˆ̂
β2

)
=

(
var
( ˆ̂Θ), cov

( ˆ̂Θ,
ˆ̂
β
)

cov
(ˆ̂
β,

ˆ̂Θ
)
, var

(ˆ̂
β
)

)
, (3)

where

var
( ˆ̂Θ
)

=
(
X′Σ−1F

)−1 − (X′Σ−1F
)−1

C′Q1,1C
(
F′Σ−1F

)−1
,

cov
( ˆ̂Θ,

ˆ̂
β
)

= −(F′Σ−1F
)−1C′Q1,2,

var
(ˆ̂
β2

)
= −Q2,2

and (
Q1,1, Q1,2

Q2,1, Q2,2

)
=
(

C
(
F′Σ−1F

)−1
C′, B

B′, 0

)−1

.

Proof: See [2] and pp. 129–131. �
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The model of the river flow

We have measured the values X×, Y ×, Z× and V × of the parameters X, Y ,
Z and V , which represent the velocity of the river flow in the point (x, y, z).

The aim of the measurement is to find the estimators of the real values v0, κ1,
κ2, κ3, γ1, γ2, γ3, γ4, δ1, δ2, δ3, δ4, which represent the maximal velocity on the
streamline, the parameter κ1 describing the decrease of the velocity according to
the distance from the streamline in the direction of x, the parameter κ2 describ-
ing the decrease of the velocity according to the distance from the streamline
in the direction of y, the parameter κ3 describing the decrease of the velocity
according to the distance from the streamline in the direction of z, parameters
γi, i = 1, 2, 3, 4 describing the y coordinate of the streamline and parameters δi,
i = 1, 2, 3, 4 describing z direction of the streamline.

Let the streamline of the given river be considered in the form⎛
⎝ x

β1(x)
β2(x)

⎞
⎠ =

⎛
⎝ x

γ1 + γ2x + γ3x
2 + γ4x

3

δ1 + δ2x + δ3x
2 + δ4x

3

⎞
⎠ . (4)

The result of the measurement is represented by the vector of coordinates and
velocities

Y4·I ∼ N4·I

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X×
1

Y ×
1

Z×
1

V ×
1
...

X×
I

Y ×
I

Z×
I

V ×
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ε , where var(ε) = Σ . (5)

This vector exhibits a normal distribution with a covariance matrix Σ which is
determined both by the error (uncertainty) of Pitot’s measuring device and by
the error (uncertainty) of position device.

The velocity is now represented by the equation

V ×
i = V0 −

(
X×

i − X�
i

)2

κ1 −
(
Y ×

i − Y �
i

)2

κ2 −
(
Z×

i − Z�
i

)2

κ3 , (6)

where the symbol � is the symbol for the projection to the streamline (see
Figure 1).
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x

y

y = β1(x)

measured point (x×, y×)

point of the streamline (xp, yp)

the projection of the measured

point to the point

of the streamline (x�, y�)

Figure 1. Measurements, projections and known points of the streamline

In our case

Θ =
[
X×

1 , Y ×
1 , Z×

1 , V ×
1 , . . . , X×

I , Y ×
I , Z×

I , V ×
I , V0, κ1, κ2, κ3

]′
, (7)

β =
[
γ1, γ2, γ3, γ4, δ1, δ2, δ3, δ4

]
. (8)

Parameters Θ a β have to fulfill the following conditions:

gi
1 = X×

i − X�
i +

(
Y ×

i − Y �
i

)(
γ2 + γ3X

�
i + γ4

(
X�

i

)2) (9)

+
(
Z×

i − Z�
i

)(
δ2 + δ3X

�
i + δ4

(
X�

i

)2)
, i = 1, . . . I ,

gi
2 = γ1 + γ2X

�
i + γ3

(
X�

i

)2)+ γ4

(
X�

i

)3)− Y �
i = 0 , i = 1, . . . I ,

gi
3 = δ1 + δ2X

�
i + δ3

(
X�

i

)2)+ δ4

(
X�

i

)3)− Z�
i = 0 , i = 1, . . . I .

According to the theory of nonlinear models, we will now construct the linear
version of our model.

Let F = ∂EY
∂Θ′ , where EY =

[
X×

1 , Y ×
1 , Z×

1 , V ×
1 , . . . , X×

I , Y ×
I , Z×

I , V ×
I

]
.

The matrix F has the following structure

F =

⎛
⎝ F×

1 , F�
1 , 0, 0, . . . 0 0 F1

0, 0, F×
2 , F�

2 , . . . 0 0 F2

0, 0, 0, 0, . . . F×
I , F�

I , FI

⎞
⎠ , (10)

where

F×
i =

⎛
⎜⎜⎝

1, 0, 0
0, 1, 0
0, 0, 1

−2(X× − X�)κ1, −2(Y × − Y �)κ2, −2(Z× − Z�)κ3

⎞
⎟⎟⎠ ,
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F�
i =

⎛
⎜⎜⎝

0, 0, 0
0, 0, 0
0, 0, 0

2(X× − X�)κ1, 2(Y × − Y �)κ2, 2(Z× − Z�)κ3

⎞
⎟⎟⎠ ,

Fi =

⎛
⎜⎜⎝

0, 0, 0, 0
0, 0, 0, 0
0, 0, 0, 0
1, −(X× − X�)2, −(Y × − Y �)2, −(Z× − Z�)2

⎞
⎟⎟⎠ .

The matrix C has the form of:

C =

⎛
⎝ C×

1 , C�
1 , 0, 0, . . . 0 0 C1

0, 0, C×
2 , C�

2 , . . . 0 0 C2

0, 0, 0, 0, . . . C×
I , C�

I , CI

⎞
⎠ , (11)

C×
i =

⎛
⎜⎜⎝

1, γ2 + γ3X
� + γ4(X�)2, δ2 + δ3X

� + δ4(X�)2

0, 0, 0
0, 0, 0
0, 0, 0

⎞
⎟⎟⎠ ,

C�
i =

⎛
⎝ c11, c12, c13,

c21, c22, c23

c31, c32, c33

⎞
⎠ ,

where

c11 = − 1 + (Y × − Y �)(γ3 + 2γ4X
�) + (Z× − Z�)(δ3 + 2δ4X

�),

c12 = − γ2 − γ3X
� − γ4(X�)2, c13 = −δ2 − δ3X

� − δ4(X�)2,

c21 = γ2 + 2γ3X
� + 3γ4(X�)2, c31 = δ2 + 2δ3X

� + 3δ4(X�)2,

and
c22 = c23 = c32 = c33 = 0,

Ci = 03,4 .

The matrix B takes the form:

B =

⎛
⎜⎜⎝

Bγ
1 , Bδ

1

Bγ
2 , Bδ

2

. . .
Bγ

I , Bδ
I

⎞
⎟⎟⎠ , (12)
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Bγ
i =

⎛
⎝ 0, Y × − Y �, (Y × − Y �)X�, (Y × − Y �)(X�)2

1, X�, (X�)2, (X�)3

0, 0, 0, 0

⎞
⎠ ,

Bδ
i =

⎛
⎝ 0, Z× − Z�, (Z× − Z�)X�, (Z× − Z�)(X�)2

0, 0, 0, 0
1, X�, (X�)2, (X�)3

⎞
⎠ .

3. The projection of the known point on the streamline

Let the streamline in the plane (X, Y ) be given as an explicitly given function
y = β1(x) (see Figure 1). Analogous is the situation

(
z = β2(x)

)
in the plane

(X, Z) which we can leave without explanation.
In the real situation we have measured the velocity of the points and the

coordinates of these points in I places of the river basin. We will denote these
points in the graphical visualization by the symbol × and its coordinates by
the symbol x×, y×, z×, we will denote the velocity in these points by v×. The
observation vector Y in the above mentioned situation has the length 4 · I.

During the measurement that was part of the research project at Universität
für Boden Kultur (BOKU) in Austria and which took place in the Danube basin
the number I was approximately 2000.

The vectors of parameters θ and β have the length 4 · I +4 and 8, respective.
See (7) and (8).

The next assumption is that we know the shape of the streamline which
is in the form (4). The parameters γi, i = 1, 2, 3, 4 describe y coordinates of
the streamline and the parameters δi, i = 1, 2, 3, 4 describe z coordinates of
the streamline. Our numerical study of the problem has shown that we can
considered β1(x) and β2(x) as third order polynoms. In another cases the order
of the polynom depends on the shape of the river basin. We consider a river which
satisfies the assumptions for the laminar stream. This assumption leads to the
decreasing changes in velocity according to the distance from the streamline.

Remark� It is possible to find the zero approximation of the streamline by the
help of:

(1) Known points on the left bank and the right bank of a river,
(2) Points where the maximal velocity has been measured (it is less reliable,

according to the different gradient of the river basin).
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In the next step, which is connected with the construction of the model,
we will work with the maximal velocity w and with the parameter κ1, which
determines how fast the decreasing of the velocity is in the points lying on the
normal to the streamline (in the horizontal direction). The parameter κ2 will
determine how fast the decreasing of the velocity is in the points lying on the
normal to the streamline (in the vertical direction).

We will denote the points of the streamline as xp, β1(xp), i.e., in Figure 1 by
the symbol o.

The aim of this part is to find a projection of the arbitrary measured point
x×, y×, z× to the point of the streamline, which we will denote by x�, y�, z�.

We will determine the slope to the streamline (the streamline is now described
by the explicit function in the form of yp = β1(xp). The differentiation of the
streamline is

β′
1(xp) =

y� − β1(xp)
x� − xp

, (13)

β′
1(xp) =

x − x�

β1(xp) − y� . (14)

We can arrive, after the algebraic arrangement of the equations (13) and (14),
to the next forms of

β′
1(xp) · x� − y� = β′

1(xp) · xp − β1(xp) , (15)

−x� + β′
1(xp) · y� = β′

1(xp) · β1(xp) − xp . (16)

The coordinates of the projection of the given point are now easy to find by
the solution of this system equation(

β′
1(xp), −1
−1, β′

1(xp)

)(
x�

y�

)
=
(

β′
1(xp) · xp − β1(xp)

β′
1(xp) · β1(xp) − xp

)
,

or after the algebraic arrangement(
β′

1(xp), −1
1

β′
1(xp) , −1

)(
x�

y�

)
=
(

β′
1(xp) · xp − β1(xp)
−β1(xp) + xp

β′
1(xp)

)
.

Firstly, we should compute the inverse matrix on the left side of the equation:

A−1 =
1(

β′
1(xp)

)2 − 1
·
(

β′
1(xp), −β′

1(xp)
1, −(β′

1(xp)
)2 ) .

We can now multiply the obtained matrix by the vector of the right side:

A−1 ·b =
1(

β′
1(xp)

)2 − 1
·
( (

β′
1(xp)

)2 · xp − β′
1(xp) · β1(xp) + β′

1(xp) · y× − x×

β′
1(xp) · xp − β1(xp) +

(
β′

1(xp)
)2 · y× − β′

1(xp) · x×

)
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and the solution for the new coordinates is now given by:(
x�

y�

)
=

β′
1(xp)

1 − (β′
1(xp)

)2 ·
((−β′

1(xp)
)2 · xp + β1(xp) − y× + x×

β′
1(xp)

−xp + β1(xp)
β′
1(xp) − β′

1(xp) · y× + x×

)
. (17)

Conclusion Remarks

In this work we have computed the velocity of a river flow with the help of
the measurement in the river basin. The exact model was constructed in order
to explain the behaviour of the water in the river basin. The biggest advantage
of this model is its possible modification to the case where the stream of the
river will change a lot according to the distances from the measured points. The
possible improvement of this work is in the assumption that the velocity of the
streamline will be the function of the plane coordinates.

In the future we will spend space and time making numerical studies of our
model and we will compare our results with other methods like Kriging or IDW.
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