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TWO SPECIAL VARIANCE STRUCTURES IN THE

GROWTH CURVE MODEL

Daniel Klein — Ivan Žežula

ABSTRACT. The properties of estimators of variance components, mainly their
behaviour when normality assumption is violated, are studied in the growth curve
model with special variance structures. The results of simulations are presented.

1. Introduction

The growth curve model was introduced by P o t t h o f f and R o y [1], and
during many years it has proved to be a very useful tool for different applications.
It combines ANOVA and regression analysis in a special way, which does not
have direct analogue in one-dimensional models. Its basic form is:

Y = XBZ + e,

E(e) = 0, var
(
vec(e)

)
= Σ ⊗ I,

where Yn×p is a matrix of n independent p-dimensional observations, Xn×m and
Zr×p are known design matrices (X is the ANOVA design matrix and Z is the
matrix of regression design points) and en×p is the error matrix. Bm×r and
Σp×p are unknown matrices of the first (regression coefficients) and the second
(describing the dependence of the columns of Y ) order parameters, respectively.
The vec operator vectorizes a matrix by stacking its columns and the sign ⊗
denotes Kronecker product.

Standard least squares estimator of B — if B is estimable— is

B̂ = (X ′X)−X ′Y Σ−1Z ′(ZΣ−1Z ′)−.

However, this estimator is a function of Σ, which is rarely known in practical
applications, and therefore it has to be estimated. There is no problem estimating
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Σ when it is completely unknown. Under normality, its uniformly minimum
variance unbiased invariant estimator (UMVUIE) is

Σ̂ =
1

n − r(X)
Y ′MXY, (1)

where MX = I − X(X ′X)−X ′ (for details see [3]). Problems arise in situations
when the structure is partially known. It is because partial knowledge adds con-
straints to the estimation (optimization) process. In this case Σ can be expressed
in the form

Σ =
∑

i

θiVi ,

where θi, i = 1, . . . , k < n(n + 1)/2 are unknown constants (variance com-
ponents), and Vi are known matrices. The whole vector θ = (θ1, . . . , θk) ∈
F = {θ;

∑
i θiVi ≥ 0}. Estimation of variance components in this general model

was intensively studied in the past. However, special questions arise when dif-
ferent types of parametrization are used. Some applications came up with the
following structures of the variance matrix:

(1) the uniform correlation structure (sometimes also called compound sym-
metry structure)

Σ = σ2
(
(1 − ρ)I + ρ11′),

(2) the autoregressive correlation structure (also called serial correlation struc-
ture)

Σ = σ2

⎛
⎜⎜⎜⎝

1 ρ . . . ρ p−1

ρ 1 . . . ρ p−2

...
...

. . .
...

ρ p−1 ρ p−2 . . . 1

⎞
⎟⎟⎟⎠ .

Ž e ž u l a [4] introduced simple estimators of both unknown parameters (σ2

and ρ) based on (1), in both variance structures. In uniform variance structure
model, explicit formulas are available:

σ̂2
S =

Tr(Σ̂)
p

,

ρ̂S =
1

p − 1

(
1′Σ̂1

Tr(Σ̂)
− 1

)
.

It has been shown that under normality these estimators are numerically very
close to the UMVUEs, and supersede MLEs (measured by MSE). In autoregres-
sive correlation structure model, estimator of σ2 is the same as before, while
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estimator of ρ is the solutions of the following equation:

σ̂2 =
Tr(Σ̂)

p
,

ρ̂(p − 1) + ρ̂2(p − 2) + · · · + ρ̂ p−1 =
p

2

(
1′Σ̂1

Tr(Σ̂)
− 1

)
.

Only little is known about properties of these estimators. W u [2] derives MLE
of σ2 only for the case when ρ is known. However, all these estimators are based
on unbiased estimating equations (for details see [4]).

All above mentioned estimators were derived under normality assumption,
i.e.,

vec(Y ) ∼ N
(
vec(XBZ), Σ ⊗ I

)
.

The estimator of σ2 is unbiased in both structures, while the estimator of ρ is
biased. The most common criterion for comparison of biased estimators is the
mean square error (MSE), which turns into variance for unbiased ones.

Our main question was, how these estimators behave when the data are non-
normal, and compare it with the normal case. In particular, we were interested
in the following questions:

• How the bias of the estimators changes under different distributions?
• What happens with the MSE of the estimators?

To put it other way, we wanted to study the robustness of estimators of σ2 and ρ
with respect to the violation of normality assumption.

Second problem is connected with MSE. MSE of σ̂2 and ρ̂ in the model with
uniform correlation structure can be expressed also by means of the true values
of parameters (see [4]):

MSE∗ σ̂2 =
2σ4

n − r(X)
· 1 + (p − 1)ρ2

p
,

MSE∗ ρ̂ =
2

n − r(X)
· (1 − ρ)2

(
1 + (p − 1)ρ

)2
p(p − 1)

+ o
(
n−1

)
.

(2)

Therefore, one possible way of estimating MSE is by substitution of estimated
values into these relations. We can call them naive MSE estimators. We were
interested, whether such estimators are good ones, i.e., whether they are close
to their true values.

Third problem concerns ρ̂. This estimator is biased, and its distribution is dif-
ficult to tackle. R. A. F i s h e r developed a transformation of sample correlation
coefficient, so-called Z-transformation, which has asymptotically normal distri-
bution (thus allowing easy testing of the coefficient). The well-known formula
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for the transformation is:

Z =
1
2

ln
(

1 + ρ̂n

1 − ρ̂n

)
,

where ρ̂n is the standard normal-theory estimator of ρ. We were interested in
how this transformation of ρ̂ behaves under different base distributions.

2. Simulations

Model describing quadratic growth in two groups was used for simulations,
with altogether 27 observations. This is quite a typical sample size in many bi-
ological applications, and our aim wasn’t to study the effect of different sample
sizes. The dimensions used were as follows: n = 27 (11 observations in the first
group, and 16 in the second one), p = 4, m = 2, r = 3. The chosen value of ma-
trix B used in our simulations, as well as those of X and Z and sample size, was
based on data from [1]. Values of σ2 and ρ were also chosen. Then, error term
was added to known product XBZ. As base distributions for this were used:
normal N(0,1), N(5,1), N(0,16), N(0,625), mixture of normal and exponential
0.3N(0,1)+0.7Exp(1), beta B(2,2), B(1/2,1/2), B(3/4,5/4), Laplace La(1). At
first, independent errors from a base distribution were generated. Then, mean
value of the distribution was subtracted (with the exception of N(5,1)), and
finally, linear transformation was done in order to get required correlation struc-
ture in all rows.

In all cases the value of σ2 coincided with the variance of the base distribution
used. The considered values of parameter ρ were:

(i) in model with uniform correlation structure: -0.3, -0.1, 0.1, 0.5, 0.75, 0.96
(here ρ must belong to 〈−1/(p − 1); 1〉, see [4]);

(ii) in model with autoregressive correlation structure: -0.75, -0.5, -0.1, 0.1,
0.5, 0.75, 0.96 (here ρ can belong to the whole interval 〈−1; 1〉).

In each case 5000 models were generated and parameter estimates were com-
puted.

To address the second problem in uniform correlation model, the MSE esti-
mate was computed by two methods. First, it was computed by substitution of
parameter estimates into formula (2). Second, using the knowledge of the true
parameter value, it was computed by the standard formula

MSE =
1
m

m∑
i=1

(ui − w)2,
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Figure 1. Influence of the change of true value of parameter ρ to MSE of its estimator.

where m (=5000) is the number of observations, ui are the estimates computed,
and w is true value of relevant parameter.

3. Results

The arithmetic mean of estimates of both parameters was not influenced
by the change of distribution. This statistic was close to the true values of
parameters for all chosen distributions and all chosen values of parameters. It
means that all used distributions gave results comparable to N(0,1), and no
substantial bias appeared. Realize that the departures from normality were of
different types: high skewness, heavy tails, short tails, U-shaped density. In this
sense all proposed estimators are robust.

However, MSE was influenced by the change of distribution in both considered
models. This claim concerns primarily the MSE of σ̂2; MSE ρ̂ varied little with
the change of distribution.

MSE of σ̂2 depended on the true value of σ2 — relative error increased with
the parameter value.

MSE was also influenced by the change of the true value of ρ:

• estimator σ̂2: MSE was smaller for true values of parameter ρ close to zero
(Figure 2),

• estimator ρ̂: MSE was smaller for true values of parameter ρ close to its
upper and lower bound (Figure 1).

The dependence on the true value of ρ is opposite for the two parameter estim-
ators — when one has the smallest MSE, the second has the biggest MSE.

Figure 2 shows quite big differences in MSE of σ̂2 between different base
distributions:
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Figure 2. Influence of the change of true value of parameter ρ to MSE of
estimator of parameter σ2.

What concerns the second problem in uniform correlation model, Figure 3
shows the ratio MSE ρ̂/MSE∗ ρ̂ for different base distributions. We can see that
this ratio is close to 1 for all chosen distributions and all true values of ρ. As a
result, naive MSE estimator of ρ̂ is usable.
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Figure 3. The ratio MSEρ̂/MSE∗ρ̂.
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For the estimator σ̂2 MSE of both types is comparable only for normal distri-
bution. Figure 4 shows that for other distributions the ratio MSE σ̂2/MSE∗ σ̂2 is
markedly different from 1. We can conclude, that estimator of σ2 is much more
sensitive to the change of distribution than that of ρ.
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Figure 4. The ratio MSEσ̂2/MSE∗σ̂2.

The third problem concerned the Z-transformation of ρ̂. The main question
of interest was whether this transformation can bring approximate normality.
It is to be stressed, that used estimators of ρ arise in a quite different way
than Pearsonian sample correlation coefficient, and in the uniform model even
the lower bound is different. However, the Z-transformation has variance sta-
bilization property in the normal case, and therefore it was interesting to in-
vestigate its behaviour in this case (this question was proposed to one of the
authors by Sir D. C o x ). When the transformation was applied, three tests
of normality of the empirical distribution were carried out by: S h a p i r o —
— W i l k , S h a p i r o — F r a n c i a and J a r q u e — B e r a . These tests indicate
that Z-transformation is not very useful for considered estimators of ρ. In the
model with uniform correlation structure the hypothesis of normality was re-
jected mostly when the true value of parameter ρ was close to its constraints.
The situation was opposite for the second correlation structure — the hypothesis
was rejected mostly when the true value of parameter ρ was close to zero.

4. Summary

The distributional change does not seem to have substantial influence on bias
of unknown parameters in both considered models. Bias does not also depend
on true value of parameters. On the other hand, MSE of estimators seems to be
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sensitive to the type of distribution, and to the true value of parameters. In par-
ticular, MSE of estimator ρ̂ was sensitive only to the change of true value of ρ. On
the other hand, MSE of estimator σ̂2 was strongly influenced by distributional
changes, and by true values of both σ2 and ρ.

The naive MSE estimator of ρ̂ in the uniform correlation model is usable,
but we cannot recommend using the naive MSE estimator of σ̂2 when the error
distribution is not normal.

Z-transformation of the estimators of ρ, also is not recommended in the in-
vestigated models.
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