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TRINITY OF CONDITIONAL LIMIT THEOREMS

Marian Grendár

ABSTRACT. Conditional Limit Theorem (CoLT) for Empirical Measures is a di-

rect consequence of Sanov’s Theorem. This note also discusses its counterpart,
Conditional Limit Theorem for Sources (Data-sampling Distributions). The third
CoLT concerns asymptotic conditional joint behavior of empirical measures and
sources. Implications of the Theorems for associated ill-posed inverse problems
are mentioned, as well.

1. Introduction

A threesome of Conditional Limit Theorems (CoLT’s) is gathered here. CoLT
for Empirical Measures is well-known in Shannon’s Theory community, but not
much outside. CoLT for Sources is a rather recent result. The third one, Joint
CoLT, is new. Each of the Limit Theorems has a bearing for associated ill-posed
inverse problem.

2. Conditional limit theorems

2.1. CoLT for types
In order to get into the subject, basic terminology and notation should be

introduced.
Let there be a random variable X with probability mass function (pmf) r,

and take values from a finite set X � {x1, x2, . . . , xm}, called alphabet, of m
letters. Let P(X ) be a set of all pmf’s on X . Let Π ⊆ P(X ).

Let type, or n-type, be νn � [n1, n2, . . . , nm]/n, where ni is the number of oc-
currences of the ith outcome in a random sample Xn � X1, X2, . . . , Xn of size n.
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Thus, type is just another (and more apt) name for empirical measure induced
by an iid sample of the length n. There are Γ(νn) � n!∏

m
i=1 ni!

sequences that
induce the same type. Let the sample be drawn from the source (data-sampling
distribution) r. Probability π(νn; r) that the source r generates an n-type νn is
just the standard multinomial probability: π(νn; r) � Γ(νn) exp(n

m∑
i=1

νn
i log qi).

Herafter, log stands for the natural logarithm. The key object of interest is
the conditional probability π(νn ∈ A | νn ∈ B; r) that there occurred a type
in set A provided that a type from B has occurred. The probability in ques-
tion is π(νn ∈ A | νn ∈ B; r) = π(νn∈A;r)

π(νn∈B;r)
; provided that π(νn ∈ B; r) �= 0; for

A ⊆ B ⊆ P(X ). CoLT concerns asymptotic behavior of that probability. The in-
formation divergence (Kullback-Leibler “distance”) of p with respect to q (both
from P(X )) is defined as I(p||q) �

∑
X

p log p
q , with conventions that 0 log 0 = 0,

log b/0 = +∞. The information projection p̂ of q on Π is p̂ � arg infp∈Π I(p||q).
Finally, I(Π||q) is the value of the I-divergence at an I-projection of q on Π.
The support of p ∈ P(X ) is a set S(p) �

{
x : p(x) > 0

}
. Topology induced by

the standard topology on R
m is assumed on P(X ).

Given that the source r produced an n-type from Π, it is of interest to know
how the conditional probability/measure spreads among the n-types from Π;
especially as n grows beyond any limit. For the set of a particular form, this
question is answered by Conditional Limit Theorem for Types (ICoLT) which
is also known as Conditional Weak Law of Large Numbers.

ICoLT can be established by means of Sanov’s Theorem (ST).

��� [7] Let Π be an open set. Let r be such that S(r) = X . Then,

lim
n→∞

1
n

log π(νn ∈ Π; r) = −I(Π||r).
Sanov’s Theorem states that the probability π(νn ∈ Π; r) decays exponen-

tially fast, with the decay rate given by the value of the information divergence
at an I-projection of the source r on Π. For the proof see [7].

I����� [6] Let Π be a convex, closed set. Let B(p̂, ε) be a closed ε-ball defined
by the total variation metric, centered at I-projection p̂ of r on Π. Then for any
ε > 0,

lim
n→∞ π

(
νn ∈ B(p̂, ε) | νn ∈ Π; r

)
= 1.

Informally, ICoLT states that if a dense rare set admits a unique I-projection,
then asymptotical types conditionally concentrate just on it.

2.2. CoLT for sources

Let Q ⊂ P(X ) be a countably infinite set of sources. Let a Bayesian put his
strictly positive prior probability mass function π(·) on Q ⊆ P(X ). Provided
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that r ∈ Q, as the sample size n grows to infinity, the posterior distribution
π(·|Xn = xn; r) over Q is expected to concentrate in a neighborhood of the true
source r. Whether and under what conditions this indeed happens is a subject
of Bayesian nonparametric consistency investigations.

In what follows, r is not necessarily from Q. The problem is to find the
source(s) upon which the posterior concentrates.

The L-divergence L(q || p) of q ∈ P(X ) with respect to p ∈ P(X ) is defined as

L(q || p) � −
m∑

i=1

pi log qi. The L-projection q̂ of p on Q is q̂ � arg infq∈Q L(q||p).

The value of L-divergence at an L-projection of p on Q is denoted by L(Q||p).
Sanov’s Theorem for Sources (LST) provides rate of the exponential decay of

the posterior probability.

L��� [15] Let N ⊂ Q. As n → ∞,
1
n

log π(q ∈ N |xn; r) → −{
L(N ||r) − L(Q||r)},

with probability one.

Proof of LST [15] is based on simple bounds; as it is short, we repeat it here.

P r o o f. Let ln(q) � exp
( n∑

l=1

log q(Xl)
)
, ln(A) �

∑
q∈A

ln(q), and ρn(q) � π(q)ln(q),

ρn(A) �
∑

q∈A

ρn(q). In this notation π(q ∈ N |xn) = ρn(N )
ρn(Q) . The posterior proba-

bility is bounded above and below as follows:

ρ̂n(N )

l̂n(Q)
≤ π

(
q ∈ N |xn; r

) ≤ l̂n(N )
ρ̂n(Q)

,

where l̂n(A) � sup
q∈A

ln(q), ρ̂n(A) � sup
q∈A

ρn(q).

1
n

(
log l̂n(N )−log ρ̂n(Q)

)
converges with probability one to L

(Q||r)−L
(N||r).

The same is the ’point’ of a.s. convergence of 1
n log of the lower bound. �

LST says that almost surely the posterior probability π
(
q ∈ N |xn; r

)
decays

exponentially fast, with decay rate specified by the difference of the values of
the two extremal L-divergences.

Let for ε > 0, NC
ε (Q) �

{
q : L(q||r) − L(Q||r) > ε, q ∈ Q}

.

������	�
� Let there be a finite number of L-projections of r on Q. As n → ∞,
π
(
q ∈ NC

ε (Q)|xn; r
) → 0, with probability one.

The Corollary establishes posterior consistency in L-divergence. In words: the
probability that r generates xn such that the limit of the posterior probability
lim

n→∞ π
(
q ∈ NC

ε (Q)|xn; r
)

= 0, is one.
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Conditional Limit Theorem for Sources (LCoLT) is as well a direct conse-
quence of LST.

L����� Let there be a unique L-projection q̂ of r on N . Let B(q̂, ε) be an ε-ball
defined by the total variation metric, centered at q̂. Then, for ε > 0,

lim
n→∞ π

(
q ∈ B(q̂, ε) | q ∈ N , νn; r

)
= 1,

with probability one.

Thus, there is asymptotically conditionally (a.s) zero probability of sources
other than those arbitrarily close to the L-projection q̂ of r on N . Conditioning
is done by event of the form: r produced n-type νn and at the same time q ∈ N
happened. Clearly, π(q ∈ A, νn; r) = π

(
νn | q ∈ A

)
π(q ∈ A), where r (as always)

is used as a reminder that the true source is r.

2.3. Joint CoLT

Consider the same, Bayesian, setting as in the previous Section 2.2.
Let [p̂, q̂] � arg infp∈Π,q∈Q I(p||q). Let I(Π||Q) denote the value of the I-diver-

gence at [p̂, q̂].
Sanov’s Theorem for pairs of types and sources

���� Let N ⊂ Q. Let Π ⊂ P(X ). As n → ∞,

1
n

log π(q ∈ N , νn ∈ Π; r) → −I(Π||N ),

with probability one.

P r o o f. π(q ∈ N , νn ∈ Π; r) =
∑

νn∈Π

∑
q∈Q π(νn | q)π(q). Employ the binding

used at the proof of LST to bind the inner sum, accompanied by the binding
used in the standard proof of the Sanov’s Theorem [7] for the outer sum. �

JST directly implies the following Joint Conditional Limit Theorem (JCoLT):

������ Let N ⊂ Q admit unique q̂ and let Π ⊆ P be a convex, closed set. Let
B(p̂, ε), B(q̂, ε) be ε-balls defined by the total variation metric, centered at p̂, q̂,
respectively. Then, for ε > 0,

lim
n→∞π

(
νn ∈ B(p̂, ε), q ∈ B(q̂, ε) | νn ∈ Π, q ∈ N ; r

)
= 1.

with probability one.
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3. Ill-posed inverse problems

Each of the CoLT’s can be associated with a particular ill-posed inverse prob-
lem; the α, β and γ problem, respectively.

• The α-problem: given {X , r, Π, n} the objective is to select an n-type (one
or more) from Π. If Π contains more than one n-type, the problem is
under-determined, and in this sense ill-posed. ICoLT implies that (at least
for sufficiently large n) the α-problem has to be solved by selecting the
I-projection of r on Π, provided that Π is convex, closed. The method
associated with this selection scheme is known as Relative Entropy Maxi-
mization (REM/MaxEnt).

• The β-problem: given
{X , νn,N , π(q)

}
the objective is to select a source

(one or more) from N . LCoLT implies that for sufficiently large n the
β-problem has to be solved by selecting the L-projection of νn on Q. Note,
that the L-projection is the Maximum a-posteriori probability (MAP)
source, which is identical to the Maximum Non-parametric Likelihood
(MNPL) source, since asymptotically prior does not matter. Elementary
requirement of consistency implies that for finite n, MAPs have to be se-
lected.

• The γ-problem: given
{X , Π,N , n, π(q)

}
the objective is to select a pair

(one or more) νn ∈ Π, q ∈ N . JCoLT implies that for n → ∞ the
γ-problem has to be solved by selecting [p̂, q̂].

The α- and β-problem are, in a sense, opposite to each other. In the α-problem,
the source (data-sampling distribution) is known, and the objective is to select
type(s) from given set Π, which (supposedly) characterizes studied phenomenon.
On the contrary, the β-problem assumes a given type νn, and the objective is
to select a source from given set N , which might or might not contain the true
source. Note that LCoLT makes it necessary to formulate the β-problem in the
Bayesian context; i.e., a prior has to be put on the set of sources.

ICoLT provides probabilistic justification of application of REM for the
α-problem, as it also does for the Maximum Probability (MaxProb) method
[12] in the same context. LCoLT justifies application of MAP for the β-problem.
Note that asymptotically, MAP turns into MNPL, the same way as MaxProb
turns into REM.

The γ-problem merges the two problems together. It captures the situation
where a non-parametric Bayesian has a set of empirical measures (instead of just
one such a measure) and a set of sources, over which he puts the prior. JCoLT
implies that the objective of selecting a pair of type and source, should be for
n → ∞ attained by selecting the joint projection [p̂, q̂].
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4. Notes on literature

For historical developments on Sanov’s Theorem and ICoLT see [1]–[3], [8],
[9], [17]–[19], [21], [24]–[27], [31], among many others. For an extension of ST to
the continuous case cf. [17], [6], [18]. Extension of ST and ICoLT to the case of
feasible set admitting non-unique I-projection was studied in [16].

For surveys on Bayesian non-parametric consistency check [11], [29] among
others. See also [28], [20], [30].

An inverse of Sanov’s Theorem has been established by G a n e s h and
O ’C o n n e l l [10] for the case of sources with finite alphabet, by means of
formal large-deviations approach. Unaware of their work, the present author de-
veloped in [13] Sanov’s Theorem for n-sources, for both discrete and continuous
alphabet and applied it to conditioning by rare sources problem and criterion
choice problem. The present form of LST was established in [15], in a more gen-
eral setting of continuous sources. There, also an extension of LST to the case
of the set of sources admitting non-unique L-projection was presented.

For a discussion of a justification of REM via ICoLT see [4], [5].
Implications of CoLTs for empirical estimation (cf. [22], [23]) are discussed

in [14].
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