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ABSTRACT. In the one-sample case standard optimal designs retain their opti-
mality if a random intercept is present. In a multi-sample situation the variability

of the intercept may have substantial influence on the choice of the optimal design.

1. Introduction

Mixed models have attracted growing interest in the biosciences, when repli-
cated measurements are available from different individuals. While the corre-
sponding statistical analysis is well-developed, only few results are available on
optimal designs. For a recent survey we refer to E n t h o l z n e r et al. (2005).

In the present note we focus on the widely used assumption of a random
intercept, while the treatment effects are supposed to be fixed. In analysis of
variance settings this situation is properly described by random block effects.
For this random intercept setting there is a considerable number of different
attempts for deriving optimal designs. A t k i n s and C h e n g (1999) provide
optimal designs for polynomial regression, D e b u s h o and H a i n e s (2006)
derive optimal designs for linear regression under constraints on the replications
and F e d o r o v and H a c k l (1997, p. 75) present an equivalence theorem for
this situation (see also the references therein).

In Section 2 we introduce the general random intercept model. For the one-
sample situation it is shown in Section 3 that standard optimal designs from fixed
effects models retain their optimality also in the presence of random intercepts.
In Section 4 we consider a simple extension to the situation of the comparison of
two treatments, when measurements at baseline are available. Already there the
variability of the intercept has substantial influence on the choice of the optimal
design. In the final Section 5 some problems of exact designs are discussed.
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2. The random intercept model

By a linear model with random intercept we describe the situation that we
have n individuals, i = 1, . . . , n, with mi observations each and the individual
effects have only influence on the overall level of the response. Hence, the jth
observation Yij at individual i can be written as

Yij = ai + f (xij)� β + εij ,

where xij is the experimental setting, j = 1, . . . , mi, f = (f1, . . . , fp)� is a set of
(known) regression functions and β = (β1, . . . , βp)� is a p-dimensional vector of
parameters for the effects of the experimental settings. Here, f may be the iden-
tity for straight line regression, a set of dummy variables for analysis of variance
models, or it may be even of a more complicated structure (see Section 4).

The term ai denotes the individual random intercept with E(ai) = μ and
var(ai) = σ2

a. The random observational errors εij are assumed to be homoscedas-
tic, E(εij) = 0 , var(εij) = σ2, and all ai and εij are uncorrelated. Further
analysis will depend on the variance ratio d = σ2

a/σ2. We will focus on the pop-
ulation parameters θ = (μ, β�)� for the mean location and the effects of the
experimental settings. For simplicity we assume that the number of observations
per individual is constant, i.e., mi = m.

Denote by Yi = (Yi1, . . . , Yim)� the vector of observations for individual i.
The corresponding covariance matrix cov(Yi) = σ2V is completely symmetric,
V = Im+d1m 1�

m, where Im denotes the m×m identity matrix and 1m is a vector
of length m with all entries equal to one. The individual fixed effect design matrix
Xi = (1m |Fi) can be decomposed into the first column of ones corresponding to
the mean intercept μ and the effects design matrix Fi =

(
f (xi1) | . . . | f (xim)

)�
for the parameter vector β.

The individual information X�
i V−1Xi = X�

i Xi − d
1+mdX

�
i 1m 1�

mXi is pro-
portional to the inverse of the variance-covariance matrix cov(θ̂i) if Xi is of
full column rank and θ is estimated on an individual basis by the best linear
unbiased estimator θ̂i = (X�

i V−1 Xi)−1 X�
i V−1Yi = (X�

i Xi)−1X�
i Yi.

On the population basis the best linear unbiased estimator can be computed

as a matrix mean θ̂ =
(

n∑
i=1

X�
i V−1Xi

)−1 n∑
i=1

X�
i V−1Xiθ̂i of the individual θ̂i

if d is known. Then cov(θ̂) = σ2 M−1
d , where Md =

n∑
i=1

X�
i V−1 Xi is the infor-

mation matrix on population basis. The subscript d indicates the dependence

on the variance ratio d. As Md =
n∑

i=1

X�
i Xi − d

1+md

n∑
i=1

X�
i 1m 1�

m Xi, the in-

formation is strictly decreasing in the positive semidefinite sense if the variance
ratio increases, i.e., Md ≥ Md′ for d′ > d.
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Partitioning the information matrix according to μ and β yields

Md =
1

1 + md

⎛
⎜⎜⎝

nm
n∑

i=1
1�

mFi

n∑
i=1

F�
i 1m (1 + md)

n∑
i=1

F�
i Fi − d

n∑
i=1

F�
i 1m1�

mFi

⎞
⎟⎟⎠ .

If interest is in the fixed effects β only, then by the rules for inverting partitioned
matrices the corresponding partial information Mβ,d = cov(β̂)/σ2 equals

Mβ,d =
n∑

i=1

F�
i Fi − d

1 + md

n∑
i=1

F�
i 1m1�

mFi − 1
nm

1
1 + md

n∑
i=1

F�
i 1m

n∑
j=1

1�
mFj .

We also consider the limiting models for d = 0 and d → ∞, respectively:
For d = 0 we obtain the fixed effects model without individual intercepts

Yij = μ + f (xij)�β + εij .

Obviously, Md tends to M0 =
n∑

i=1

X�
i Xi for d → 0. Similarly, Mβ,d tends to

Mβ,0 =
n∑

i=1
F�

i Fi − 1
nm

n∑
i=1

F�
i 1m

n∑
j=1

1�
mFj .

For d → ∞ we introduce the fixed effects model with fixed individual effects

Yij = μi + f (xij)� β + εij .

Here, the full parameter vector (μ1, . . . , μn, β1, . . . , βp)� has dimension n+p and
the corresponding information matrix has the form

M∞ =

⎛
⎜⎜⎜⎜⎜⎝

m In

1�
m F1

...
1�

m Fn

F�
1 1m · · ·F�

n 1m

n∑
i=1

F�
i Fi

⎞
⎟⎟⎟⎟⎟⎠ .

For β the corresponding partial information matrix can be calculated by

Mβ,∞ =
n∑

i=1

F�
i Fi − 1

m

n∑
i=1

F�
i 1m 1�

m Fi .

Hence, we obtain the following result, which establishes the partial informa-
tion matrix Mβ,d as a convex combination of its limiting counterparts.

����� 1�
Mβ,d =

1
1 + md

Mβ,0 +
md

1 + md
Mβ,∞ .

Note that the partial information matrix Mβ,d tends to Mβ,∞ as d tends to ∞.
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3. Design issues

The quality of the estimators θ̂ and β̂ depends on the experimental settings
xij , i = 1, . . . , n , j = 1, . . . , m, through the information matrices Md and Mβ,d,
respectively. The aim in experimental design is to choose those settings from
a design region X in order to minimize the covariance cov(θ̂) or cov(β̂) or parts
of it, which is equivalent to maximize the corresponding information matrices Md

or Mβ,d, respectively. As those matrices are not completely ordered, a uniform
optimization is not possible, in general. Therefore, some real valued functionals
that lay emphasis on particular properties of the estimators will be optimized.
The most popular design criterion is the D-criterion, which aims at maximizing
the determinant of the information matrix Md. This is equivalent to minimizing
the volume of a confidence ellipsoid for θ under the assumption of normality.

Further design criteria include the A-criterion, which aims at minimizing the
trace of the standardized covariance matrix M−1

d . If interest is in the effects
β only, Dβ- and Aβ-optimality are defined in terms of the determinant and
the trace of the inverse M−1

β,d of the corresponding partial information matrix.
As it is readily seen, det (Md) = nm

1+md det (Mβ,d) holds by the formula for the
determinant of partitioned matrices. Hence, D- and Dβ- optimality coincide also
in random intercept models, a well-known fact in the fixed effects setting.

����� 2� A design (xij) is D-optimal if and only if it is Dβ-optimal.

Another class of criteria is based on the standardized variance function

vd(x) = var
(
μ̂ + f (x)�β̂

)
/σ2 =

(
1, f (x)�

)
M−1

d

(
1, f (x)�

)�
for the prediction of the mean response on the design region, x ∈ X . The inte-
grated mean squared error (IMSE) criterion, for example, aims at minimizing∫
X vd(x) dx, while the G-criterion aims at minimizing the maximal variance over

the design region maxx∈X vd(x). Note that for fixed effects models the D- and
G-optimality are equivalent in the approximate theory due to the celebrated
Kiefer-Wolfowitz equivalence theorem. However, this coincidence does not hold
in models with random effects in general, as will be seen later.

If we consider designs which are uniform across the individuals, i.e., for which
the experimental settings are the same for each individual, xij ≡ xj , then the
situation dramatically simplifies. In this case the individual design matrices
coincide, Fi = F1 and Xi = X1, respectively, and X1 has to be of full col-
umn rank to allow for estimability of θ. Moreover, θ̂ = 1

n

n∑
i=1

θ̂i reduces to the

average of the individually fitted values for the parameters.
The standardized covariance matrix M−1

d decomposes additively into the cor-
responding matrix M−1

0 for the fixed effects model without individual intercepts
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and the variability of the random intercept (see, e.g., E n t h o l z n e r et al.,
(2005)). Hence, for linear criteria like the A-, Aβ- and IMSE-criterion the op-
timal design in the fixed effects model without individual intercepts (d = 0)
remains optimal for all values of the variability d. For the reduced information
matrix we observe

Mβ,0 = n

(
F�

1 F1 − 1
m

F�
1 1m 1�

m F1

)
= Mβ,∞

and, consequently, by Lemma 1 Mβ,d = Mβ,0 is independent of d. Thus, the
D-optimal design for the fixed effects model without individual intercepts is D-
and Dβ-optimal for every d ≥ 0 in view of Lemma 2.

Moreover, for the variance function we obtain vd(x) = d
n + v0(x). As a conse-

quence, also the G-optimal design is independent of the value of d.

4. Treatment comparison with measurements at baseline

If different treatments are to be compared, out of which only one can be ad-
ministered to each individual, then it is evident that the experimental conditions
cannot be chosen uniformly across the individuals.

To illustrate the effect of this imbalance we consider a simplified model with
linear response in time (or dosage) for several mutually exclusive treatments,

Ykij = aki + βk tkij + εkij .

Here, Ykij is the jth observation at individual i in treatment group k, where
we have p treatments (k = 1, . . . , p) , nk different individuals in each group and
mki = m observations at each individual. The term aki denotes the baseline of
individual i in treatment group k, which are assumed to come from the same
population, E(aki) = μ , var (aki) = σ2

a. The corresponding experimental con-
ditions xkij = (k, tkij) now consist of a discrete component k for the treatment
and a continuous component t for time or dosage, thus, resulting in an analysis
of covariance model. We assume that time points t can be chosen from the unit
interval, 0 ≤ t ≤ 1, maybe after standardization. The effects parameter vector
β = (β1, . . . , βp)� is the vector of the slopes βk related to the k th treatment,
which we deliberately assume to be fixed. (Random slopes will cause significantly
more severe problems, which will be treated elsewhere.) If we set fk(k′, t) = t
for k = k′, and fk(k′, t) = 0 otherwise, then the present model fits into the
framework of Section 2.

For simplicity we assume that the number n of individuals is a multiple of
p such that equal numbers of individuals, nk = n/p, can be assigned to each
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treatment. Furthermore, we confine ourselves to the situation where for all indi-
viduals within each treatment group measurements are taken at the same time
points, tkij = tkj . Such designs can be shown to be optimal in a generalized
setup (S c h m e l t e r , (2006)). Symmetry considerations suggest that those time
points should be independent of the treatment, tkj = tj , and by majorization
arguments observations should be restricted to the extreme time points t = 0
(at baseline) and t = 1 (at maximal dosage or elapsed time), when we allow
for multiple observations at single time points. The corresponding designs are,
then, completely characterized by the numbers m(0) and m(1) = m − m(0) of
observations at t = 0 or 1, respectively. Thus, design optimization reduces to the
search for the optimal proportion w = m(0)

m of observations at baseline, t = 0.
As all these simplifications are only valid in a generalized setup, we also allow
for optimal weights w not being a multiple of 1/m. For practical applications
some rounding may be required, which will be discussed in the final Section 5.

For the comparison of p = 2 treatments optimal designs have been obtained
in the fixed effects model without individual intercepts, Ykij = μ+βk tj +εijk, by
S c h w a b e (1996, p. 109–110). Generalization of this result to p > 2 establishes
that w = 1

p+1 is D-optimal for d = 0. On the other hand side w = 1
2 is seen

to be Dβ-optimal in the fixed effects model with fixed individual intercepts,
Ykij = μki + βk tj + εijk. Consequently, it can be suspected that the D-optimal
proportion w varies continuously from 1

p+1 to 1
2 if the variance ratio d increases

from zero to infinity.
For the present model the information matrix is given by

Md =
m

1 + md

(
n n1(1 − w)1�

p

n1(1 − w)1p n1(1 − w)(1 + wmd)Ip

)
.

By the formula for the determinant of partitioned matrices we obtain det(Md) =
cw(1 −w)p (1 + wmd)p−1, where c > 0 is a generic constant. This is maximized
by the D-optimal proportion

w =
1
4

⎛
⎝1 − p + 1

pmd
+

√(
1 − p + 1

pmd

)2

+
8

pmd

⎞
⎠ ,

which is increasing in d (see Figure 1) and tends to 1
p+1 for d → 0. Due to

Lemma 2 this proportion is also Dβ-optimal for the treatment effects β.
For the other criteria we have to determine the inverse

M−1
d =

1
nm

(
md + 1

w − 1
w1�

p

− 1
w1p

p(1+md)
(1−w)(1+wmd)Ip + 1

w(1+wmd)1p1�
p

)
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Figure 1. Optimal proportions w at t = 0: D- (—), G- (- - -), Aβ -criterion
(· · · ), and for minimizing maxk vd(k, 1) (- · -) .

of the information matrix. Thus, we obtain for the variance function

vd(k, t) =
1

nm

(
md +

1
w

− 2
w

t +
(

1
w

+
p

1 − w
+

(p − 1)md

1 + wmd

)
t2
)

,

which is constant in k. As the variance function is a polynomial of degree two
in t with positive leading term, it attains its maximum at 0, where vd(k, 0) =
1

nm

(
md + 1

w

)
, or at 1, where

vd(k, 1) =
1

nm

(
md +

p

1 − w
+

(p − 1)md

1 + wmd

)
.

Before we determine the G-optimal proportion, first we consider the auxiliary
criterion of minimizing maxk vd(k, 1) in order to illustrate the structural depen-
dence on d. For the fixed effects model without individual intercepts (d = 0)
all observations will be taken at 1, i.e., w = 0. This remains optimal for small
d > 0. However, as d increases, some information at 0 may become valuable for
the prediction at 1. If md >

√
p/

√
p − 1, the variance vd(k, 1) is minimized for

w′ =
(√

p −
√

p − 1
)(√

p − 1 − 1
md

√
p

)
.

Now, for the G-criterion also vd(k, 0) has to be taken into account: vd(k, 0) is
monotonically decreasing in w and there is a unique point of intersection with
vd(k, 1) at

w′′ =
1
4

⎛
⎝
√(

p − 2 +
p + 1
md

)2
+

8
md

−
(

p − 2 +
p + 1
md

)⎞⎠ .

As vd(k, 1) is strictly convex in w, the G-optimal proportion is obtained as
w = max(w′, w′′). For p = 2 this optimal proportion is plotted in Figure 1
together with the D-optimal proportions. From this it becomes evident that
even for random intercept models the equivalence of D- and G-optimality is not
retained, which for the fixed effects model without individual intercept holds due
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to the Kiefer-Wolfowitz equivalence theorem. The non-monotonic dependence of
the G-optimal proportion on the variability parameter d has to be highlighted.
For p = 2 we have plotted the D- and G-efficiencies of the limiting optimal
designs in dependence on the true variance ratio d in Figure 2. Apparently, the
proportion w0 = 1

p+1 , which is optimal for the fixed effects models without
individual intercepts (d = 0), performs well over the whole region for d with
a minimal D-efficiency of 0.92 for d → ∞ and a minimal G-efficiency of 0.96
for md ≈ 1.10. The D-optimal limiting proportion wD,∞ = 0.5 shows a minimal
D-efficiency of 0.94 at d = 0, whereas the G-optimal limiting proportion wG,∞ =√

2 − 1 only results in a minimal G-efficiency of 0.87.

Figure 2. D- (left) and G-efficiencies (right): w0 (—), w·,∞ (- - -) .

Similar to the G-criterion there is also a structural change if we are interested
in contrasts of the treatment effects, e. g. in β1 − β2 for p = 2. More generally,
if we are interested in a set of p− 1 orthogonal contrasts in β1, . . . , βp, then the
corresponding covariance matrix is proportional to p(1+md)

(1−w) (1+wmd) Ip−1, and the
leading factor is minimized by the proportion w = 1

2
− 1

2md
, if md > 1, and

w = 0 otherwise. Here, this also means, that, although contrasts are estimated
efficiently at the highest level t = 1 in the fixed effects model without individual
intercepts, additional information may come in from t = 0 if d becomes large.

Additionally, the Aβ-optimal proportions, which minimize belongs to formula

(M−1
β,d) =

p

nm

(
1
w

+
p

1 − w
+

(p − 1)md

1 + wmd

)
,

are depicted in Figure 1. Even for this linear criterion there is a substantial
dependence of the optimal design on d.

5. Discussion

In random intercept models optimal designs are not affected if all individu-
als can be treated under the same regime. In more complicated settings, where
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different treatments are required, the optimal design may well depend on the
intra-individual correlation, in particular, if the number of replications is large.
However, the efficiencies of the locally optimal designs stay remarkably high, if
the variability is misspecified. For a fixed number m of replication an optimal
design can be realized by rounding the optimal proportion to one of the adja-
cent multiples of 1/m. Further improvements may be achieved if not all of the
individuals within one treatment group are measured at the same time points,
in particular, if the number of replications is small.
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