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CHANGE DETECTION IN THE SLOPE

PARAMETER OF A LINEAR REGRESSION MODEL

Alena Koubková

ABSTRACT. In sequentially coming data following a linear regression model,
we propose a test procedure based on weighted sum of L1-residuals, to detect
a change in the regression parameter, when training data with no change are

available. The asymptotic properties are derived and checked in simulations.

1. Introduction

A sequential change-point problem can be found in many areas of real life, e.g.,
econometrics, finance, astrology, medicine etc. It is defined as follows. We observe
data arriving one by one, and after each observation, we decide, whether a change
occurs or not. We assume that training data with no change are available and
that we should obey restrictions on probabilities of type I and type II errors.

Such formulated problem was first treated by C h u et al. [1]. The authors pro-
posed two test procedures. One based on cumulative sums of recursive residuals,
second based on fluctuation monitoring. Their results were generalized and new
procedures were suggested in number of following papers. We recall H o r v á t h
et al. [3], where the authors worked with CUSUM procedures based on ordinary
and recursive L2-residuals.

Here we combine the ideas of K o u b k o v á [5] and H u š k o v á and K o u b -
k o v á [4] and propose a testing procedure for detection of a change in linear
regression model, based on weighted sum of L1-residuals.

In Section 2 we introduce the model and the main theoretical results. Section
3 summarizes a simulation study and in Section 4, there we sketch the proofs of
the theorems.
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2. Assumptions and main results

Assume sequentially coming data following a linear regression model

Yi = XT
i βi + ei, 1 ≤ i < ∞, (1)

where Yi are the observed data, XT
i are p-dimensional vectors of regressors,

which have the form XT
i = (1, Xi2, . . . , Xip), βi ∈ R

p are unknown vectors of
regression parameters and ei are random errors.

About the sequences {XT
i } and {ei}, 1 ≤ i < ∞ we assume:

(i) {ei, 1 ≤ i < ∞} are independent identically distributed (i.i.d.) random
variables with continuous distribution function F symmetric about zero,
such that its second derivative in the neighborhood of zero is continuous
and F ′(0) = f(0) > 0,

(ii) there exist a positive definite matrix C and a constant 0 < τ < 1/2 such
that ∣∣∣∣∣ 1n

n∑
i=1

XiXT
i − C

∣∣∣∣∣ = O(n−τ ), a.s.,

where |.| denotes the maximum norm of matrices,
(iii) {Xi, 1 ≤ i < ∞} create a strictly stationary sequence and there exists

ζ > 0 such that

lim sup
n→∞

1
n

n∑
i=1

||Xi||2+ζ < ∞ a.s.,

where ||.|| denotes the Euclidean norm, i.e., ||Xi|| = (XT
i Xi)1/2,

(iv) the sequences {ei, 1 ≤ i < ∞} and {XT
i , 1 ≤ i < ∞} are independent.

The availability of training data of size m without any change, is represented by
a so called noncontamination assumption

(v) β1 = . . . = βm.

Denote the training data by Y (m) and the regressors available at time i by
X(i) = (X1, . . . ,Xi). At each time i we assume Y(m) and X(i) as fixed.

The given problem is treated via testing the null hypothesis of no change

H0 : βi = β0, 1 ≤ i < ∞
against the alternative that a change occurs HA: there exists k∗ > 1 such that

βi = β0, 1 ≤ i < m + k∗, βi = β0 + δm, m + k∗ ≤ i < ∞, ||δm|| �= 0.

The parameters β0, δm and k∗ are unknown.
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According to H o r v á t h et al. [3], we denote a suitable test statistic by
Q(m, k) and an appropriate boundary function by g(m, k). We reject the null
hypothesis at a so called stopping time

τ(m) = inf
{

k ≥ 1 :
|Q(m, k)|
g(m, k)

≥ c(α)
}

with the understanding that inf{∅} = ∞, and such that the critical values c(α)
satisfy the later assumptions (2) and (3).

Typically we have to compromise two requests
(a) if a change occurs, we should detect it as soon as possible,
(b) if no change occurs, we should continue the observation as long as possible.
We express these requests via restrictions on probabilities on type I and type II

errors. We bound the probability of false alarm with α ∈ (0, 1]

lim
m→∞

P
(
τ(m) < ∞|H0

) ≤ α, (2)

and we require the power of the testing procedure to tend to 1

lim
m→∞

P
(
τ(m) < ∞|HA

)
= 1. (3)

The task now is to determine all the particular terms necessary to state the
decision rule, i.e., Q(m, k) = Q(Y1, . . . , Ym+k), g(m, k) and c(α).

In K o u b k o v á [5], there is proposed a CUSUM type test statistic based on
L1-residuals, which is insensitive to changes with δT

mc1 = 0, where c1 is the first
column of the matrix C. Motivated by the idea of H u š k o v á and K o u b k o v á
[4] we propose a test statistic based on weighted L1-residuals, which is able to
detect all changes in β, i.e.,

Q̃(m, k) =

(
m+k∑

i=m+1

Xiẽi

)T

C−1
m

(
m+k∑

i=m+1

Xiẽi

)
, k = 1, 2, . . . (4)

Here Cm =
m∑

j=1

XjXT
j and ẽi are the L1-residuals: ẽi = sign(Yi − XT

i β̃m)

with β̃m = arg infb
m∑

i=1
|Yi − XT

i b|. Note that Var ẽi = 1.

We adopt the boundary function from H o r v á t h et al. [3] and H u š k o v á
and K o u b k o v á [4], i.e., we use

g2(m, k, γ) =

(
√

m

(
1 +

k

m

)(
k

m + k

)γ)2
, γ ∈ [0, min{τ, 1/2})

This function was shown to be appropriate for CUSUM’s of residuals. The
tuning constant γ modifies the ability of the testing procedure to detect better
early (γ close to 1/2) or late (γ close to 0) changes.
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In the following two theorems the limit behaviour of Q̃(m, k) under the null
as well as under the alternative hypotheses is described.

������� 1� Let the model (1) and the assumptions (i)–(v) be satisfied. Let
γ ∈ [0, min{τ, 1/2}) and k = O(mq), where q < 1 + ζ/2. Then, under the null
hypothesis H0

lim
m→∞ P

(
sup

1≤k<m1+ζ/2

Q̃(m, k)
g2(m, k, γ)

≤ c

)
= P

⎛⎜⎜⎝ sup
0≤t≤1

p∑
i=1

W 2
i (t)

t2γ
≤ c

⎞⎟⎟⎠ ,

holds for all c > 0 and where
{
Wi(t), t ∈< 0, 1)

}
, i = 1, . . . , p are independent

Wiener processes.

������� 2� Let the model (1) and the assumptions (i)–(v) be satisfied. Let γ ∈[
0, min{τ, 1/2}) and k = O(mq), where q < 1 + ζ/2. Let δm is a p-dimensional

nonzero vector such that

lim
m→∞

δT
mδm → 0, and lim

m→∞
mδT

mδm → ∞
Then, under the alternative hypothesis HA

sup
1≤k<m1+ζ/2

Q̃(m, k)
g2(m, k, γ)

P→ ∞, as m → ∞.

Theorem 1 describes the limit distribution of the test statistic under the null
hypothesis and provides the possibility to determine the critical values. Since
the exact form of this distribution is known only for γ = 0, the critical values
have to be obtained via simulations (for p = 2 they are published in H u š k o v á
and K o u b k o v á [4]). The range of the tuning constant γ ∈ [0, min{τ, 1/2})
ensures the almost sure finiteness of the distribution.

3. Simulations

To illustrate the behaviour of the proposed testing procedure, we conduct
a simulation study, in which we compare this procedure with three others:

Q1(m, k): =
(

m+k∑
i=m+1

Xiẽi

)T

C−1
m

(
m+k∑

i=m+1

Xiẽi

)
. . . here,

Q2(m, k): =
m+k∑

i=m+1

ẽi . . . K o u b k o v á [5],
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Q3(m, k): = σ̂−2
m

(
m+k∑

i=m+1

Xiêi

)T

C−1
m

(
m+k∑

i=m+1

Xiêi

)
. . . H u š k o v á and

K o u b k o v á [4],

Q4(m, k): = σ̂−2
m

m+k∑
i=m+1

êi . . . H o r v á t h et al. [3],

where êi = Yi − XT
i β̂m, β̂m =

( m∑
j=1

XjX
T
j

)−1 m∑
j=1

XjYj and σ̂2
m = (m − p)−1

m∑
j=1

(Yj

− XT
j β̂m).

To compare different situations we consider several values of key parameters:

• length of the training period m = 50, 100, 500,
• time of change k∗ = 50, 100, 500,
• tuning constant γ = 0, 0.25, 0.49,
• error distribution Laplace, t4, N(0, 1)
• distribution of Xi: AR(1), i.i.d. N(0, 1), U [−√

3,
√

3]
• the size and shape of the alternative - namely the null hypothesis, change

in the intercept and change in the slope, such that δT
mc1 �= 0 and δT

mc1 = 0.

The simulation procedure proceeds as follows. We generate a sequence of
7000 observations Yi following the linear regression model (1) under various hy-
potheses, evaluate the test statistics Qj(m, k), j = 1, . . . , 4, and determine the
corresponding stopping times τ1(m), . . . , τ4(m). Selected results of 3000 repli-
cations (obtained for Xi ∼ i.i.d. N(0, 1), since there was almost no difference
between all the distributions considered) are summarized in Table 1 and Fig-
ure 1. Here we compare only normal and Laplace error distribution, since the
conclusions for the t-distributed errors are not so obvious.

In Table 1, there are the extremes and quartiles of the observed stopping
times. The results provide comparison of the four testing procedures with respect
to three kinds of alternatives (change in intercept, change only in slope such
that δT

mc1 �= 0 and change only in slope such that δT
mc1 = 0) and two error

distributions. We consider moderate change (k .= m) with γ = 0.25.
The comparison of the tuning constant for various times of change are shown

in Figure 1. The figure shows how the power functions of the statistics Q1(m, k)
(bold lines) and Q2(m, k) (normal lines) increase in time, after change: δm =
(0, 1)T , δT

mc1 �= 0 occurs.
Based on the results, we conclude that the statistics based on L2-residuals

work nicely for normally distributed data, whereas the statistics based on
L1-residuals we recommend for Laplace-like distributed data. Changes in the in-
tercept are detected faster with statistics based on simple residuals and changes
only in the slope with those based on weighted residuals. Changes with the prop-
erty δT

mc1 = 0 are detected just with Q1(m, k) and Q3(m, k). The early changes
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Table 1. Summaries of stopping times obtained by statistics Qj(m,k), j = 1, 2, 3, 4.

Laplace errors N(0, 1) errors

change statistic min 1stQ med 3thQ max min 1stQ med 3thQ max

δ = (1, 0) Q1(m, k) 17 180 215 258 648 18 172 203 241 588

Q2(m, k) 24 172 201 238 536 24 164 191 225 678

Q3(m, k) 4 199 244 307.3 2340 40 177 203 239 605

Q4(m, k) 26 181 219 268 1084 59 164 185 214 465

δ = (0, 1) Q1(m, k) 23 163 183 205 311 24 158 175 194 279

cT
1 δ �= 0 Q2(m, k) 21 154 172 193 315 27 149 164 186 288

Q3(m, k) 24 132 144 157 244 50 127 134 143 188

Q4(m, k) 64 132 143 156 244 105 126 134 142 197

δ = (0, 1) Q1(m, k) 25 177 246 358 924 14 170 222 316 3331

cT
1 δ = 0 Q2(m, k) 21 7000 7000 7000 7000 24 7000 7000 7000 7000

Q3(m, k) 20 188 242 325.3 7000 72 173 204 244 931

Q4(m, k) 15 7000 7000 7000 7000 104 7000 7000 7000 7000

are detected faster with γ = 0.49, for moderate changes γ = 0.25 is suitable and
for late changes γ = 0 works best.
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0 1000 3000 5000
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Figure 1. Power functions of test statistics Q1(m,k) and Q2(m,k), with solid line
for γ = 0, dash line for γ = 0.25 and dotted line for γ = 0.49.

4. Proofs of Theorems 1 and 2

In the proofs we use the results of H o r v á t h et al. [3] (in the underlain
calculations), K o u b k o v á [5] and mainly H u š k o v á and K o u b k o v á [4].

P r o o f o f T h e o r e m 1. The proof consists of two parts. First we show that
the test statistic can be expressed as a sum of i.i.d. random variables, and then,
by an invariance principle, we represent this sum by a sum of squared indepen-
dent Wiener processes. As in H u š k o v á and K o u b k o v á [4], we start with
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the key relation of the proof:

sup
1≤k<∞

1
g(m, k, γ)

∣∣∣∣m1/2C−1/2
m

m+k∑
i=m+1

Xi sign
(
Yi −XT

i β̃m

)
− m1/2C−1/2

m

m+k∑
i=m+1

Xi sign(ei) +
k

m
C−1/2

m

m∑
j=1

Xj sign(ej)
∣∣∣∣ = op(1).

(5)

To show this, we define random variables Zi = sign(Yi −XT
i β̃m)− sign(ei), i =

m + 1, m + 2, . . . , similarly to K o u b k o v á [5]. Note that given the historical
data Y(m) = (Y1, . . . , Ym)T and the available regressors X(i) = (X1, . . . ,Xi)T ,
the random variables Zi are conditionally independent and for their first two
conditional moments we get

E

(
m+k∑

i=m+1

XiZi|Y(m),X(i)

)
= − k

m

m∑
j=1

Xj sign(ej)(1 + o(1)), a.s.

Var

(
C−1/2

m

m+k∑
i=m+1

XiZi|Y(m),X(i)

)
=O

(
(m + k)1+1/(2+δ)m−3/2 ln m

)
, a.s.,

uniformly in k = O(mq), where q < 1+ζ/2 and Cm =
m∑

i=1

XiXT
i . Now we follow

the steps in K o u b k o v á [5].
The interior of the absolute value in (5) can be written as∣∣∣∣∣m1/2C−1/2

m

m+k∑
i=m+1

XiZi − E

(
m1/2C−1/2

m

m+k∑
i=m+1

XiZi|Y(m),X(i)

)∣∣∣∣∣ (1 + o(1)
)
.

The Kolmogorov-Hájek-Rényi-Chow inequality (see, e.g., S e n [6]) gives

P

⎛⎜⎜⎜⎝ sup
1≤k<m1+ζ/2

m1/2C
−1/2
m

∣∣∣ m+k∑
i=m+1

(
XiZi − E

(
XiZi|Y(m),X(i)

))∣∣∣
g(m, k, γ)

> B|Y(m),X(i)

⎞⎟⎟⎟⎠
= O

(
B−2m−1/2+1/(2+ζ) ln m

)
.

asymptotically as m → ∞, for arbitrary B > 0. So the relation (5) is proved.
By Lemma 3.1.7 in C s ö r g ő a n d H o r v á t h [2] we have that for each

m, there exist two independent p-dimensional Wiener processes
{
W1,m(t), t ∈
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[0,∞)
}

and
{
W2,m(t), t ∈ [0,∞)

}
with independent components such that

sup
1≤k<∞

1
g(m, k, γ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣m1/2C−1/2

m

(
m+k∑

i=m+1

Xi sign(ei) − k

m

m∑
j=1

Xj sign(ej)

)∣∣∣∣∣
∣∣∣∣∣

−
∣∣∣∣∣∣∣∣W1,m(k) − k

m
W2,m(m)

∣∣∣∣∣∣∣∣
∣∣∣∣∣ = o(1),

as m → ∞. Now it remains to prove that

sup
1≤k<∞

||W1,m(k) − k
mW2,m(m)||2

g2(m, k, γ)
D→ sup

0<t≤1

p∑
i=1

W 2
i (t)

t2γ
,

where
{
Wi(t), t ∈ (0,∞)

}
, i = 1, . . . , p are independent Wiener processes. This

is done in H u š k o v á a n d K o u b k o v á [4]. �

P r o o f o f T h e o r e m 2. Until the time of change, the behaviour of the cu-
mulative sum of weighted residuals follows Theorem 1. Hence it is enough to
show that there exists a sequence km, such that km − k∗

m → ∞ as m → ∞, and

Q
(2)
3 (m, km) = m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
⎛⎝ m+km∑

i=m+k∗
m

Xisign
(
ei − XT

i

(
β̃m − β0 − δm

))⎞⎠T

C−1/2
m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

tends to infinity faster than g2(m, km, γ). We can, e.g., choose km = mρ + k∗
m.

As in K o u b k o v á [5], we approximate the statistic Q
(2)
3 (m, km) by its con-

ditional expectation given Y(m) and X(i). For each ε1, ε2 > 0 we define a set
Bm(ε1, ε2), such that

Bm(ε1, ε2) =
{

max
1≤i≤mρ

∣∣∣XT
i

(
β̃m − β0

)∣∣∣ < ε1m
−q/2, max

1≤i≤mρ

∣∣XT
i δm

∣∣ < ε2

}
.

It can be shown that P
(
Bc

m(ε1, ε2)
) → 0, as m → ∞, for each ε1, ε2 > 0.

We choose ε1m
−q/2 + ε2 < D, where D > 0 encloses the neighborhood of zero,

where we can apply Taylor expansion of F .
On the set Bm(ε1, ε2) we obtain, by the assumptions (i) and (iii), as m → ∞

E
(
Q

(2)
3 (m, km)|Y(m),X(i)

)
= (km−k∗

m)2δT
mCT δm +O

(
(km−k∗

m)2m−τ ||δm||
)
.

Note that Var
(
Q

(2)
3 (m, km)|Y(m),X(i)

)
= G1(km −k∗)2, where G1 > 0 is a con-

stant. Since ẽi are conditionally i.i.d., we can apply the Chebyshev inequality,
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which enables the desired representation. Therefore, we have, as m → ∞∣∣∣Q(2)
3 (m, km)

∣∣∣
g2(m, km, γ)

≥ G2mδT
mCδm

(
1 + o(1)

)
with some positive constant G2, which finishes the proof. �
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