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ON A CONSISTENT RANK ESTIMATE

IN A LINEAR STRUCTURAL MODEL

Silvelyn Zwanzig

ABSTRACT. The structural linear model is considered that is an errors-in-
-variables model where the unobserved variables are i.i.d. In this model we can find
linear transformations depending on the parameter, such that the transformed ob-
servations using the true parameter are uncorrelated. Then a parameter estimator
is defined as a zero point of a consistent correlation estimator. A rank estimation

is proposed as a zero point of Kendall’s correlation measure and its consistency
is shown. While the Pearson estimate of the covariance delivers the total least
squares estimate.

1. Introduction

Rank methods are mostly used for constructing tests. They have the ad-
vantages that the null distribution of rank test statistics is independent of the
underlying distribution. Rank estimation are unfortunately not applied in the
same range, even though their theoretical properties are well known, see [5]–[7]
and [9].

Furthermore the properties of rank methods in measurement errors models
are now of interest, see [8]. In [12], where S e n has introduced the Theil–Sen
estimate, he also discussed the robust behavior of his estimate under the spe-
cial errors-in-variables set up, when the errors of variables are smaller than the
double distances between two neighbored unobserved variables. In usual errors-
in-variables models this restriction is not fulfilled. In [13] S e n and S a l e h have
shown that the Theil–Sen estimator has the same bias as the naive least squares
estimator in errors-in-variables models.

In Subsection 2.1 we remind the argumentation of S e n in [12]. His main idea
is that Kendall’s tau between the residuals and the x-variables should be zero

c© 2012 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 62J05; Secondary 62F03, 62F10,
62F30.
Keywords: rank estimate, structural linear model, Kendall’s tau, total least squares, Theil–

–Sen estimate.

191



SILVELYN ZWANZIG

for an good estimate. In Subsection 2.2 we generalize this approach to struc-
tural errors-in-variables models. In an errors-in-variable set up the observable
x-variables and the naive residuals given the true parameter are not uncorre-
lated. We use an idea of T h a n P e, [14] and consider instead of the observable
x-variables a statistic which is orthogonal to the naive residuals. In Subsec-
tion 3.1 the rank estimate is introduced as the parameter value, where Kendall’s
tau between these statistics is zero. The consistency of the related rank estimate
is shown. In Subsection 3.2 it is proved that the estimate based on Pearson co-
variance coincides with the total least squares estimate. These equivalence gives
a further justification of the chosen approach, because under normal distribution
the least squares estimator is the maximum likelihood estimate in the regression
model and the total least squares estimate is the maximum likelihood estimate
in the related errors-in-variables model. In Section 4 a small simulation is car-
ried out as an evidence that the calculation of rank estimates is not any more
problematic. The longer and technical proofs are given in the Appendix.

2. Models

In order to explain the main principle we consider first a multiple regression
model with random design points and no errors in variables.

2.1. Multiple regression

Consider random vectors zTi =
(
xT
i , yi

)
, i = 1, . . . , n, xi ∈ R

p, yi ∈ R fulfilling

yi = βT
0 xi + εi,

where xi, εi are i.i.d. with Eεi = 0, Eεixi = 0p, Var (εi) = σ2 > 0 and with
a positive definite matrix Cov(xi) = Σx. Thus zTi =

(
xT
i , yi

)
are i.i.d. copies of

zT =
(
xT, y

)
with expectation zero and covariance matrix

Covβ0
(z) =

(
Σx Σxβ0

βT
0 Σx βT

0 Σxβ0 + σ2

)
.

The parameter of interest is β0 ∈ R
p. For an arbitrary parameter β ∈ R

p intro-
duce z (β) = y − βTx, then

Covβ0

(
x, z(β)

)
= Cov

(
x, ε+ (β0 − β)Tx

)
= Σx(β0 − β).

Hence Covβ0

(
x, z(β)

)
is zero if and only if β = β0. Consider Kendall’s tau as

estimate of dependence between zi (β) = yi−βTxi and xi = (x(k)i), k = 1, . . . , p

τ̃k (β) =
4

n(n− 1)

∑

i<j

I
((
zi (β)− zj (β)

) (
x(k)i − x(k)j

)
< 0
)
− 1, (1)
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where I
(
(zi(β)− zj(β))(x(k)i− x(k)j)< 0

)
is 1 for

(
zi(β)−zj(β)

)
(x(k)i−x(k)j)<0

and zero otherwise. In [12] the Theil-Sen estimate is introduced as the value of β
where Kendall’s tau is zero. Note, in [12] p = 1.

Using the Pearson’s sample covariance we obtain the least squares estimate
because

β̂lse :
1

n

n∑

i=1

(
yi − βTxi

)
xi = 0, β̂lse =

(
1

n

n∑

i=1

xix
T
i

)−1
1

n

n∑

i=1

xT
i yi. (2)

2.2. Structural model

Consider now the linear model with errors in variables. The independent

identically distributed random vectors zTi =
(
xT
i , yi

)T
, i = 1, . . . , n, xi ∈ R

p,
yi ∈ R follow a linear errors-in-variables model

yi = βT
0 ξi + εi, (3)

xi = ξi + δi, (4)

where ξi are i.i.d. random p-dimensional vectors with expectation zero and posi-
tive definite covariance matrix Σξ. The errors εi in (3)are i.i.d. with expectation
zero and variance σ2, the errors δi in (4) are i.i.d. with expectation zero and
covariance matrix σ2Ip, where Ip is the identity matrix of order p. Furthermore
the errors εi, δi are uncorrelated. Summarizing the assumptions above we have

that zTi =
(
xT
i , yi

)T
are i.i.d. copies of zT = (xT, y) with ǫT = (δT, ε) and

z = Lβ0
ξ + ǫ, and Lβ =

(
Ip
βT

)
. (5)

The (p+1)× 1 random vector z has expectation zero and the covariance matrix

Σ (β0) = Lβ0
ΣξL

T
β0

+ σ2Ip+1 (6)

=

(
Σξ + σ2Ip Σξβ0
βT
0 Σξ βT

0 Σξβ0 + σ2

)
. (7)

The parameter of interest is β0 ∈ R
p. Define

Mzz =
1

n

n∑

i=1

ziz
T
i =

(
Mxx Mxy

Myx Myy

)
,

with Mxx=
1
n

∑n
i=1 xix

T
i ,Mxy=

1
n

∑n
i=1 xiyi,Myx= MT

xy and Myy = 1
n

∑n
i=1 y

2
i

and λ1 = λmin(Mzz). We will need the the following assumptions.
A1

Mzz =
1

n

n∑

i=1

ziz
T
i is positive definite. (8)

A2

λ1 < λmin(Mxx). (9)
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These assumptions are not very restrictive. The matrix Mzz converges in prob-
ability to Σ(β0) with λminΣ(β0) = σ2. The matrix Mxx converges in probability
to Σξ + σ2Ip with λmin(Σξ + σ2Ip) = λmin(Σξ) + σ2.

In difference to the regression model the z(β0) = y− βT
0 x and the observable

variables x are not uncorrelated because of

Covβ0

(
x, z(β)

)
= σ2Ip +Σξ (β0 − β) .

In model (5) we apply instead of x a different statistic z1 (β) which is orthog-
onal to z(β). For arbitrary β ∈ R

p we define the transformations

z1 (β) = x+ βy and z2 (β) = y − βTx. (10)

For all β ∈ R
p it holds

L⊥
β =

(
−β
1

)
and LT

βL
⊥
β = 0p (11)

and z1 (β) = LT
β z and z2 (β) =

(
L⊥
β

)T
z. Then we have the following statements.

Theorem 1. Under (7) and (10) it holds

Covβ0

(
z1 (β) , z2 (β)

)
=
(
Ip + ββT

0

)
Σξ (β0 − β) . (12)

P r o o f. We have

Covβ0

(
z1 (β) , z2 (β)

)
= Covβ0

(
LT
β z, z

TL⊥
β

)
= LT

βΣ (β0)L
⊥
β .

Using (6) and (11) we get

LT
βΣ (β0)L

⊥
β = LT

βLβ0
ΣξL

T
β0
L⊥
β + σ2LT

βL
⊥
β = LT

βLβ0
ΣξL

T
β0
L⊥
β .

Further it holds LT
βLβ0

= Ip + ββT
0 and LT

β0
L⊥
β = β0 − β. �

Theorem 2. Under (7) and (10) it holds

Covβ0

(
z1 (β) , z2 (β)

)
= 0p ⇔ β = β0 or βTβ0 = −1.

P r o o f. The condition Covβ0

(
z1 (β) , z2 (β)

)
= 0 means

(
Ip + ββT

0

)
Σξ (β0 − β) = 0p. (13)

The p eigenvalues of
(
Ip+ ββT

0

)
are 1, . . . , 1, 1+βTβ0. For β

Tβ0 6= −1 all eigen-

values are not zero, thus (13) has the unique solution β = β0. Under β
Tβ0 = −1

the matrix Ip+ββT
0 has one eigenvalue equals zero and the corresponding eigen-

vector is proportional to β. Then βa =
(
aΣ−1

ξ + Ip
)−1

β0, where a is given such

that βT
a β0 = −1, is the other unique solution of (13). �
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Geometrically, the condition βTβ0 = −1 means that β and β0 are oppositely
oriented. We assume that we can exclude the case βTβ0 = −1 by additional
information. For the consistency of the rank estimate we require the stronger
condition (15), see the following Lemma 3. We consider the correlations

ρ(k)β0
(β) = Corβ0

(
z1(k)(β), z2(β)

)
, k = 1, . . . , p (14)

between z1(k) and z2, where z1(k) = eTk z1 is the k′th component of z1. ek is the
p × 1 vector, whose components are zero except the k′th component which is
equal to 1.

Lemma 3. Assume (7), (10) and

βTβ0 ≥ −
1

2
+ d, for some d > 0 (15)

then it holds
p∑

k=1

ρ(k)β0
(β)2 ≥

cd ‖β0 − β‖2 + ‖β‖2
(
(β0 − β)TΣξβ0

)2

λmaxΣ(β0)2(1 + ‖β‖2)2

with cd = min(1, 2d)λmin (Σξ)
2
.

The proof of this lemma is technical and given in the Appendix.

3. Estimators

Using the statement of Theorem 1 we define estimators, which are based
on a uniformly consistent estimate of the covariance between z1(β) and z2(β)
or alternatively which are based on a monotone function of the correlations
ρ(k)β0

(β), k = 1, . . . , p (Lemma 3).

3.1. Rank estimate

We introduce Kendall’s tau τ̂k (β) as an estimation of the dependence between
the z1(k)i = eTk z1i and z2i, i = 1, . . . , n,

τ̂k (β) =
4

n(n− 1)

∑

i<j

I
((
z1(k)i (β)− z1(k)j (β)

)(
z2i (β)− z2j (β)

)
< 0
)
− 1.

(16)

More precisely, Kendall’s tau τ̂k (β) is a consistent estimate of

τk (β) = Pβ0

((
z1(k)1 (β)− z1(k)2 (β)

)(
z21 (β)− z22 (β)

)
> 0
)
− 1.

Lemma 4. Under (7) and (10) it holds

τ̂k (β) →
Pβ0 τk (β) uniformly in β and k = 1, . . . , p.
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P r o o f. The statistic τ̂ (β) + 1 is a U statistic with kernel

h

((
x1

y1

)
,

(
x2

y2

))
= 2I

(
(x1 − x2) (y1 − y2) > 0

)
.

Thus τ̂k (β) + 1 converges in probability Pβ0
to

θk (β) = 2Pβ0

((
z1(k)1(β)− z1(k)2(β)

)(
z21(β)− z22(β)

)
> 0
)
,

compare [16, Chapter 12, Example 12.5]. The proof of the uniform convergence
follows the line of Step 2 in the proof in [1, p. 311]. �

Under normal distribution Greiner’s relation τk (β) =
2
π
arcsin

(
ρ(k)β0

(β)
)
is

valid, see for instance [4, p. 208]. These relation holds also for elliptical distri-
butions.

Definition 1. A p dimensional random vector X is called elliptical distributed
with the parameters, µ,Σ, φ, where µ ∈ R

p and Σ is a p × p nonnegative sym-
metric matrix, φ is a function from [0,∞) to R if and only if the character-
istic function ϕX−µ of X − µ is of the form ϕX−µ (t) = φ

(
tTΣt

)
. We write

X ∼ Ep(µ,Σ, φ).

If X ∼ Ep(µ,Σ, φ), then AX ∼ Ep

(
Aµ,AΣAT, φ

)
. Furthermore for absolute

continuous r.v. (X1, X2) ∼ E2(µ,Σ, φ) Kendall’s population τ between (X1, X2)
fulfills Greiner’s relation τ = 2

π
arcsin

(
Cor(X1, X2)

)
, compare [2, Theorem 3.1].

Further X ∼ Ep(µ,Σ, φ) and the Cov(X) exists, then Cov(X) = 2φ′(0)Σ.
Introduce the distribution assumption.

E The random vector z is absolutely continuous and

z ∼ Ep+1

(
0, aΣ(β0), φ

)
, a > 0,

such that

Cov(z) = Σ(β0), given in (7). (17)

Definition 2. The Kendall’s rank estimator β̂rank is a solution of

τ̂k
(
β̂rank

)
= 0, k = 1, . . . , p and β̂T

rankβ0 6= −1.

Under additional assumptions we can prove the consistency of this rank esti-
mator. The proof is technical and given in the Appendix.

Theorem 5. Assume E and that one of the following conditions is fulfilled.

(i) There exist constants K < ∞ and d > 0 such that

β̂rank ∈

{
β : ‖β‖

2
≤ K, βTβ0 ≥ −

1

2
+ d

}
. (18)
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(ii) There exist constants C = C (Σξ, β0) > 0 and d > 0 such that

β̂rank ∈

{
β :
(
βTΣξβ0

)2
≥ C (Σξ , β0) ‖β‖

2
, βTβ0 ≥ −

1

2
+ d

}
. (19)

Then it holds β̂rank →Pβ0 β0.

Remark 1. The condition β̂T
rankβ0 ≥ −1

2 + d comes from Lemma 3. The main
reason is that we have to exclude the second solution of (13), compare Theorem 2.

The condition
(
βTΣξβ0

)2
≥ C (Σξ, β0) ‖β‖

2
is fulfilled for p = 1 and β0 6= 0.

3.2. Total least squares estimate

In the structural model we can show a relation analogously to (2). The total
least squares estimator is defined by

β̂tls = argmin
β

1

n

n∑

i=1

min
ξ

‖zi − Lβξ‖
2
. (20)

In [3, Chapter 2] it is derived that β̂tls = (Mxx − λ1Ip)
−1

Mxy.

Theorem 6. Under the conditions A1 and A2 the estimate β̂pear defined by

1

n

n∑

i=1

z1i
(
β̂pear

)
z2i
(
β̂pear

)
= 0p and β̂T

pearMxy > 0

is unique and β̂pear =
(
Mxx − λ1Ip

)−1
Mxy.

Thus β̂pear and the total least squares estimate coincides. The proof is given
in the Appendix.

4. Simulation

In a very small simulation with p = 1 we compare the rank estimate β̂rank
with β̂tls and the following estimates:

β̂naive =
Mxy

Mxx

, β̂naive →
Pβ0

β0σ
2
ξ

σ2
ξ + σ2

,

β̂inv =
Myy

Mxy

, β̂inv →Pβ0

β0σ
2
ξ + σ2

β0σ2
ξ

.

The simulation is done in a bad case situation, small sample size (n=10) and
high error variances σ2 = 3 in relation to the variance of unobservables σ2

ξ = 3.

The samples are calculated from (3) and (4), where (ξi, εi, δi) are independently
generated t-distributed random variables with three degrees of freedom. The tls
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estimator is consistent and has optimality properties, see [11]. But there exists
no moments of the tls estimates. The tls estimator is often unstable, the same
is valid for the iteration procedure needed for the calculation of the rank esti-
mator. But there are still reserves in stabilizing the numerical procedure of the
rank estimator (stopping earlier, searching for other start values and so on). One
conclusion is clear the tls and the rank estimates are consistent, the naive esti-
mate and the inverse estimate are not. The naive estimate is more concentrated
but around the wrong value.

5. Appendix

P r o o f o f L e mm a 3. Consider

ρ(k)β0
(β)2 =

Cov(z1(k)(β), z2(β))
2

Var(z1(k)(β)) Var(z2(β))
.

Remind

z1(k)(β) = eTkL
T
β z and z2(β) =

(
L⊥
β

)T
z, Covβ0

(z) = Σ(β0) (21)

and

λmax

(
LT
βLβ

)
= 1 + ‖β‖2 and

∥∥L⊥
β

∥∥2 = 1 + ‖β‖2.

Then

Var
(
z1(k)(β)

)
≤ λmaxΣ(β0) ‖Lβek‖

2
≤ λmaxΣ(β0)

(
1 + ‖β‖

2
)

and
Var
(
z2(β)

)
≤ λmaxΣ(β0)

∥∥L⊥
β

∥∥2≤ λmaxΣ(β0)
(
1 + ‖β‖

2
)
.
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Hence
p∑

k=1

ρ(k)β0
(β)2 ≥

(
λmaxΣ(β0)

(
1 + ‖β‖

2))−2

S(β).

with

S(β) =

p∑

k=1

Cov
(
z1(k)(β), z2(β)

)2
.

From Theorem 1 we get

S(β) =

p∑

k=1

(
eTk
(
Ip + ββT

0

)
Σξ (β0 − β)

)2
.

Because
∑p

k=1 eke
T
k = Ip, it holds

S(β) = (β0 − β)
T
Σξ

(
Ip + β0β

T
) (

Ip + ββT
0

)
Σξ (β0 − β) = S1(β) + S2(β)

with

S1(β) = (β0 − β)
T
ΣξΣξ (β0 − β) + 2 (β0 − β)

T
Σξββ

T
0 Σξ (β0 − β)

and

S2(β) = ‖β‖
2 (

(β0 − β)
T
Σξβ0

)2
≥ 0.

The eigenvalues of I + 2β0β
T are 1, . . . , 1, 1 + 2βT

0 β. Thus

S1(β) ≥ λmin

(
I + 2β0β

T
)
‖Σξ (β0 − β)‖

2

≥ min(1, 2d)λmin (Σξ)
2 ‖β0 − β‖2 .

�

P r o o f o f T h e o r e m 5. Because of (21) and E z1(k) and z2 are elliptically
distributed and Greiner’s relation holds. Hence

τk (β)
2
≥

1

π2

∣∣ρ(k)β0
(β)
∣∣2 for all k.

Applying Lemma 3 on C (β) =
∑p

k=1 τk (β)
2
and remind τ̂k

(
β̂rank

)
= 0 for all k,

we obtain

C
(
β̂rank

)
=

p∑

k=1

(
τk
(
β̂rank

)
− τ̂k

(
β̂rank

))2

≥ c
(
1 +

∥∥β̂rank
∥∥2
)−2 ∥∥β0 − β̂rank

∥∥2.

Consider an arbitrary ε > 0 and an arbitrary constant K. Then
∥∥β̂rank − β0

∥∥2> ε and
∥∥β̂rank

∥∥≤ K
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imply that there exists a constant cK such that C
(
β̂rank

)
> εcK . Consider now∥∥β̂rank

∥∥ > K and condition (19). Apply Lemma 3 and take as leading term now

S2(β) = ‖β‖
2 (

(β0 − β)
T
Σξβ0

)2
, then

S2(β) ≥ ‖β‖
4

((
βTΣξβ0

)2

‖β‖2
+

(
βT
0 Σξβ0

)2

‖β‖2
− 2

βT
0 Σξβ0β

TΣξβ0

‖β‖2

)

≥ ‖β‖
4

(
C (Σξ, β0) − 2βT

0 Σξβ0

∣∣βTΣξβ0
∣∣

‖β‖
2

)
.

Because of
∣∣βTΣξβ0

∣∣ ≤ ‖β‖ ‖β0‖ λmax (Σξ) there exists a constant c(Σξ, β0)
such that

S2(β) ≥ ‖β‖
4
C (Σξ, β0)− ‖β‖

3
c(Σξ, β0).

Applying Lemma 3 we get

min
‖β‖>K

C(β)≥constF (K),

where F (K) = K4(1 − cK−1)/(1 +K2)2. F (K) is monotone and converges for
K → ∞ to 1. Hence for sufficiently large K there exists a constant C0 > 0 such
that min‖β‖>K C(β) ≥ C0 > 0. Using the inequality

P

(
p∑

k=1

|Tk| > ǫ

)
≤

p∑

k=1

P

(
|Tk| >

ǫ

p

)

we obtain

Pβ0

(∥∥∥β0 − β̂rank

∥∥∥
2

> ε

)
≤

p∑

k=1

Pβ0

(
sup

‖β‖≤K,‖β0−β‖>ε

|τk (β)− τ̂k (β)|
2
> ε

cK
p

)

+

p∑

k=1

Pβ0

(
sup

‖β‖>K

|τk (β)− τ̂k (β)|
2
>

C0

p

)
.

Then from Lemma 5 it follows that Pβ0

(∥∥β0−β̂rank
∥∥2 > ε

)
converges to zero. �

P r o o f o f T h e o r e m 6. From LT
βMzzL

⊥
β = 0p it follows that

LβL
T
βMzzL

⊥
β = 0p. (22)

The (p + 1) × (p + 1) symmetric matrix LβL
T
β has the eigenvalues 0, 1, . . . , 1,

1+‖β‖
2
and the eigenvector belonging to the eigenvalue 0 is proportional to L⊥

β .

Hence the vector MzzL
⊥
β belongs to the space spanned by L⊥

β , thus there ex-

ists a scalar a such that MzzL
⊥
β = aL⊥

β . That means L⊥
β is proportional to

an eigenvector belonging to one of the eigenvalues λi of Mzz. Thus

MzzL
⊥
β = λiL

⊥
β and (Mzz − λiIp+1)L

⊥
β = 0p+1.
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Because of (11) and the block structure of Mzz it holds

−Mxxβ +Mxy + λiβ = 0p and −Myxβ +Myy − λi = 0.

Hence the solutions of (22) are of the form

β = (Mxx − λiIp)
−
Mxy, i = 1, . . . , p+ 1,

where λi is an eigenvalue of Mzz. Consider the second condition βTMxy > 0
in order to specify the solutions. The second condition is equivalent to

MT
xy (Mxx − λiIp)

−
Mxy > 0. (23)

We have

MT
xy (Mxx − λiIp)

−
Mxy ≤ λmax

(
(Mxx − λiIp)

−)
‖Mxy‖

2
.

The definition of a generalized inverse and the relation

λ(Mxx − λiIp) = λ(Mxx)− λi

imply that the eigenvalues of (Mxx − λiIp)
− are

λ (Mxx − λiIp)
−
=

{
(λ (Mxx)− λi)

−1
if λ (Mxx) 6= λi,

0 if λ (Mxx) = λi

(compare for instance [10]). Thus for i with λ (Mxx) = λi it holds

MT
xy (Mxx − λiIp)

−
Mxy ≤ 0.

We can exclude these solutions, because of (23). For i > 1 we apply the in-
terlacing inequality between the eigenvalues λ1 ≤ · · · ≤ λp+1 of Mzz and the
eigenvalues α1 ≤ · · · ≤ αp of Mxx (compare for instance [15]) λj ≤ αj ≤
λj+1, j = 1, . . . , p. Hence for i > 1 with λ (Mxx) 6= λi it holds

λmin(Mxx)− λi = α1 − λi ≤ α1 − λ2 ≤ 0

and

MT
xy (Mxx − λiIp)

−
Mxy ≤

1

λmin(Mxx)− λi

‖Mxy‖
2
≤ 0.

That is a contradiction to (23) and we can exclude i > 1. Under the assumption
A2 for i = 1 it holds

λmin(Mxx − λ1Ip) = λmin(Mxx)− λ1 = α1 − λ1 > 0

and Mxx − λ1Ip is positive definite and condition (23) is fulfilled. �
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