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ON A CONSISTENT RANK ESTIMATE
IN A LINEAR STRUCTURAL MODEL

SILVELYN ZWANZIG

ABSTRACT. The structural linear model is considered that is an errors-in-
-variables model where the unobserved variables are i.i.d. In this model we can find
linear transformations depending on the parameter, such that the transformed ob-
servations using the true parameter are uncorrelated. Then a parameter estimator
is defined as a zero point of a consistent correlation estimator. A rank estimation
is proposed as a zero point of Kendall’s correlation measure and its consistency
is shown. While the Pearson estimate of the covariance delivers the total least
squares estimate.

1. Introduction

Rank methods are mostly used for constructing tests. They have the ad-
vantages that the null distribution of rank test statistics is independent of the
underlying distribution. Rank estimation are unfortunately not applied in the
same range, even though their theoretical properties are well known, see [5]—[7]
and [9].

Furthermore the properties of rank methods in measurement errors models
are now of interest, see [§]. In [12], where Sen has introduced the Theil-Sen
estimate, he also discussed the robust behavior of his estimate under the spe-
cial errors-in-variables set up, when the errors of variables are smaller than the
double distances between two neighbored unobserved variables. In usual errors-
in-variables models this restriction is not fulfilled. In [I3] Sen and Saleh have
shown that the Theil-Sen estimator has the same bias as the naive least squares
estimator in errors-in-variables models.

In Subsection 2.1 we remind the argumentation of Sen in [12]. His main idea
is that Kendall’s tau between the residuals and the z-variables should be zero
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for an good estimate. In Subsection 2.2 we generalize this approach to struc-
tural errors-in-variables models. In an errors-in-variable set up the observable
x-variables and the naive residuals given the true parameter are not uncorre-
lated. We use an idea of Than P e, [I4] and consider instead of the observable
x-variables a statistic which is orthogonal to the naive residuals. In Subsec-
tion 3.1 the rank estimate is introduced as the parameter value, where Kendall’s
tau between these statistics is zero. The consistency of the related rank estimate
is shown. In Subsection 3.2 it is proved that the estimate based on Pearson co-
variance coincides with the total least squares estimate. These equivalence gives
a further justification of the chosen approach, because under normal distribution
the least squares estimator is the maximum likelihood estimate in the regression
model and the total least squares estimate is the maximum likelihood estimate
in the related errors-in-variables model. In Section 4 a small simulation is car-
ried out as an evidence that the calculation of rank estimates is not any more
problematic. The longer and technical proofs are given in the Appendix.

2. Models

In order to explain the main principle we consider first a multiple regression
model with random design points and no errors in variables.
2.1. Multiple regression
Consider random vectors 2z} = (sz, yi), i=1,...,n, z; € RP y; € R fulfilling
yi = By i + €4,
where x;,¢; are i.i.d. with Ee; = 0, Eg;z; = 0p, Var(e;) = 02 > 0 and with

a positive definite matrix Cov(z;) = X,. Thus z] = (xZT, yz) are i.i.d. copies of
2T = (.Z‘T, y) with expectation zero and covariance matrix

Y Y
Covgo(2) = ( oS, @gzmﬁf: ﬁ) '

The parameter of interest is By € RP. For an arbitrary parameter 5 € R? intro-
duce 2 (B) =y — T2, then

Covg, (2, 2(8)) = Cov(z,e + (B — B) ) = o (o — B).
Hence Covg, (x, z(ﬂ)) is zero if and only if 8 = (y. Consider Kendall’s tau as

estimate of dependence between z; (8) = y; — 87 x; and @ = (x(xy), k=1,...,p
4
e (B) = ——— S 1((2 (B) - 2 RS -1, (1
7 (8) = 2 Z:j ((2:(8) = 25 (B)) (s — 2qwy;) < 0) (1)
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where I ((2;(8) — 2;(8)) (k)i — T(1y;) < 0) is 1 for (z;(8)—2;(8)) (@ ()i = ();) <O
and zero otherwise. In [12] the Theil-Sen estimate is introduced as the value of 3
where Kendall’s tau is zero. Note, in [12] p = 1.
Using the Pearson’s sample covariance we obtain the least squares estimate
because
1 n 1 n -1 1 n
/Blse : E Z (yz - ﬂT*rz) Ty =V, /Blse = (E sz$?> E Z%Tyz (2)
i=1 i=1 i=1
2.2. Structural model

Consider now the linear model with errors in variables. The independent

identically distributed random vectors z! = (27, yZ)T, i=1,...,n, z; € R,
y; € R follow a linear errors-in-variables model
yi = Boi+ei (3)
ri = &+, (4)

where &; are i.i.d. random p-dimensional vectors with expectation zero and posi-
tive definite covariance matrix 3¢. The errors ¢; in () are i.i.d. with expectation
zero and variance o2 the errors §; in @) are ii.d. with expectation zero and
covariance matrix 021, where I, is the identity matrix of order p. Furthermore
the errors ¢;,d; are uncorrelated. Summarizing the assumptions above we have

that 2 = (xZT, yi)Tare i.i.d. copies of 2T = (z7,y) with eI’ = (67, ¢) and

I
z=1Lg&+e and Lg= (E}) (5)
The (p+1) x 1 random vector z has expectation zero and the covariance matrix
S () = LpgySeLlf, + 0 Ipin (6)
(Bt 0?1, YeBo ™
BiZe  ByXefoto?)

The parameter of interest is 5y € RP. Define
1 « My, M )
M,, = — zzT = ( T ry ,
zZz n Z:Zl 1~ ]\4’y:D Myy

with M, = % S wwl My, = % S @iy, Myp = MwTy and My, = % S y?
and A1 = Apin(M..). We will need the the following assumptions.
Al

1 n
MZZ:—E 2r i itive definite. 8
02 2iZ; is positive definite (8)
A2
A< Amin(me)- (9)
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These assumptions are not very restrictive. The matrix M., converges in prob-
ability to X(8y) with ApninX(B0) = 02 The matrix M,, converges in probability
to 25 + O'QIp with )\min(zg + O'QIp) = )\min(zf) + o2

In difference to the regression model the z(8y) = y — 8L and the observable
variables x are not uncorrelated because of

Covg, (2, 2(8)) = * I, + Xe (Bo — B).

In model (@) we apply instead of x a different statistic z; () which is orthog-
onal to z(3). For arbitrary 8 € RP we define the transformations

21(8)=z+By and z(8)=y- "2 (10)
For all g € R? it holds

Ly = (‘f) and  LiLy =0, (11)

and z1 (8) = ng and 29 (8) = (Lé‘)Tz. Then we have the following statements.
THEOREM 1. Under () and ([I0) it holds

Covg, (21 (8) , 22 (8)) = (I + B85 ) Be (bo — B) - (12)
Proof. We have

Covg, (21 (B), 22 (ﬁ)) = Covg, (ng, zTLé‘) = LgE (Bo) Lé‘.
Using (@) and () we get
L5 (Bo) Ly = L Lp,SeLj Ly +0° Ly Ly = L Lg, YL L.
Further it holds LgLQO =1, + BB and LgOLé- = 6y — B. d
THEOREM 2. Under () and ([I0) it holds
Covg, (21 (B), 22 (B)) =0, pB=0 or BT By = —1.
Proof. The condition Covg, (21 (8), 22 (8)) = 0 means
(I, + B5E) Se (Bo — B) = Op. (13)

The p eigenvalues of (Ip+ /3»30T) are 1,...,1, 14+873y. For BT 3y # —1 all eigen-
values are not zero, thus ([3) has the unique solution 3 = 5. Under 8T 3y = —1
the matrix I, + 887 has one eigenvalue equals zero and the corresponding eigen-
vector is proportional to 5. Then 5, = (aEgl + Ip)_lﬁo, where a is given such
that 373y = —1, is the other unique solution of (I3). O
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Geometrically, the condition 87 3; = —1 means that 8 and 3y are oppositely
oriented. We assume that we can exclude the case 78y = —1 by additional
information. For the consistency of the rank estimate we require the stronger
condition (IH)), see the following Lemma Bl We consider the correlations

p(k)ﬁo(ﬁ) = Corﬁo (Zl(k)(ﬁ)a’Z?(ﬂ))v k= 17 Y 4 (14)

between zy(ry and za, where zq(x) = ele is the k’th component of 2. ey, is the
p x 1 vector, whose components are zero except the k'th component which is
equal to 1.

LEMMA 3. Assume (@), (I0) and

1
BT By > 5 +d, for some d >0 (15)
then it holds

p 2 2 T 2
2 callBo = BI* + 18I ((Bo — B)"Seho)
;p(’“”" = Amax 2(80) (1 + || B]|)2
with ¢q = min(1, 2d) Apin (Ze)°

The proof of this lemma is technical and given in the Appendix.

3. Estimators

Using the statement of Theorem 1 we define estimators, which are based
on a uniformly consistent estimate of the covariance between z1(8) and z3(53)
or alternatively which are based on a monotone function of the correlations

P(yso (B), k=1,...,p (Lemma 3).
3.1. Rank estimate

We introduce Kendall’s tau 7, (5) as an estimation of the dependence between
the zq(k); = e{zli and zo;, 1 =1,...,n,

T (B) = %1) ZI<(Zl(k)i (8) = 210005 (B)) (221 (B) — 225 (B)) < 0) —1.

1<]
(16)
More precisely, Kendall’s tau 7y (3) is a consistent estimate of
7 (8) = P, ((21(k)1 (B) — 2102 (B)) (221 (B) — 222 (B)) > O) —1.
LEMMA 4. Under () and ([Q) it holds
7 (B) =% 7. (B)  wniformly in 8 and k=1,...,p.
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Proof. The statistic 7 (8) + 1 is a U statistic with kernel

h((ii) (Zji)) = 21((z1 — @) (11 — y2) > 0).

Thus 7, () + 1 converges in probability Pg, to
Ok (B) = 2P, <(Zl(k)1(/8) — 21(1)2(8)) (221(8) — 222(8)) > 0),

compare [16, Chapter 12, Example 12.5]. The proof of the uniform convergence
follows the line of Step 2 in the proof in [I, p. 311]. d

Under normal distribution Greiner’s relation 7 (5) = %arcsin (P(kyso (B)) s
valid, see for instance [4, p. 208]. These relation holds also for elliptical distri-
butions.

DEFINITION 1. A p dimensional random vector X is called elliptical distributed
with the parameters, u, 3, ¢, where p € RP and ¥ is a p X p nonnegative sym-
metric matrix, ¢ is a function from [0,00) to R if and only if the character-
istic function px_, of X — p is of the form px_, (t) = ¢ (t*St). We write
X ~ EP(M? Ev ¢)

If X ~ Ep(p, %, ¢), then AX ~ E,(Au, ASAT, ¢). Furthermore for absolute
continuous r.v. (X1, X3) ~ Ea(u, X, ¢) Kendall’s population 7 between (X7, X3)
fulfills Greiner’s relation 7 = 2 arcsin (Cor(X 1, XQ)), compare [2, Theorem 3.1].
Further X ~ E,(u,%,¢) and the Cov(X) exists, then Cov(X) = 2¢'(0)X.
Introduce the distribution assumption.

E The random vector z is absolutely continuous and

z Ep+1 (07 aE(/BO)v Qb)a a >0,
such that

Cov(z) = X(bo), given in (). (17)
DEFINITION 2. The Kendall’s rank estimator ank is a solution of
7e(Brank) =0, k=1,...p and BL,.f0 # 1.

Under additional assumptions we can prove the consistency of this rank esti-
mator. The proof is technical and given in the Appendix.

THEOREM 5. Assume E and that one of the following conditions is fulfilled.
(i) There ezist constants K < oo and d > 0 such that

Brank € {,8 I < K, 5760 > —% + d} : (18)
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(ii) There exist constants C = C (¢, fo) > 0 and d > 0 such that
—~ 2 1
/BTank € {ﬂ (/BTzflgO) 2 C(Efvﬂo) ”ﬂHQv ﬂT/BO Z _5 + d} (19)

Then it holds ank —P80 By.

Remark 1. The condition BTT,mkﬁo > —% + d comes from Lemma [3] The main
reason is that we have to exclude the second solution of (I3]), compare Theorem 2.

The condition (BTZ§BO)2 > C (X¢, Po) ||B||2 is fulfilled for p = 1 and By # 0.

3.2. Total least squares estimate

In the structural model we can show a relation analogously to (). The total
least squares estimator is defined by

~ 1S
Bus = argmin Zm;n |z: — Lag])*. (20)
=1

In [3, Chapter 2] it is derived that B\tls = (Mg, — /\1Ip)_1 Ma,.

THEOREM 6. Under the conditions A1 and A2 the estimate Bpear defined by
1 & ~ ~
E Z 214 (BpeaT)Z% (Bpear) = Op and B\TpearMmy >0
i=1

is unique and Bpear = (Mys — Aljp)fley.

Thus Bpear and the total least squares estimate coincides. The proof is given
in the Appendix.
4. Simulation

In a very small simulation with p = 1 we compare the rank estimate ank
with By and the following estimates:

- M - b, Boo?
naive = :Ey’ Braive = % 276,
h M, 2
Tz o t+o
2 2
~ ~ o;+o
Binv = Myy’ Binv — P20 &)672
Macy ,800’5

The simulation is done in a bad case situation, small sample size (n=10) and
high error variances o2 = 3 in relation to the variance of unobservables ag =3.
The samples are calculated from (B]) and (@), where (&;,€;,0;) are independently
generated t-distributed random variables with three degrees of freedom. The tls
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estimator is consistent and has optimality properties, see [I1]. But there exists
no moments of the tls estimates. The tls estimator is often unstable, the same
is valid for the iteration procedure needed for the calculation of the rank esti-
mator. But there are still reserves in stabilizing the numerical procedure of the
rank estimator (stopping earlier, searching for other start values and so on). One
conclusion is clear the tls and the rank estimates are consistent, the naive esti-
mate and the inverse estimate are not. The naive estimate is more concentrated
but around the wrong value.

Simulation with n=10, true beta=2, rep=50

30

t-distribution df=3

15 20 25
1

10
|

= PPN
=TT

1
naive tls inverse rank

5. Appendix

Proof of Lemma [Bl Consider
(8)? = Cov(z1()(8), 22(8))?
PP Var (21 (8)) Var(z2(B))

Remind
T
211y (B) = e{ng and 2z(8) = (Lé‘) z, Covg,(z) =%(Bo) (21)
and
2
Amax(LELg) =14 |81° and |[Lg|" =1+8]*

Then
Var(21)(8)) < AmaxS(80) [ Lsenl> < AmaxS(50) (1+ 1811

and

Var(25(8)) < AmaxS(0) [ L4 ]|” < AmaxS(80) (1 +115]%).
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Hence ,
-2
> P (B = (AmaxZ(B0) (1+ [1817)) ~S(8).
k=1
with

S(8) =" Cov(z1(8), 2(8))*.
k=1

From Theorem 1 we get

L 2
S(8) =3 (eF (I, + B5) Se (8o — 5) -
k—

1

Because > % _, exer = I, it holds

S(8) = (Bo — B)" Se (T, + BoBT) (I, + BL) Se (Bo — B) = 51(8) + Sa(8)
with
S1(B) = (Bo — B)" BeSe¢ (Bo — B) +2(Bo — B)T eBBI S (Bo — B)
and
S2(8) = 181 ((Bo — B)" Zefo)” > .
The eigenvalues of I + 23,87 are 1,...,1, 1+ 281 3. Thus

S1(8) > Amin (I+26087) 12 (Bo — B)|?
> min(1, 2d) Amin (25)2 |Bo — BH2 .

g

Proof of Theorem 5. Because of [2I) and E 2 and 2, are elliptically
distributed and Greiner’s relation holds. Hence

1 2
7 (8)° > 2 P50 ()] for all k.

Applying LemmaBlon C (8) = Y7 _, 7 (,6’)2 and remind 7} (ank) =0 for all &,
we obtain

M=

~ ~ ~ 2
C (Brank) = (Tk (6rcmk) - 7/:k (Brank ))

el
Il

1

~ o\ —2 R )
C(1+ ||BT’ank” ) HBO_Br(znkH .
Consider an arbitrary € > 0 and an arbitrary constant K. Then

||B\rank - BOH2 >¢e and HBTCLTL’CH S K

Y]
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imply that there exists a constant ck such that C(ank) > ecg. Consider now

|}Bmk || > K and condition (I9). Apply Lemma [3]and take as leading term now
2
$2(8) = 111” ((Bo — B)" Sefo)”, then

BTeB0)? (BT SeBo)’ BT25606T2560>
Sa(B) > |8 4<( + — 20
2(6) 121 1812 1812 1812
Ty
> 8 (C(Eg,ﬂo) — 267 %o %)

Because of |BTE§BO| < 18]l 1Boll Amax (X¢) there exists a constant c(X¢, Bo)
such that

S2(8) > 1B]1* € (e, Bo) — 1811 ¢(Ze, o).
Applying Lemma [3 we get

min C(B)>const F(K),
HBH1>K (8)= ()

where F(K) = K*(1 —cK™1)/(1+ K?)?. F(K) is monotone and converges for
K — oo to 1. Hence for sufficiently large K there exists a constant Cy > 0 such
that min > x C(8) > Cp > 0. Using the inequality

P P
P Z|Tk|>6 SZP<ITI€I>E>
k=1 k=1 p

2
‘>€§

we obtain

M=

Pg, (Hﬂo — Brank

~ C
Pg, sup 7 (8) — 7k (B)] > e
I1BISK,||Bo—B|l>e p

=~
Il

1

+

NE

Pg, ( sup |7 (B) — Tk (5)|2 > @> .
1B]1>K p

=

=1

Then from Lemma 5 it follows that Pg, (H Bo— ank H2 > 5) converges to zero. [

Proof of Theorem 6. From LgMzzLé = 0, it follows that

LgLEM.. Ly =0, (22)
The (p+ 1) x (p+ 1) symmetric matrix Lng has the eigenvalues 0,1,...,1,
1+]|8 ||2 and the eigenvector belonging to the eigenvalue 0 is proportional to Lé.

Hence the vector MzzLé belongs to the space spanned by Lé, thus there ex-

ists a scalar a such that MzzLé- = aLé-. That means Lé‘ is proportional to
an eigenvector belonging to one of the eigenvalues \; of M, ,. Thus

M..Lz = XNLs and  (M..— Nlpy1) Ly = Oppr.
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Because of (IIl) and the block structure of M, it holds
—MyoS+ Mgy +Xi5=0, and — My, B+ My, — ;i =0.
Hence the solutions of (22)) are of the form
B =Mz — Nilp)” Mgy, i=1,...,p+1,

where ); is an eigenvalue of M,,. Consider the second condition BTMxy >0
in order to specify the solutions. The second condition is equivalent to

M, (Myg — Xidp)™ Mgy > 0. (23)
We have
_ - 2
ng (Mxx - /\in) Mxy < /\maX((Mm - )‘in) ) ”Mxy” :
The definition of a generalized inverse and the relation
AN Myy — Nilp) = M Myy) — N
imply that the eigenvalues of (M, — A1)~ are

()\ (Mxx) - /\i)_l if A (Mxx) 7é /\ia

AWMy = Aily) = { 0 if A (Myy) = N

(compare for instance [10]). Thus for ¢ with A (M,,) = A; it holds
M, (Myy — Ailp) ™ My, <0.

We can exclude these solutions, because of (23). For ¢ > 1 we apply the in-
terlacing inequality between the eigenvalues \; < --- < A, of M, and the
eigenvalues oy < -+ < o of My, (compare for instance [I5]) A; < a; <
Aj+1, j=1,...,p. Hence for i > 1 with A (M) # A; it holds

Amin(M:Jc:Jc) - >\i = o1 — >\i < a1 — )\2 < 0
and

_ 1 2
Mﬁ; (Mm - )‘in) Mmy < s ||Mwy|| <0.

Amin(Mx:Jc) -

That is a contradiction to (23] and we can exclude ¢ > 1. Under the assumption
A2 for ¢ =1 it holds

)\min(Mmm - >\1[p) - Amin(Mmm) - >\1 = o1 — >\1 >0

and M, — A1, is positive definite and condition (23)) is fulfilled. O
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