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ON PARALLELISM OF REGRESSION LINES

Frantǐsek Rubĺık

ABSTRACT. Testing of parallelism of regression lines is discussed and the clas-

sical F -test is compared by means of simulations with a rank test computed by
means of results of Sen’s 1969 AMS paper. A rank based multiple comparisons
rule for detecting regression lines with different slopes is constructed and asymp-
totic distribution of the underlying statistic is derived. This rule is compared by
means of simulations with the rule derived from the assumption that the random

fluctuations are Gaussian.

1. Introduction and the main results

Let k > 1 be a fixed integer and

Yij = αi + βiXij + εij, i = 1, . . . , k, j = 1, . . . , ni, (1.1)

where i denotes the index of the regression line, Xij are known constants, αi,
βi are unknown regression constants, {εij; i = 1, . . . , k, j = 1, . . . , ni} are i.i.d
random variables and the distribution function F (z) = P (εij < z) is continuous.
The topic of this paper is inference on the null hypothesis

H0 : β1 = β2 = · · · = βk, (1.2)

proofs can be found in Section 2. Rank test statistics of this hypothesis and their
asymptotic distribution were constructed in [8] under the following assumptions.
Put

Xi. =
1

ni

ni
∑

j=1

Xij , D2
i =

ni
∑

j=1

(Xij −X i.)
2, D2 =

k
∑

i=1

D2
i , γ̂i =

D2
i

D2
. (1.3)
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(A 1) For i = 1, . . . , k the controlled variables Xi = (Xi1, Xi2, . . . , Xini
),

Xi1 ≤ Xi2 ≤ · · · ≤ Xini
, where at least one of the inequalities is strict,

max
j=1,...,ni

(Xij −Xi.)
2

D2
i

→ 0, i = 1, . . . , k

and

ni → ∞, D2
i → ∞, γ̂i → gi > 0, i = 1, . . . , k. (1.4)

(A 2) The distribution function F posseses a density f(x) = dF (x)
dx , the derivative

f ′(x) = df(x)
dx

exists (with the possible exception of finitely many num-

bers x),

I(F ) =

+∞
∫

−∞

(

f ′(x)

f(x)

)2

dF (x) < +∞,

+∞
∫

−∞

f ′(x)

f(x)
dF (x) = 0

and the quantity

Ψ(u) = −f ′(F−1(u))

f(F−1(u))

fulfils the inequalities 0 <
∫ 1

0
Ψ(u)udu < +∞.

For Xi, Yi = (Yi1, . . . , Yini
) and b ∈ R

1 let

Ti(Yi − bXi) =

√
12

Di

ni
∑

j=1

(

Xij −Xi.

)R(Yij − bXij)

ni + 1
, (1.5)

where R(Yij − bXij), j = 1, . . . , ni are ranks of the vector Yi − bXi.

Let T ∗(Y − bX) =
∑k

i=1
Di

D Ti(Yi − bXi), β
∗

(1) = sup
{

b; T ∗(Y − bX) > 0
}

,

β∗

(2) = inf
{

b; T ∗(Y − bX) < 0
}

. It follows from Theorem 2.1 that this star

quantities are well defined and are real numbers. To construct a test of the
hypothesis (1.2), S e n used in [8] the pooled estimate of the slope under the

validity of (1.2), defined by the equality β∗ =
β∗

(1)+β∗

(2)

2 . Let

T̂i = Ti(Yi − β∗
Xi). (1.6)

If (1.2) holds, then according of [8, Theorem 3.2] the statistic Q =
∑k

i=1 T̂
2
i

converges in distribution to chi-square distribution with k−1 degrees of freedom
provided that the assumptions (A 1), (A 2) are fulfilled. Hence the test rejecting
(1.2) if Q > χ2

k−1(1−α), where χ2
k−1(1−α) denotes the (1−α)th quantile of chi-

-square distribution with k−1 degrees of freedom, is test ofH0 at the asymptotic
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significance level α. The statistics (1.6), and consequently the statistic Q, can
be easily computed by means of the following Lemma.Lemma 1.1. Let

Si =

{

Yij1 − Yij2

Xij1 −Xij2

; 1 ≤ j1 < j2 ≤ ni, Xij1 < Xij2

}

, S =

k
⋃

i=1

Si (1.7)

and S = {s1 < s2 < · · · < sN∗} denote the ordering of the values of this set
according to the magnitude. Put

jh = min
{

j; T ∗(Y − sjX) < 0
}

, jd = max
{

j; T ∗(Y − sjX) > 0
}

. (1.8)

Then sjh = β∗

(2), sjd+1 = β∗

(1) and therefore the statistic (1.6)

T̂i = Ti

(

Yi −
(sjd+1 + sjh)

2
Xi

)

. (1.9)

If the test rejects the null hypothesis, then usually the next step is to find out
which of the regression lines have different slopes. For this purpose we construct
the following theorem and the multiple comparisons rule (1.12).Theorem 1.1. Put (cf. (1.9), (1.3))

Mi =
1√
γ̂i
T̂i =

√

12
D2

D4
i

ni
∑

j=1

(

Xij −Xi

)R(Yij − β∗Xij)

ni + 1
, (1.10)

Di1i2 =
Mi1 −Mi2
√

D2

D2
i1

+ D2

D2
i2

√
2 . (1.11)

Let t(k, 1−α) denote the (1−α)th quantile of the maximum modulus of Nk(0, Ik)
distribution, i.e., P

(

maxi,j |yi − yj | ≤ t(k, 1 − α) |Nk(0, Ik)
)

= 1 − α. If the

assumptions (A 1), (A 2) are fulfilled and (1.2) holds then P
(

maxi1,i2 |Di1i2 | >
t(k, 1 − α)

)

−→ β ≤ α. This inequality holds with the equality sign if for the
limits (1.4) the equality g1 = · · · = gk holds.

In accordance with this theorem we declare the regression coefficients βi1 , βi2
to be different if the quantity (1.11) fulfils the inequality

|Di1i2 | > t(k, 1− α). (1.12)

The inference on H0 can be carried out also by procedures derived from the
assumption that F is the distribution function of N(0, σ2) distribution with
unknown positive variance. In this setting

β̂i =

∑ni

j=1(Xij −Xi.)Yij

D2
i

, α̂i = Y i. − β̂iXi.
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denote LS estimates of the coefficients of the ith regression line,

σ̂2 =
1

n− 2k

k
∑

i=1





ni
∑

j=1

(

Y 2
ij − Yij(α̂i + β̂iXij)

)



 , n =

k
∑

i=1

ni

denotes estimate of σ2 and β =
∑k

i=1 γ̂iβ̂i is the estimate of the slope under
the validity of H0. If (1.2) holds then under these normality assumptions the
statistic

QF =
1

(k − 1)σ̂2

k
∑

i=1

[

β̂i − β
]2

D2
i

has F distribution with k − 1, n − 2k degrees of freedom (the proof can be
found, e.g., in [3, pp. 285–290]). Hence under these normality assumptions the
test rejecting (1.2) if QF > F (k− 1, n− 2k, 1−α), where F (k− 1, n− 2k, 1−α)
denotes the (1 − α)th quantile of F distribution with k − 1, n − 2k degrees of
freedom, is test of H0 at the significance level α. The regression coefficients βi1 ,
βi2 are declared to be different if

|β̂i1 − β̂i2 |
√

1
D2

i1

+ 1
D2

i2

> t
√
σ̂2. (1.13)

If

t =
√

(k − 1)F (k − 1, n− 2k, 1− α),

then the rule (1.13) can be derived by means of an application of the Scheffé
theorem [1, p. 147]. If t = t

(

n− 2k, 1− α
k(k−1)

)

is the
(

1− α
k(k−1)

)

th quantile of

the Student distribution with n−2k degrees of freedom, then the rule (1.13) can
be derived by means of an application of the Bonferroni inequality [1, p. 24].

Since in practice the distribution function F is usually not known, we shall
illustrate the behaviour of the mentioned procedures by means of simulations for
various types of the distribution. All simulation estimates in this paper are based
on 5000 trials and because of the space limitations deal with the situation when
k = 3, β1 = β2 = 2 and β3 has the values mentioned in the particular table. The
caption Normal distribution means that the simulation estimates are computed
for distribution function F of theN(0, 1) distribution, Cauchy distributionmeans
that F is distribution function of the Cauchy C(0, 1) distribution and Lognormal
distributionmeans that F is distribution function of the random variable exp(ξ),
where ξ is N(0, 1) distributed.

In what follows PrejQ denotes the simulation estimate of the probability
P
(

Q > χ2
k−1(1 − α)

)

of rejection of H0 and PrejQF
is the simulation estimate

of P
(

QF > F (k − 1, n − 2k, 1 − α)
)

. Since simulations suggest that for cases
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where ni < 5 for some i the Q test is insensitive due to the fact that the set Si

from (1.7) contains few points, we shall deal with the setting

X1 = (1, 2, 4, 6, 9, 10),

X2 = (−3,−1, 0, 5, 6, 9), (1.14)

X3 = (7, 11, 22, 23, 24, 25), n1 = n2 = n3 = 6.

All the simulations are carried out for α = 0.1, the results for α = 0.05 are
similar. For values (1.14) of controlled variables we obtain the results:

Normal distribution
β3 2 2.1 2.2 2.3 2.4 2.5

PrejQF
0.100 0.211 0.513 0.824 0.963 0.997

PrejQ 0.062 0.145 0.394 0.698 0.908 0.983

Cauchy distribution
β3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.8

PrejQF
0.118 0.126 0.152 0.192 0.246 0.300 0.359 0.452

PrejQ 0.059 0.088 0.145 0.224 0.319 0.408 0.495 0.624

Lognormal distribution
β3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.8

PrejQF
0.104 0.150 0.314 0.504 0.677 0.779 0.854 0.929

PrejQ 0.073 0.172 0.385 0.608 0.742 0.834 0.888 0.951

These simulations suggest that for symmetric distribution with light tails (like
the normal distribution) the classical F -test is better than the test based on Q.
In the case of symmetric heavy tailed distribution (like the Cauchy distribution)
the situation is different. The power of the Q test is (with the exception of
regions close to H0 where the power is weak) in favor of the Sen statistic. The
results of these simulations suggest that for asymmetric distributions (like the
lognormal) the Q test is better than the F test.

In multiple comparisons methods constructed under normality assumptions
for k = 3, 15 ≤ n ≤ 30 the ratio

r(α, n, k) =
t(n− 2k, 1− 0.1/(k(k − 1))

√

(k − 1)F (k − 1, n− 2k, 1− a)

attains the values 1.0234 ≥ r(0.1, n, k) ≥ 1.002. Because of this the difference
between the comparison based on the Scheffé theorem and that based on the
Bonferroni inequality is for the considered sampling settings small and not in-
fluencing the efficiency with respect to the proposed nonparametric method.
Therefore in the following simulation results we include only the method based on
the Scheffé inequality. In these results PSch(+) denotes the simulation estimate
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of the probability of the correct detection of regression lines with different slopes
by multiple comparisons rule based on the Scheffé theorem, i.e., of the probabil-
ity that the inequality (1.13) occurs for t =

√

(k − 1)F (k − 1, n− 2k, 1− a) and
some i1, i2 such that βi1 6= βi2 . Similarly PD(+) denotes simulation estimate
of the probability that (1.12) occurs for some i1, i2 such that βi1 6= βi2 . Since
the probabilities PSch(−), PD(−) of the false detection of different slopes attain
negligible values, their simulation estimates are not included in the following
tables.

For the controlled values (1.14) we obtain the results:

Normal distribution
β3 2 2.1 2.2 2.3 2.4 2.5

PSch(+) 0 0.161 0.432 0.755 0.931 0.991
PD(+) 0 0.088 0.271 0.554 0.808 0.936

Cauchy distribution
β3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.8

PSch(+) 0 0.095 0.117 0.149 0.198 0.252 0.303 0.402
PD(+) 0 0.048 0.091 0.157 0.241 0.322 0.412 0.557

Lognormal distribution
β3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.8

PSch(+) 0 0.112 0.253 0.432 0.601 0.724 0.814 0.906
PD(+) 0 0.106 0.290 0.497 0.661 0.772 0.842 0.928

For the values of the controlled variables X1 = (1, 2, 4, 6, 9, 10, 15, 21, 23),
X2 = (−3,−1, 0, 5, 6, 9, 13, 19, 23), and X3 = (7, 11, 22, 23, 24, 25, 29, 33, 39), i.e.,
n1 = n2 = n3 = 9 we obtain the results:

Normal distribution
β3 2 2.1 2.2 2.3

PSch(+) 0 0.516 0.970 1.000

PD(+) 0 0.440 0.931 0.999

Lognormal distribution
β3 2 2.1 2.2 2.3 2.4

PSch(+) 0 0.260 0.628 0.845 0.932
PD(+) 0 0.462 0.799 0.926 0.965

Cauchy distribution
β3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.8

PSch(+) 0 0.114 0.185 0.287 0.378 0.464 0.528 0.622
PD(+) 0 0.170 0.408 0.615 0.748 0.817 0.864 0.910
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Thus in the case of normal distribution the rule based on the Scheffé theorem is
better than the method based on (1.12), but for larger sample sizes the difference
will diminish. In the case of symmetric heavy tailed distributions (Cauchy dis-
tribution) or in the case of asymmetric distributions (lognormal distribution)
is mostly the difference between these methods either mild or in favor of the
method based on (1.12).

2. Proofs

Theorem 6.1 of [8, p. 1681] can be reformulated in the following way.Theorem 2.1. Let c1 ≤ c2 ≤ · · · ≤ cn be real numbers and cj < cj+1 for some j.
Suppose that Y1, . . . , Yn are independent random variables with continuous dis-
tribution functions. Let R(b) =

(

R1(b), R2(b), . . . , Rn(b)
)

denote midranks of
the numbers Zi(b) = Yi − bci, i = 1, . . . , n. Put

Tn(b) =

n
∑

i=1

(ci − c)Ri(b), c =
1

n

n
∑

i=1

ci.

Let b1 ≤ b2 ≤ · · · ≤ bn∗ denote ordering of the arguments of the intersections
{

Zi(b)∩Zj(b); ci < cj
}

of these lines. Then 1 ≤ n∗ ≤
(

n
2

)

and with the notation
b0 = −∞, bn∗+1 = +∞ the following assertions are true with probability 1.

(I) b1 < · · · < bn∗ and for s = 0, . . . , n∗ on the interval (bs, bs+1) the vector
R(b) is constant and a permutation of the set {1, . . . , n}.

(II) Let Tn(bs − 0), Tn(bs + 0) denote the limit from the left and from the
right, respectively. Then Tn(bs − 0) ≥ Tn(bs) ≥ Tn(bs + 0), s = 1, . . . , n∗,
Tn(b) > 0 for for b < b1 and Tn(b) < 0 for b > bn∗ .

(III) Tn(b) is a nondecreasing function of b ∈ (−∞,+∞).

P r o o f o f L e mm a 1.1. The Lemma easily follows from Theorem 2.1. �

Similarly as in [2], or [5] or in [6] (cf. also [7]), the following proof uses the
Hayter theorem from [4].

P r o o f o f T h e o r e m 1.1. According to [8, formula (3.26)] for statistics (1.6)
the equality

T̂i = ρ
√

I(F )D2
i

(

β∗

i − βi − (β∗ − βi)
)

+ oP (1) (2.1)

holds. Here

β∗

i =
β
∗(i)
(1) + β

∗(i)
(2)

2
, β

∗(i)
(1) = sup

{

b;Ti(Y − bXi) > 0
}

,
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β
∗(i)
(2) = inf

{

b;Ti(Y − bXi) < 0
}

and ρ =
√

12/I(F )

1
∫

0

Ψ(u)udu.

But
∣

∣

∣

∣

∣

√
D2

(

β∗ −
k
∑

i=1

γ̂iβ
∗

i

)∣

∣

∣

∣

∣

= oP (1)

by [8, Lemma 3.3], and since 0 < Di < D, we see that

Di(β
∗ − βi) = Di



β∗ −
k
∑

j=1

γ̂jβ
∗

j



+Di

k
∑

j=1

γ̂j(β
∗

j − βj)

= oP (1) +Di

k
∑

j=1

γ̂j(β
∗

j − βj), (2.2)

because
∑k

j=1 γ̂j = 1 and β1 = · · · = βk. Put

ηi = ρ
√

I(F )Di(β
∗

i − βi), η = (η1, . . . , ηk)
′ (2.3)

and use the equality Diγ̂j =
√

γ̂j γ̂iDj . This together with (2.2) yields

ρ
√

I(F )Di

(

β∗

i − βi − (β∗ − βi)
)

= ρ
√

I(F )Di(β
∗

i − βi) + oP (1)− ρ
√

I(F )

k
∑

j=1

Diγ̂j(β
∗

j − βj)

= ηi −
k
∑

j=1

√

γ̂iγ̂jηj + oP (1)

= ηi −
k
∑

j=1

√
gigjηj + oP (1), (2.4)

because according to [8, Lemma 3.4] the convergence in distribution η →
Nk(0, Ik) holds and therefore η = OP (1) holds. But (2.1) and (2.4) imply that

for T̂ =
(

T̂1, . . . , T̂k

)

′

the equality T̂ = (Ik − Γ)η + oP (1) holds. Here

Γ =
√
γ(

√
γ)′,

√
γ = (

√
g1, . . . ,

√
gk)

′ (2.5)

and Ik = diag(1, . . . , 1) is the k × k unit matrix. Since
∑k

j=1 gj = 1, the matrix
Ik − Γ is idempotent and we see that

T̂ → Nk(0, Ik − Γ) (2.6)

in distribution.
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Now use (1.10) and put M = (M1, . . . ,Mk)
′. Employing (2.6) and (2.5)

one can easily prove the convergence in distribution M → Nk(0,W), W =
diag(1/g1, . . . , 1/gk) − 11

′. Hence the random vector S = (Dij ; 1 ≤ i < j ≤ k)
converges in distribution to the normal N(k−1)k/2(0,Σ) distribution, where for
1 ≤ i1 < j1 ≤ k, 1 ≤ i2 < j2 ≤ k the asymptotic covariance is

2 cov(Mi1 −Mj1 ,Mi2 −Mj2)
/

√

(

1

gi1
+

1

gj1

)(

1

gi2
+

1

gj2

)

and cov(Mi1 − Mj1 ,Mi2 − Mj2) is the asymptotic covariance of (Mi1 − Mj1 ,
Mi2 − Mj2). Hence after some computation one finds out that the asymptotic
covariance of S coincides with the covariance matrix of U = (Uij; 1 ≤ i < j ≤ k),
where

Uij =
√
2(ξi − ξj)/

√

1

gi
+

1

gj
and ξ = (ξ1, . . . , ξk)

′

has normal distribution with mean 0 and covariance matrix diag
(

1
g1
, . . . , 1

gk

)

.

Therefore

P

(

max
i<j

|Dij | > t(k, 1 − α)

)

−→ γ = P

(

max
i<j

|Uij| > t(k, 1− α)

)

. (2.7)

But according to [4, Theorem] if zi has normal N(0, σ2
i ) distribution and

z1, . . . , zm are independent, then for every real number t

P



max
i<j

|zi − zj|
√

σ2
i + σ2

j

> t



 ≤ P

[

max
i<j

|xi − xj |√
2

> t

∣

∣

∣

∣

x ∼ Nk(0, Ik)

]

and this inequality becomes an equality, if σ2
1 = · · · = σ2

m. An application of
this to (2.7) yields the assertion of the Theorem. �
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[1] ANDĚL, J.: Matematická statistika. SNTL, Praha, 1978. (In Czech)

[2] CRITCHLOW, D. E.—FLIGNER, M. A.: On distribution free multiple comparisons in

the one-way analysis of variance, Comm. Statist. Theory Methods 20 (1991), 127–139.

[3] GRAYBILL, F. A.: Theory and Application of the Linear Model.Duxbury Press, Belmont,
1976.

[4] HAYTER, A. J.: A proof of the conjecture that the Tukey-Kramer multiple comparison

procedure is conservative, Ann. Math. Statist. 12 (1984), 61–75.
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