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OPTIMAL DESIGN

FOR POPULATION PK/PD MODELS

Sergei Leonov — Alexander Aliev

ABSTRACT. We provide some details of the implementation of optimal design

algorithm in the PkStaMp library which is intended for constructing optimal sam-
pling schemes for pharmacokinetic (PK) and pharmacodynamic (PD) studies. We
discuss different types of approximation of individual Fisher information matrix
and describe a user-defined option of the library.

1. Introduction

Optimal design of experiments for population PK/PD studies received a con-
siderable attention in statistical literature and software development over the last
decade. Discussions of the theory of optimal experimental design for nonlinear
mixed effects models and its applications in drug development got a fresh start
with the creation in 2006 of the annual PODE workshop (Population Optimum
Design of Experiments); see

http://www.maths.qmul.ac.uk/ bb/PODE/PODE.html.

The discussion of different software tools for population PK/PD optimal de-
signs started at PODE 2007 and continued at every workshop since then. The
discussed software packages include PFIM (see B a z z o l i et al. [6]), PkStaMp
(see A l i e v et al. [2]), PopDes (see G u e o r g u i e v a et al. [13]), PopED (see
N y b e r g et al. [20]), and WinPOPT (see D u f f u l l et al. [7]).

In this paper we continue the discussion of software tools for optimization
of sampling schemes for PK/PD models. In A l i e v et al. [1], [2] we described
the PkStaMp library for constructing locally D-optimal designs for population
compartmental PK and PK/PD models. The library is written in Matlab and
compiled as a single executable file which does not require a Matlab license.
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The main focus of this paper is on different types of approximation of indi-
vidual Fisher information matrices. We also describe a user-defined option as
implemented in the PkStaMp library.

2. Model

The standard model of observations that we use in the PkStaMp library is as
follows:

yij = η(xij,γi) + vij , i = 1, . . . , N, j = 1, . . . , ki, (1)

where xij are times of taking PK or PD measurements yij for patient i; ki is
the number of measurements for patient i; N is the total number of patients in
the study; η(x,γ) is the response function; γi is a vector of individual param-
eters of patient i; vij are residual errors which have additive and proportional
components of variability,

vij = ε1,ij + ε2,ijη(xij ,γi), (2)

where ε1,ij, ε2,ij are random variables with zero mean, such that vectors ε1,i =
(ε1,i, . . . , ε1,iki

)T and ε2,i′ = (ε1,i′ , . . . , ε1,i′ki′
)T are mutually independent for

all i, i′, and
E
(

ε1,iε
T
1,i

)

= σ2
AIki

,E
(

ε2,iε
T
2,i

)

= σ2
P Iki

,

where Ik denotes a (k × k)-identity matrix.

In compartmental modeling, the amounts of drug at different compartments
satisfy the system of ordinary differential equations. For example, for a one-
-compartment model with first-order absorption and linear elimination, with
a single dose D administered at time x = 0,

{

ġ0(x) = −Kag0(x), g0(0) = D,

ġ1(x) = Kag0(x)−Keg1(x), g1(0) = 0,
(3)

where g0(x) is the amount of drug at the site of administration at time x, g1(x)
is the amount of drug in the central compartment, Ka and Ke are absorption
and elimination rate constants, respectively, and η(x,γ) = g1(x)/V is the drug
concentration in the central compartment

η(x,γ) =
DKa

V (Ka −Ke)

(

e−Kex − e−Kax
)

, (4)

where γ = (Ka, Ke, V )T is the vector of response parameters, and V is the
volume of distribution. It is assumed that the individual response parameters γi

are independently sampled from a given population, either normal,

γi ∼ N (γ0,Ω), (5)
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or log-normal,

γil = γ0
l e

ζil, γ0 =
(

γ0
1 , . . . , γ

0
mγ

)T

, ζi = (ζi1, . . . , ζimγ
)T ∼ N (0,Ω), (6)

where mγ is the dimension of the vector of response parameters; l = 1, . . . ,mγ ;
γ0 is an (mγ × 1)-vector of population means, and Ω is an (mγ ×mγ) variance-
-covariance matrix of i.i.d. random vectors γi in (5) or ζi in (6). The vec-
tor γ0 and the matrix Ω are often referred to as population parameters. By
θ = (γ0,Ω;σ2

A, σ
2
P ) we denote the combined vector of model parameters to be

estimated, and by m its length.

3. Fisher information matrix and optimal designs

The key object in estimation and optimal design for repeated measures mod-
els is the Fisher information matrix µ(x, θ) of a k-dimensional point x which
in PK/PD applications corresponds to a (k × 1)-sequence of sampling times.
Once the information matrix µ(x, θ) for any candidate sequence x is defined,
then one can calculate the normalized Fisher information matrix

M(ξ, θ) =
∑

u

wuµ(xu, θ) (7)

for any continuous design ξ =
{

(xu, wu)
}

, where
∑

u wu = 1 and weights wu

correspond to relative frequencies of sequences xu, u = 1, . . . , n. In the PkStaMp
library we minimize the D-optimality criterion,

ξ∗ = argmin
ξ

∣

∣M−1(ξ, θ)
∣

∣, (8)

where the optimization is performed with respect to continuous designs ξ, and
sequences xu in (7) belong to a pre-specified design region X. We implement the
first-order optimization algorithm with forward and backward steps which goes
back to the publications of W y n n [24], F e d o r o v [8], A t w o o d [4]. See also
A t k i n s o n and D o n e v [3], F e d o r o v and H a c k l [10].

3.1. Numerical procedure

Let ξs be the current design on step s. First, a sequence x+
s is found such that

x+
s = argmax

x∈X

d(x, ξs, θ) (forward step), (9)

where d(x, ξ, θ) = tr
[

M−1(ξ, θ)µ(x, θ)
]

is the sensitivity function of the D-cri-

terion, and the updated design ξ+s is obtained according to

ξ+s = (1− αs)ξs + αsξ(xs), 0 < αs < 1, (10)
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where ξ(x) is the unit measure atomized at x, i.e., the design supported on
the single sequence x. Then the worst sequence in the current design is found
according to

x−

s = arg min
x∈X

+
s

d(x, ξ+s , θ) (backward step), (11)

where X+
s is the support set of the design ξ+s , and the design ξs+1 is obtained

from

ξs+1 = (1− α′

s)ξ
+
s + α′

sξ(x
−

s ), α′

s = −min

(

αs,
ps

1− ps

)

, (12)

where ps is the weight of sequence x−

s in the design ξ+s . The sequence of positive
numbers αs must satisfy standard conditions

∑

s αs = ∞, αs → 0 as s → ∞,
for example, αs ∼ 1/s.

As described in A l i e v et al. [2], the design region X in the PkStaMp library
can be defined in two possible ways which we consider rather practical.

(1) The user selects the number k of samples and a finite set of candidate
sampling times (say, every hour, every half-hour etc. over the specified
time window), and then the program enumerates all possible sequences
of length k from this set and uses these sequences as the design region.

(2) The user saves arbitrary candidate sequences in a file, and then the pro-
gram uses these sequences as the design region.

It is worthwhile to remark that if the information matrix µ(x, θ) can be cal-
culated (approximated) for any candidate “observational unit” x in the design
region X, then the construction of locally optimal designs follows a rather sim-
ple routine for either relatively simple models (fixed effects, one measurement
per observational unit), or more complex models where several measurements
are taken for a one or more dependent variables, as in our examples of serial
sampling in PK studies. Indeed, no matter how complex the underlying model
is, if the individual information matrix µ(x, θ) is defined for all x ∈ X, then the
problem of finding the locally optimal design ξ∗ is reduced to the optimization
problem (8) in the space of information matrices

{

M(ξ, θ)
}

. Moreover, by con-
struction, the design region X is finite for all models in our library. Therefore,
the forward step (9) is reduced to optimization over the finite number of can-
didate sequences which allows us to calculate individual information matrices
prior to running the optimal design algorithm. For more details on the numer-
ical procedure and its settings, see F e d o r o v et al. [9, Section 7.1.5], A l i e v
et al. [2].

3.2. Approximation of the information matrix

If a vector of observations Y has mean E(Y|x) = η(x, θ) and variance
Var(Y|x) = S(x, θ), then for normally distributed Y there exists a closed-form

118



OPTIMAL DESIGN FOR POPULATION PK/PD MODELS

expression for the information matrix µ(x, θ), see M a g n u s and N e u d e -
c k e r [14]

µαβ(x, θ) =
∂ηT

∂θα
S−1 ∂η

∂θβ
+

1

2
tr

[

S−1 ∂S

∂θα
S−1 ∂S

∂θβ

]

, (13)

η = η(x, θ), S = S(x, θ),

where α, β = 1, . . . ,m. Let η(x, θ) =
[

η(x1, θ), . . . , η(xk, θ)
]T
, and let F =

F(x,γ0) =
[

∂η(x, θ)/∂γα
∣

∣

γ=γ0 be a (k × mγ) matrix of partial derivatives of

η(x, θ) with respect to response parameters γ0. Using the first-order approxima-
tion (first-order Taylor expansion) together with (2), for normally distributed γi

one gets

S(x, θ) ≃ FΩFT + σ2
P Diag

[

η(x, θ)ηT (x, θ) + FΩFT
]

+ σ2
AIk. (14)

For log-normally distributed γi as in (6), the matrix Ω on the right-hand side
of (14) has to be replaced with

Ω̃ = Diag(γ0)ΩDiag(γ0). (15)

In the above formulae, Diag(a) denotes a diagonal matrix with diagonal elements
equal to either all when a is a square matrix, or al when a is a vector. For the
derivation of (14)–(15), see the Appendix; cf. G a g n o n and L e o n o v [12]. The
formulae (14)–(15) are used in (13) to approximate the individual information
matrix µ(x, θ). Note also that while in (13) we use notation η(x, θ), in fact, when
using the first-order approximation, the function η depends only on response
parameters γ0 as in (4).

4. Software comparison

In 2009–2010 participants of PODE workshop performed the comparison
of different software tools using the one-compartment model (3) as an exam-
ple. The settings were proposed by Nick Holford and France Mentré and were
based on data from the earlier warfarine study. The model was parameterized
via clearance CL, so that Ke = CL/V . It was assumed that the individual re-
sponse parameters γi = (Kai, CLi, Vi) follow the log-normal distribution (6)
with the mean vector γ0 = (1, 0.15, 8) and the diagonal covariance matrix
Ω = Diag(ω2

r ) = Diag(0.6, 0.07, 0.02). It was also assumed that the additive
component of residual variance vanishes, σ2

A = 0, and that σ2
P = 0.01. So the

combined vector of parameters for this example was

θ =
(

k0a, CL0, V 0;ω2
ka
, ω2

CL, ω
2
V ;σ

2
P

)T
= (1, 0.15, 8; 0.6, 0.07, 0.02; 0.01). (16)
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The goal was to compare the Fisher information matrix for the 8-sample sequence

x = (0.5, 1, 2, 6, 24, 36, 72, 120) hours. (17)

All software developers reported coefficients of variation

CVs =
√

[

µ−1(x, θ)
]

ss
/N/θs, s = 1, 2, . . . , 7,

where N = 32 was the number of patients in the actual warfarine study. Thus
values CVs can be interpreted as coefficients of variation obtained from the
design which uses the sequence x from (17) for all 32 patients in the study.

Monte Carlo simulation studies were also performed in NONMEM (byJ o a -
k i m N y b e r g) and MONOLIX, see [18] (by C a r o l i n e B a z z o l i), and sam-
ple estimates of the coefficients of variation were obtained: for a single run, data
were generated according to the model (1)–(4), (6) with parameters θ from (16)
and the sampling sequence x from (17) for 32 patients, and parameters were
estimated using the nonlinear mixed effects models estimation algorithm from
either NONMEM or MONOLIX. Then after 1000 runs, sample statistics and
coefficients of variations were calculated.

After comparing the outputs, it turned out that all population design tools
produced similar coefficients of variation for all model parameters except the ab-
sorption rate Ka: CV (Ka) = 0.052 for PkStaMp and PopDes while CV (Ka) =
0.139 for other tools. Simulations in both NONMEM and MONOLIX resulted
in estimates CV (Ka) = 0.12÷ 0.13. The discrepancy between the outputs sug-
gested to look closer at how calculations were implemented by different software
developers.

The matrix µ in (13) may be written in the block-diagonal form; e.g., see
R e t o u t and M e n t r é [23]

µ(x, θ) =

{

A C
CT B

}

, A = A1 +A2, A1 = FTS−1F, (18)

where for our specific example

A2,αβ =
1

2
tr

[

S−1 ∂S

∂θα
S−1 ∂S

∂θβ

]

, α, β = 1, 2, 3; (19)

Cαβ =
1

2
tr

[

S−1 ∂S

∂θα
S−1 ∂S

∂θβ

]

, α = 1, 2, 3, β = 4, . . . , 7; (20)

Bαβ =
1

2
tr

[

S−1 ∂S

∂θα
S−1 ∂S

∂θβ

]

, α, β = 4, . . . , 7.

So A is the (3 × 3)-matrix which contains partial derivatives with respect to
response parameters γα; C is the (3×4)-matrix which contains mixed derivatives
with respect to response parameters γα and variance parameters

(

ω2
β , σ

2
P

)

; and
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B is the (4 × 4)-matrix which contains derivatives with respect to all variance
parameters

(

ω2
β , σ

2
P

)

.

In PkStaMp we used the first-order approximation (14), (15) and the full ma-
trix µ(x, θ) in (18). It turned out that the other software tools (PFIM, PopED,
WinPOPT) used the following settings:

– “Exclude” the matrix A2 in the calculation of the matrix A in (18) and
use A2 = 0.

– Exclude the matrix C in the calculation of the matrix µ in (18) and use
C = 0 instead.

– Also exclude the term FΩFT in the square brackets on the right-hand side
of (14).

These differences led to quite visible differences in the elements of the informa-
tion matrix µ which correspond to the absorption rate Ka. Once we made the
initial settings identical, the output results coincided, too. Still several questions
remained, in particular (a) what are the consequences of the first-order approx-
imation in (14) and (15), and (b) which option is preferable, the “full” where
the matrices A2,C are preserved, or the “reduced” where A2 = C = 0?

4.1. Linearization for log-normal population distribution

Suppose that ζ is a normal random variable, ζ ∼ N (0, ω2), and that γ = eζ .
Then the first-order approximation leads to

γ ≈ 1 + ζ, Eγ ≈ 1, Var(γ) ≈ Eζ2 = ω2. (21)

On the other hand, the exact moments of the log-normally distributed random
variable γ are

Eγ = eω
2/2, Var(γ) = eω

2
(

eω
2

− 1
)

, (22)

and, therefore, when ω2 is not too small, the first-order approximation may
lead to substantial distortion of the distribution in general, and moments in
particular. In our example ω2

Ka
= 0.6, and the analogs of (21) and (22) are

EKai ≈ 1, Var(Kai) ≈ 0.6, (23)

and EKai = 1.35, Var(Kai) = 1.5, (24)

respectively. For more discussion on linearization options, see M i e l k e and
S c h w a b e [17].

4.2. Using A2 = 0 in (18)

To get an idea about the effect of setting A2 = 0 in (18), consider a single-
-response fixed effects model (1), i.e., Ω = 0. Let {ε} in (2) be normally dis-
tributed, with known residual variances σ2

A = 0 and σ2
P . In this case
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Var(yij) = σ2
P η

2(xij, γ
0), so the term A2 in (19) reduces to A2 = 2F

T
F

η2 , and

the formula (13) for the Fisher information matrix becomes

µF (x, θ) =
1

σ2
P

FTF

η2
+ 2

FTF

η2
=

(

1

σ2
P

+ 2

)

FTF

η2
. (25)

When the term A2 is not used, then the “reduced” information matrix is

µR(x, θ) =
1

σ2
P

FTF

η2
. (26)

To evaluate the effect of the missing term A2 on the coefficient of variation, one
can check the ratio

√

µαβ,F

µαβ,R
=

√

2 + 1/σ2
P

1/σ2
P

=
√

1 + 2σ2
P ∼ 1 + σ2

P for small σ2
P . (27)

So (27) suggests that for our example with σ2
P = 0.01, the effect of dropping the

term A2 may be minimal. Once the proportional residual variance σ2
P becomes

larger, then the effect of the missing term A2 may be more pronounced.

Note also that in the considered example the Fisher information matrix
µF (x, θ) coincides, up to the coefficient of proportionality, with the informa-
tion (moment) matrix µR(x, θ) which corresponds to the iteratively reweighted

least squares estimator θ̂IRLS; see F e d o r o v and L e o n o v [11, Section 5.4].

While the variance-covariance matrix of θ̂IRLS is larger than the one of the max-

imum likelihood estimator θ̂MLE, the optimal designs for the two methods are
the same.

4.3. Linearization and using C = 0 in (18)

We do not have a good explanation of why the reduced version of the infor-
mation matrix µ(x, θ) with C = 0 led to a “better” approximation that was
closer to the simulations in NONMEM and MONOLIX. A possible heuristic ex-
planation is that setting C = 0 helped in some way to balance the effect of the
distortion due to the first-order approximation; see (23), (24). From a practical
point of view, taking C = 0 and, therefore, using the simpler covariance struc-
ture may simplify the estimation algorithm. However, in general, we do not see
any solid reasons for using C = 0 instead of considering the full matrix with C
defined in (20).

4.4. Other types of approximation

If one uses the second-order approximation of the response function η(x,γi)
in the vicinity of γ0, then it follows from (5) that the expectation of η(x,γi)
with respect to the distribution of parameters γi can be approximated as

E
[

η(x,γi)
]

≈ η
(

x,γ0
)

+
1

2
tr
[

H(x,γ0)Ω
]

, (28)
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where H(x,γ0) is the matrix of second-order partial derivatives of the response
function,

H
(

x,γ0
)

=

[

∂2η(x,γ)

∂γα∂γβ

]
∣

∣

∣

∣

γ=γ0

,

e.g., see F e d o r o v and L e o n o v [11, Section 5.5.3]. As noted in A l i e v
et al. [2], the formula (14) for the variance matrix S utilizes first derivatives
F of the response η, and, therefore, calculation of the derivatives of S in (13)
requires second-order derivatives of η. Thus, with the second-order approxima-
tion (28), one will require fourth-order derivatives of the response function η

which numerically will be rather tedious.

One of potential ways of improving the calculation of the information matrix
µ(x, θ) and avoiding numerical approximation as in (14), (15) or (28), is to
calculate the mean η(x, θ) and variance S(x, θ) via Monte Carlo simulations at
each candidate sampling time xj :

• Generate L independent realizations of response parameters γi from a
given distribution (5) or (6), i = 1, . . . , L.

• Generate values Yi={yij} according to (1) and (2), with xij≡xj for all i.

• Calculate empirical mean and variance

η̂ = η̂(x, θ) = Êθ(Y) =
1

L

L∑

i=1

Yi ,

Ŝ = V̂arθ(Y) =
1

L− 1

L∑

i=1

(Yi − η̂) (Yi − η̂)T (29)

• Use the formula (13) to calculate µ(x, θ) with values {η̂, Ŝ} from (29).

Note that the described Monte Carlo approach will eliminate the need to cal-
culate second- and higher-order derivatives of the response function since the
formula (14) or its analogs will not be used. The limitation of this approach is
that it still relies on the normal approximation (13).

Figure 1 illustrates three different types of approximation of the response
function η. The solid line presents η(x,γ0), i.e., the first-order approximation;
see (21). The dashed line shows η(x,γ0

log) where γ
0
log is the true mean of the log-

-normal distribution; see (22). The dotted line presents η̂(x) which is obtained via
the Monte Carlo approach as in (29). The differences between the three curves
are mostly pronounced during the absorption phase and at the beginning of the
elimination phase (before and after the peak concentration, respectively). These
differences can lead to the differences in the computation of the information
matrix µ(x, θ).

123



SERGEI LEONOV — ALEXANDER ALIEV

Figure 1. Mean response curves. Solid – the 1st order approximation,
see (21); dashed – computed at mean values of log-normal distribution,
see (24); dotted – Monte Carlo average as in (29). Locations of circles and

diamonds correspond to sampling times from the sequence x in (17).

5. User-defined option

A new benchmark example was proposed by F r a n c e M e n t r é for PODE
2011 meeting. The example is based on hepatitis C viral dynamics model (HCV);
see N e um a n n et al. [19] The model includes two components. The PK com-
ponent is a one-compartment model which is similar to (3), but with continuous
drug infusion of dose D = 180 mg for the duration of one day, repeated every
week. Thus the first equation in (3) has to be replaced with

ġ0(x) = −Kag0(x) + r(x), r(x) =
{

D, if x ∈ [xl, xl + 1], or 0 otherwise
}

,

where xl are starting times of infusion, xl = 0, 7, 14, . . . (days). The PD model
describes the dynamics of the number of “target cells” T , infected cells I and
the viral load v















Ṫ (x) = −C1T (x)− C2T (x)v(x) + C3,

İ(x) = −δI(x) + C2T (x)v(x),

v̇(x) = −C4

{

1− 1
1+[EC50/η1(x)]n

}

I(x)− cv(x),

(30)

where η1(x) = η1(x,γ) = g1(x)/V is the drug concentration in the central
compartment. The measured PD endpoint is η2(x) = η2(x,γ) = log10 v(x).
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For the purposes of software comparison, it was assumed that the measurement
error model (2) had the additive component only, and σ2

P = 0 for both PK and
PD responses. It was also assumed that C1, C2, C3, C4 were fixed constants. In
total, there were seven response parameters: three PK parameters (Ka, Ke, V )
and four PD parameters (δ, EC50, n, c). The log-parameterization was used for
response parameters, i.e.,

γ = (γ1, . . . , γ7) = (lnKa, . . . , ln c),

with the normal distribution of parameters γi with the diagonal covariance ma-
trix Ω = ω2I7, ω

2 = 0.25. The goal was to compare the Fisher information
matrix for the 12-sample sequence

x = (0, 0.25, 0.5, 1, 2, 3, 4, 7, 10, 14, 21, 28) days, (31)

with the simultaneous measurement of PK and PD responses η1 and η2. For
more details on model settings, see M e n t r é et al. [15].

To run the HCV example, we implemented a “user-defined” option in the
PkStaMp library. This option allows the user to perform the following actions:

– Similar to built-in models, input model parameters γ0 and Ω; cf. Fig. 1
from A l i e v et al. [2] and Fig. 2, top panel. In the HCV example,Ka = 0.8,
so because of log-parameterization we used

θ1 = log(0.8) = −0.223143 etc.

– Input different types of dosing. For example, continuous infusion can be
specified by starting times and durations; see Fig. 2, bottom right corner
of the top panel.

– Similar to built-in models, specify residual error model and candidate sam-
pling times for measured compartments; see Fig. 2, bottom panel.

– Type algebraic expressions on the right-hand side of differential equations
into corresponding fields; see Fig. 3, top and bottom panels. In the alge-
braic expressions, by {A} we denote amounts in different compartments,
i.e., A(1) = g0, A(2) = g1, . . . , A(5) = v, and by {P} we denote model
parameters.

The user-defined option utilizes the numerical solution of the system of ODEs
via Matlab built-in solver ode45.

In the PkStaMp run that was reported at PAGE 2011 meeting, we did not
account for the dependence of the initial conditions of the system (30) on model
parameters which led to minor differences in the reported coefficients of variation
compared to other software tools; see M e n t r é et al. [15, Example 2]. This
inconsistency was later corrected, and the resulting CVs from PkStaMp became
identical to those from the other tools under the same assumptions.

125



SERGEI LEONOV — ALEXANDER ALIEV

Figure 2. User-defined option, input screens: parameters and dosing reg-
imen (top), residual error model and candidate sampling times (bottom).
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Figure 3. User-defined option, input screens: specifying differential equa-
tions and measured compartments.

Future work. Among potential extensions of the PkStaMp library is the use of
Monte Carlo simulations (29) to approximate the individual information matrix
µ(x, θ) in (13). It is also worthwhile to explore various measures of nonlinear-
ity when using different approximation options; see B a t e s and W a t t s [5],
M e r l é and T o d d [16], P á z m a n [21], R a t k o w s k y [22].

For information regarding availability of the PKStaMp library, please contact
the corresponding author.
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6. Appendix: derivation of formulae (14) and (15)

First consider the normal population distribution (5). (In fact, it is sufficient
to assume the existence of the first two moments: Eγi = γ0, Var(γi) = Ω.) Let

Xi = (xi1, . . . , xik)
T ,

Yi = (yi1, . . . , yik)
T ,

η(Xi,γi) =
[

η(xi1,γi), . . . , η(xik,γi)
]T

.

Then the model (1), (2) can be written in the vector form

Yi =
[

Ik + σPDiag(ε2i)
]

η(Xi,γi) + σAε1i. (32)

It follows from the first-order Taylor expansion that

η(Xi,γi) ≈ η
(

Xi,γ
0
)

+ F
(

γi − γ0
)

. (33)

Since E(ε1i) = E(ε2i) = 0, and since ε1i, ε2i and γi are independent, then it
follows from (5), (32) and (33) that

Eγ,ε(Yi) ≈ η
(

Xi,γ
0
)

, (34)

and

Eγ,ε
(

YiY
T
i

)

≈ Eγ ,ε
[

(U1 +U2 +U3)(U1 +U2 +U3)
T
]

, (35)

where

U1 =
[

Ik + σPDiag(ε2i)
]

η(Xi,γ
0),

U2 =
[

Ik + σPDiag(ε2i)
]

F(γi − γ0),

U3 = σAε1i.

The notation Eγ,ε means the expectation with respect to the distribution of
γi, ε1i and ε2i. Note now that

Eγ,ε
(

U1U
T
1

)

= η
(

Xi,γ
0
)

ηT
(

Xi,γ
0
)

+ σ2
PDiag

[

η
(

Xi,γ
0
)

ηT
(

Xi,γ
0
)

]

, (36)

Eγ,ε
(

U2U
T
2

)

= FΩFT + σ2
PDiag

(

FΩFT
)

, (37)

Eγ,ε
(

U3U
T
3

)

= σ2
AIk. (38)

128



OPTIMAL DESIGN FOR POPULATION PK/PD MODELS

Finally, Eγ,ε
(

UsU
T
s′

)

= 0 if s 6= s′, because of independence of ε1i, ε2i and γi.
The formula (14) follows from (34)–(38).

When γi are log-normally distributed as in (6), the only adjustment in the
derivation of the covariance matrix S has to be made in the estimation of the
term Eγ

[

(γi − γ0)(γi − γ0)T
]

for Eγ,ε(U2U
T
2 ) in (37). The first-order approx-

imation (21) entails

E(γi) = γ0, Var(γi) = Diag(γ0)ΩDiag
(

γ0
)

, (39)

and the formula (15) now follows from (39).
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