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WEAK CONSISTENCY OF ESTIMATORS

IN LINEAR REGRESSION MODEL

Petr Lachout

ABSTRACT. A linear regression model and M-estimator of its regression co-
efficients are considered. We present a derivation of a weak consistency of the
M-estimator together with a rate. Derivation is made under general conditions set
on the error term, say “asymptotic stationarity” property. The results are proved
by means of L2-convergence and cover the cases as the error term is ARMA,
ARCH, GARCH process or it is attracted by an ARMA, ARCH, GARCH pro-

cess. We do not separate random and deterministic covariates. Both cases are
treated in one general setting.

1. Introduction

We will consider a linear regression model. We observe couples (Y1, X1),
(Y2, X2), . . . , (YT , XT ), where Yt are random variables and Xt are random vec-
tors. We suppose linear regression model

Yt = (Xt)
⊤
β0 + εt for all t = 1, 2, . . . , T, (1)

where β0 ∈ R
m is vector of unknown regression parameters and ε1, ε2, . . . , εT are

unknown random errors. We assume that the matrix

X =









(X1)
⊤

(X2)
⊤

· · ·
(XT)

⊤









possesses full column rank.
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Our aim is to estimate the unknown parameter β0 in the best way. Considering
several different criteria we receive several different estimators. Let us mention
two of them.

OLS-estimator of regression coefficients possesses the form

β̂T =

(

T
∑

t=1

Xt (Xt)
⊤
)−1

t
∑

t=1

XtYt

= β0 +

(

T
∑

t=1

Xt (Xt)
⊤
)−1

T
∑

t=1

Xtεt.

M-estimator β̂T is a minimizer of

Υ(b) =

T
∑

t=1

ρ
(

Yt − (Xt)
⊤
b
)

=

T
∑

t=1

ρ
(

εt + (Xt)
⊤
(β0 − b)

)

, (2)

where ρ is a given function. Having ρ twice continuously differentiable we obtain
following formula

0 =∇bΥ(β̂T ) = −
T
∑

t=1

ρ′
(

εt + (Xt)
⊤
(β0 − β̂T )

)

Xt

= −
T
∑

t=1

(

ρ′ (εt) + ρ′′ (εt) (Xt)
⊤ (β0 − β̂T ) +Rt

)

Xt.

Hence, we are receiving an expression

β̂T = β0 +

(

T
∑

t=1

ρ′′ (εt)Xt (Xt)
⊤

)−1
T
∑

t=1

ρ′ (εt)Xt

+

(

T
∑

t=1

ρ′′ (εt)Xt (Xt)
⊤
)−1

T
∑

t=1

RtXt.

Finally, in the case of the reminder vanishing in probability, we have an asymp-
totic formula

β̂T = β0 +

(

T
∑

t=1

ρ′′ (εt)Xt (Xt)
⊤

)−1
T
∑

t=1

ρ′ (εt)Xt + oP (1) . (3)

Consider that the reminder is precisely zero for OLS-estimator; i.e., particular
case of M-estimator with ρ (y) = y2.
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In the case of the reminder vanishing in probability with a rate 1√
T
, we have

an asymptotic formula

β̂T = β0 +

(

T
∑

t=1

ρ′′ (εt)Xt (Xt)
⊤
)−1

T
∑

t=1

ρ′ (εt)Xt + OP

(

1√
T

)

. (4)

Both types of estimators possess asymptotically similar structure: Inverse of
a sum of random matrixes times another sum of random vectors. To control esti-
mators quality we need to check the weak consistency of the estimator and weak
rate of consistency. Having good weak consistency and weak rate of consistency,
one could proceed to stronger estimator properties.

Linear regression model with errors which are i.i.d. or autoregressive pro-
cesses are often considered in the literature. Let us mention some of them,
e.g., [1]– [9].

Our paper is written with an intention to present and discuss a usage of L2-
-convergence as a simple tool to derive weak consistency of M -estimators. Our
result presents a general set of assumptions covering standard setting. Moreover,
it covers the cases if error term is attracted by a stationary process, as ARMA,
ARCH or GARCH process. The presented results do not separate random and
deterministic covariates. Both cases are particular cases of our setting.

In the first section of the paper we introduce linear regression model. The
second section introduces L2-convergence, the tool used to derive our results.
The next section presents results together with proof. We added Appendix as
the last section of the paper. It recalls notion of Big O and Small o and contains
an auxiliary lemma.

2. Proving tool for convergence

Consider a sequence St ∈ R
d, t ∈ N of random vectors.Lemma 1. If E [St] −→

t→+∞
θ and tr

(

Var (St)
)

−→
t→+∞

0, then St is tending to θ

in L2 and in probability.

P r o o f. Applying Chebysheff inequality, we receive an estimation

P
(

‖St − E [St] ‖ ≥ K
)

≤ tr (Var (St))

K2
=

1

K2
o (1) .

Therefore, we have verified

St − E [St] = oP (1) .
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Finally,

St = θ +
(

E [St]− θ
)

+
(

St − E [St]
)

= θ + o (1) + oP (1)

= θ + oP (1) . �Lemma 2. If E [St] = θ + O (τt) and tr
(

Var (St)
)

= O
(

κ2t
)

, where τt > 0,
κt > 0 for each t ∈ N and τt → 0, κt → 0, then St is tending to θ in L2 and in

probability with rate max{τt, κt}.
Thus, we can write St = θ +OP

(

max{τt, κt}
)

.

P r o o f. Applying Chebysheff inequality, we receive an estimation

P
(

‖St − E[St]‖ ≥ Kκt
)

≤ tr (Var (St))

K2κ2t
=

1

K2
O (1) .

Therefore, we have verified

St − E [St] = OP (κt) .

Finally,

St = θ +
(

E [St]− θ
)

+
(

St − E [St]
)

= θ +O (τt) +OP (κt)

= θ +OP

(

max{τt, κt}
)

.
�

3. Consistency of M-estimators

Now, we return to the linear regression model (1) mentioned in the intro-
ductory section. We are interested in asymptotic of M-estimators fulfilling (3)
or (4). To be able to do that we have to know something about regression error
term and its relation to covariates.

3.1. Assumptions

Our crucial assumption is that

errors εt, t ∈ N and covariates Xt, t ∈ N are independent. (5)

Set of assumptions on the error term:

E
[

ρ′ (εt)
]

−→
t→+∞

0, (6)

E
[

ρ′′ (εt)
]

−→
t→+∞

θ, (7)

Cov
(

ρ′ (εt) , ρ
′ (εt+h)

)

−→
t→+∞

φ(h), (8)

94



WEAK CONSISTENCY OF ESTIMATORS IN LINEAR REGRESSION MODEL

Cov
(

ρ′′ (εt) , ρ
′′ (εt+h)

)

−→
t→+∞

ψ(h), (9)

∣

∣Cov
(

ρ′ (εt) , ρ
′ (εt+h)

)∣

∣ ≤ Φ(h), (10)
∣

∣Cov
(

ρ′′ (εt) , ρ
′′(εt+h)

)∣

∣ ≤ Ψ(h). (11)

Set of assumptions on covariates:

1

T

T
∑

t=1

|E [Xt;i]| ≤Mi, (12)

1

T

(T−h)∧T
∑

t=(1−h)∨1

E [Xt;iXt+h;j] −→
T→+∞

αi,j(h), (13)

1

T

(T−h)∧T
∑

t=(1−h)∨1

|E [Xt;iXt+h;j]| ≤ Ai,j(h), (14)

1

T

(T−h)∧T
∑

t=(1−h)∨1

|Cov (Xt;i, Xt+h;j)| ≤ Ãi,j(h), (15)

1

T

(T−h)∧T
∑

t=(1−h)∨1

E [Xt;iXt;jXt+h;iXt+h;j ] −→
T→+∞

βi,j(h), (16)

1

T

(T−h)∧T
∑

t=(1−h)∨1

Cov (Xt;iXt;j , Xt+h;iXt+h;j) −→
T→+∞

γi,j(h), (17)

1

T

(T−h)∧T
∑

t=(1−h)∨1

|E [Xt;iXt;jXt+h;iXt+h;j]| ≤ Bi,j(h), (18)

1

T

(T−h)∧T
∑

t=(1−h)∨1

|Cov (Xt;iXt;j , Xt+h;iXt+h;j)| ≤ Ci,j(h). (19)

Technical assumptions of summability:

+∞
∑

h=−∞
Φ(h)Ai,j(h) < +∞,

+∞
∑

h=−∞
Ãi,j(h) < +∞, (20)

+∞
∑

h=−∞
Ψ(h)Bi,j(h) < +∞,

+∞
∑

h=−∞
Ci,j(h) < +∞. (21)
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3.2. Main result

Now, we can formulate and proof the main result of the paper.Theorem 3. Under assumptions (5)–(21) θ 6= 0, matrix
(

αi,j(0)
)

i,j
is regular,

we have:

• Estimator fulfilling (3) possesses expression

β̂T = β0 + oP (1) . (22)

• Adding assumption E
[

ρ′ (εt)
]

= 0, t ∈ N, estimator fulfilling (4) possesses
expression

β̂T = β0 +OP

(

1√
T

)

. (23)

P r o o f. To proof convergence in probability for a given random vector or a given
random matrix, it is necessary and sufficient to proof convergence in probability
for each their member. Therefore, we fix indexes i, j ∈ {1, 2, . . . , d} and consider
separate members of treated objects.

(1) Assumptions (6), (12) and Lemma 4 give

E

[

1

T

T
∑

t=1

ρ′ (εt)Xt;i

]

=
1

T

T
∑

t=1

E
[

ρ′ (εt)
]

E [Xt;i] −→
T→+∞

0.

(2) Assumptions (7), (13), (14) together with Lemma 4 yield

E

[

1

T

T
∑

t=1

ρ′′ (εt)Xt;iXt;j

]

=
1

T

T
∑

t=1

E
[

ρ′′ (εt)
]

E [Xt;iXt;j ] −→
T→+∞

θαi,j(0).

(3) Let us consider variance of the first random sum.

Var

(

1

T

T
∑

t=1

ρ
′ (εt)Xt;i

)

=
1

T 2

T
∑

t=1

T
∑

s=1

Cov
(

ρ
′ (εt)Xt;i, ρ

′ (εs)Xs;i

)

=
1

T 2

T−1
∑

h=1−T

(T−h)∧T
∑

t=(1−h)∨1

Cov
(

ρ
′ (εt)Xt;i, ρ

′ (εt+h)Xt+h;i

)

=
1

T 2

T−1
∑

h=1−T

(T−h)∧T
∑

t=(1−h)∨1

Cov
(

ρ
′ (εt) , ρ

′ (εt+h)
)

E [Xt;iXt+h;i]

+
1

T 2

T−1
∑

h=1−T

(T−h)∧T
∑

t=(1−h)∨1

E
[

ρ
′ (εt)

]

E
[

ρ
′ (εt+h)

]

Cov (Xt;i, Xt+h;i)

=
1

T

(

+∞
∑

h=−∞

φ(h)αi,i(h) + o (1)

)

,
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since according to the assumptions (8), (10), (13), (14), (20), Lemma 4
gives

1

T

T−1
∑

h=1−T

(T−h)∧T
∑

t=(1−h)∨1

Cov
(

ρ′ (εt) , ρ
′ (εt+h)

)

E [Xt;iXt+h;i]

−→
T→+∞

+∞
∑

h=−∞
φ(h)αi,i(h),

according to Assumptions (6), (15), (20), Lemma 4 gives

1

T

T−1
∑

h=1−T

(T−h)∧T
∑

t=(1−h)∨1

E
[

ρ′ (εt)
]

E
[

ρ′ (εt+h)
]

Cov (Xt;i, Xt+h;i) −→
T→+∞

0.

(4) Now, we compute the variance of the second random sum

Var

(

1

T

T
∑

t=1

ρ′′ (εt)Xt;iXt;j

)

=
1

T 2

T
∑

t=1

T
∑

s=1

Cov
(

ρ′′ (εt)Xt;iXt;j , ρ
′′ (εs)Xs;iXs;j

)

=
1

T 2

T−1
∑

h=1−T

(T−h)∧T
∑

t=(1−h)∨1

Cov
(

ρ′′ (εt)Xt;iXt;j , ρ
′′ (εt+h)Xt+h;iXt+h;j

)

=
1

T 2

T−1
∑

h=1−T

(T−h)∧T
∑

t=(1−h)∨1

Cov
(

ρ′′ (εt) , ρ
′′ (εt+h)

)

E [Xt;iXt;jXt+h;iXt+h;j]

+
1

T 2

T−1
∑

h=1−T

(T−h)∧T
∑

t=(1−h)∨1

E
[

ρ′′ (εt)
]

E
[

ρ′′ (εt+h)
]

Cov (Xt;iXt;j , Xt+h;iXt+h;j)

=
1

T

(

+∞
∑

h=−∞
ψ(h)βi,j(h) +

+∞
∑

h=−∞
θ2γi,j(h) + o (1)

)

,

since, according to the assumptions (9), (11), (16), (18), (21), we can apply
Lemma 4 to receive

1

T

T−1
∑

h=1−T

(T−h)∧T
∑

t=(1−h)∨1

Cov
(

ρ′′ (εt) , ρ
′′ (εt+h)

)

E [Xt;iXt;jXt+h;iXt+h;j]

−→
T→+∞

+∞
∑

h=−∞
ψ(h)βi,j(h),
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according to Assumptions (7), (17), (19), (21), we can apply Lemma 4
to receive

1

T

T−1
∑

h=1−T

(T−h)∧T
∑

t=(1−h)∨1

E
[

ρ′′ (εt)
]

E
[

ρ′′ (εt+h)
]

Cov (Xt;iXt;j , Xt+h;iXt+h;j)

−→
T→+∞

+∞
∑

h=−∞
θ2γi,j(h).

Applying Lemmas 1, 2 we have proved

1

T

T
∑

t=1

ρ′ (εt)Xt;i = oP (1) ,

1

T

T
∑

t=1

ρ′ (εt)Xt;i = OP

(

1√
T

)

if E
[

ρ′ (εt)
]

= 0 for all t ∈ N,

1

T

T
∑

t=1

ρ′′ (εt)Xt;iXt;j = θαi,j(0) + oP (1) .

Plugging this observation into (3) and (4) we receive the theorem since θ 6= 0
and matrix

(

αi,j(0)
)

i,j
is regular. �

4. Appendix

Recall meaning of the symbols Big O and Small o. Consider a sequence of real
vectors at ∈ R

d, t ∈ N and a sequence of positive reals τt, t ∈ N. Then

at = o (τt) ⇐⇒ lim
t→+∞

‖at‖
τt

= 0,

at = O (τt) ⇐⇒ lim sup
t→+∞

‖at‖
τt

< +∞.

For a sequence of random vectors Xt ∈ R
d, t ∈ N, we will denote

Xt = oP (τt) ⇐⇒ ‖Xt‖
τt

P−→
t→+∞

0,

Xt = OP (τt) ⇐⇒ ∀ε > 0 ∃ 0 < K < +∞ :

lim sup
t→+∞

P (‖Xt‖ ≥ Kτt) < ε,

Let us continue with an auxiliary lemma.
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WEAK CONSISTENCY OF ESTIMATORS IN LINEAR REGRESSION MODELLemma 4. Consider collections of real numbers at, bt, t ∈ N and At,h, Bt,h,

t = 1, 2, . . . , T , h = 0, 1, . . . , T − 1, T ∈ N.

at → 0,
1

T

T
∑

t=1

|bt| ≤M =⇒ 1

T

T
∑

t=1

atbt −→
T→+∞

0. (24)

at → α,
1

T

T
∑

t=1

bt → β,
1

T

T
∑

t=1

|bt| ≤M =⇒ 1

T

T
∑

t=1

atbt −→
T→+∞

αβ. (25)

∀h At,h → 0, |At,h| ≤ Q(h),
1

T

T
∑

t=1

|Bt,h| ≤ Φ(h),

+∞
∑

h=0

Q(h)Φ(h) < +∞ =⇒ 1

T

T−1
∑

h=0

T−h
∑

t=1

At,hBt,h −→
T→+∞

0. (26)

∀h At,h → α(h), |At,h| ≤ Q(h),
1

T

T
∑

t=1

Bt,h → β(h),
1

T

T
∑

t=1

|Bt,h| ≤ Φ(h),

+∞
∑

h=0

Q(h)Φ(h) < +∞ =⇒ 1

T

T−1
∑

h=0

T−h
∑

t=1

At,hBt,h −→
T→+∞

α(h)β(h). (27)

P r o o f. All properties follow by the application of Dominated Convergence
Theorem. �
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