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NETWORK-RELATED PROBLEMS

IN OPTIMAL EXPERIMENTAL DESIGN AND

SECOND ORDER CONE PROGRAMMING

Guillaume Sagnol

ABSTRACT. In the past few years several applications of optimal experimental

designs have emerged to optimize the measurements in communication networks.
The optimal design problems arising from this kind of applications share three
interesting properties: (i) measurements are only available at a small number
of locations of the network; (ii) each monitor can simultaneously measure several
quantities, which can be modeled by “multiresponse experiments”; (iii) the ob-
servation matrices depend on the topology of the network. We give an overview

of these experimental design problems and recall recent results for the computa-
tion of optimal designs by Second Order Cone Programming (SOCP). New results
for the network-monitoring of a discrete time process are presented. In particular,
we show that the optimal design problem for the monitoring of an AR1 process
can be reduced to the standard form and we give experimental results.

1. Network monitoring and optimal design

The approximate theory for the optimal design of experiments is an important
branch of statistics, and we refer the reader to the monograph of P u k e l s -
h e i m [5] for a comprehensive review on the subject. In the classical version of
the problem, an experimenter wants to estimate a vector of unknown parameters
θ ∈ R

m. To this end, he has s experiments available. The ith experiment yields
a measurement yi ∈ R

li such that

E[yi] = Xiθ and Var[yi] = Σi.

Experiments are uncorrelated, i.e.,

E[yiyj
T ]=0 for i 6=j.
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The matrix Xi ∈ R
li×m is called the observation matrix of the ith experiment.

Given a matrix of coefficients K ∈ R
m×k, the goal is to decide the fraction wi of

the optimal effort to allocate to the ith experiment (for all i ∈ [s] := {1, . . . , s}),
so as to estimate the vector KTθ ∈ R

k with the best possible accuracy. The vec-
tor w ∈ R

s
+ sums to 1 and is called a design.

We define the information matrix of the design w by

M (w) :=

s
∑

i=1

wiX
T
i Σ

−1
i Xi.

The standard approach is to minimize, with respect to the design variable w,
a spectral information function Φ which is applied to the information matrix:

min
w

{

Φ
(

M (w)
)

: w > 0,

s
∑

i=1

wi = 1

}

.

Common choices for the function Φ are the criterions of E−optimality (E stands
for Eigenvalue), A−optimality (for Average), and D−optimality (for Determi-
nant), defined respectively on the set of positive semidefinite matrices Z whose
range includes the columns of K by (see [5, Chapter 6]):

Φ
(E)
K (Z) = λmax(K

TZ†K),

Φ
(A)
K (Z) = traceKTZ†K,

Φ
(D)
K (Z) = detKTZ†K,

where M † is the Moore-Penrose pseudo-inverse of M and λmax denotes the
largest eigenvalue.

In most common situations, the number m of unknown parameters is rather
small (m ≤ 10), while the number s of possible experiments is very large, typi-
cally coming from the discretization of a multidimensional, compact set X. Re-
cently however, a new class of instances has arisen from network monitoring
problems. Here, the number s of experiments remains reasonably small (in the
order of the number of nodes in the graph), while the number m of unknown
parameters is very large (m = O(s2)). The problem is not ill-posed despite
the relation s ≤ m (less experiments than unknowns), because the experiments
are multiresponse, meaning that the ith experiment yields li > 1 simultaneous
observations.

These special instances of optimal experimental design appear when the ex-
perimenter wants to set monitors over a network, in order to estimate certain
quantities such as a performance indicator of an Internet network [10], or the
volume of each origin-destination flows [7], [8]. A common point to these network-
-related problems is that the observation matrices only depend on the topology
and the routing of the flows in the graph, and the variance matrices depend on
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a prior estimate of the flow volumes. We give below a toy-example showing how
to construct a network-monitoring optimal design problem. Then, we will review
in Section 2 recent results based on Second Order Cone Programming (SOCP)
for the computation of these optimal designs. Finally, we will show in Section 3
that the optimal monitoring of a discrete time process over a network can also
be formulated under the standard form, and we show some experimental results.

Optimal designs on the edges for K = I.

Edge 1 2 3 4 5 6 7 8 9

E-optimal 11.1 11.1 16.6 5.5 11.1 16.6 5.5 11.1 11.1
A-optimal 11.2 11.0 14.5 7.3 11.5 14.5 7.3 11.2 11.0
D-optimal 11.0 10.8 14.1 7.9 11.9 14.1 7.9 11.0 10.8

Figure 1. Left : Graph of a toy example with 5 nodes and 9 edges. The

dashed lines represent the 4 flows traversing edge 5 (A → D, B → D, A →

E, B → E). Right : weights of the E−, A−, and D−optimal designs for
this network (in %), for the observation matrices Xi of the subvector ob-
servation model and the variance matrices Σi of the toll evasion model
described in the text, when K is the identity matrix.

We consider the simple network represented in Figure 1. The unknown param-
eter θ can be any measurable feature of the origin-destination (OD) flows, for
example the volume of each flow during a given period of time, the average length
of the individuals in each flow (e.g., length of Internet packets or vehicles), or
the proportion of each flow belonging to a special category (e.g., fraction of FTP
traffic). The experimental effort should be distributed over monitors located on
the edges of the network (in a computer network, the monitors correspond to
a measurement software, while in a road network they can be human pollers who
stop the vehicles).
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Now we shall distinguish two cases. The first case appears when the mon-
itors are able to infer the source and the destination of the sampled indi-
viduals. For all edge e in the network, this results in an observation of ev-
ery OD pair whose path includes e (for simplicity, we assume here that ev-
ery individual chooses the shortest path from his source to his destination).
For example, a monitor on edge 5 observes the four flows which traverse it,

θA→D, θB→D, θA→E , and θB→E .

Hence the observation matrix X5 has 4 rows (one per observed flow) and 5×4 =
20 columns (one per OD pair)

X5 =

A
→

B

A
→

C

A
→

D

A
→

E

· · ·

B
→

D

B
→

E

· · ·













0 0 1 0 · · · 0 0 · · ·

0 0 0 1 · · · 0 0 · · ·

0 0 0 0 · · · 1 0 · · ·

0 0 0 0 · · · 0 1 · · ·

.

We obtain in a similar manner an observation matrix for each edge if the flows
traversing edge e are j1, . . . , jle , the entry (k, jk) of Xe is a 1 for all k ∈ [le], the
other entries are 0. We call this case the subvector observation model, because
each experiment directly gives an estimate of a subvector of θ.

In the second case, which we shall call the destination only model, the mon-
itors are only able to infer the destination of the sampled individuals (and not
their origin—which makes sense on an computer network, because the packets
do not store the history of the nodes they have visited [7]). In this situation, we
obtain, for all edge e, an observation for every destination D that is reachable
from e, by summing the desired feature for the OD pairs that traverse e and
have the destination D. Practically, the new observation matrix X ′

e is obtained
by summing the rows of Xe that correspond to flows having a common destina-
tion. In the example above, since the flows traversing edge 5 go to either D or E,
we can measure two quantities on this edge, namely

(θA→D + θB→D) and (θA→E + θB→E),

X
′

5 =

A
→

B

A
→

C

A
→

D

A
→

E

· · ·

B
→

D

B
→

E

· · ·

( )

0 0 1 0 · · · 1 0 · · ·

0 0 0 1 · · · 0 1 · · ·

.

The variance-covariance matrix Σe depends on the sampling scheme and the
feature of interest which the experimenter wants to estimate. An example with
a randomized sampling to measure Internet flow volumes can be found in [7].
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Now we give another example which is motivated by an application to toll
enforcement on German motorways [1]. Here, the control tours of inspectors
should be optimized, in order to make the the toll enforcement more efficient.
We propose to compute a design (i.e., an allocation of the control density to the
road segments of the network) which leads to the most accurate estimation of
the number of toll evaders on each OD pair. In a follow-up work, we want to use
this design as a target for the integer program described in [1].

We consider an edge e traversed by l OD pairs, which we denote by 1, . . . , l for
simplicity. The volume of traffic xj on each OD pair is known, as well as the total
volume of traffic ye traversing edge e (during a given period of time). Let κ denote
the number of trucks that an inspector can control. We denote by N+ ∈ R

l

(resp. N−∈ R
l) the vector of counts of toll evaders (resp. payers) from the OD

pairs 1, . . . , l checked by the inspector (this is the subvector observation model
described above, because the inspector knows the origin and the destination of
the trucks he checks). The joint distribution of (N+,N−) is multinomial (modulo
the standard approximation of the hypergeometric law by a multinomial), with κ

trials and proportions
[

(

xjpj

ye

)

j=1,...,l

,

(

xj(1− pj)

ye

)

j=1,...,l

]

,

where pj is the proportion of evaders on the jth OD pair. The Cramer Rao
bound shows that any unbiased estimator for the number of evaders

θj = xjpj (for j = 1, . . . , l), satisfies Var[θ̂] � Ve

(in the Löwner ordering sense), where Ve is the l × l−diagonal matrix with
elements κ−1xjyepj(1− pj). Moreover, the unbiased estimators for θj are of the
form

θ̂j =
ye

κ

(

(1− αj)N
+
j + αj

(

κ
xj

ye
−N−

j

)

)

,

and the lower bound for Var[θ̂] is attained for αj = pj . In practice, pj is not
known and we replace it by a prior estimate p̂j , i.e., we set Σe to the diagonal
matrix with the elements

κ−1xjyep̂j(1− p̂j) (for j = 1, . . . , l).

In the toy example of Figure 1, the traffic on edge 5 satisfies the relation
y5 = xA→D + xB→D + xA→E + xB→E , and if we take the same prior p̂j for the
evasion rate on every OD pair, the matrix Σ5 will be proportional to

Diag(y5xA→D, y5xA→E , y5xB→D, y5xB→E).

The optimal designs indicated on Figure 1 were computed for a traffic set to
xj = 1 on every OD pair.

165



GUILLAUME SAGNOL

2. The Second-Order Cone Programming approach

We have shown in [6] that an A−optimal design for KTθ, i.e., a design which
solves

min
w











φK(w) := traceKT





∑

i∈[s]

wiX
T
i Σ

−1
i Xi





†

K : w ≥ 0,

s
∑

i=1

wi = 1











, (1)

with the additional implicit constraint Range
(

M (w)
)

⊇ Range(K), is obtained
by normalizing any vector µ∗ which solves the following Second Order Cone

Program (SOCP)

min
µ∈R

s

Hi∈R
li×k

∑

i

µi (2)

such that

K =
∑

i

XT
i Σ

− 1

2

i Hi, ‖Hi‖F ≤ µi (for all i ∈ [s]).

In this optimization problem, ‖M‖F :=
(
∑

i,j M
2
i,j

)1/2
denotes the Frobenius

norm of M. SOCP is a general class of optimization problems [4] which can be
solved efficiently by interior point codes such as SeDuMi [11]. When the dimen-
sion of the problem becomes large (typically m ≥ 104, which occurs in network
monitoring problems), classical algorithms fail to be efficient: Wynn–Fedorov
exchange algorithm [13] has a slow convergence, and multiplicative update algo-
rithms [12] require a prohibitive full-rank update of the Cholesky factorization of
anm×m−matrix at each iteration. In contrast, computational results of [6] show
that SOCP solvers perform well as long as the observation matrices are sparse
(this is the case indeed for network problems) and the number of columns k

of K is small (in particular, for c−optimality, where k = 1 and K = c is a col-
umn vector).

If both k andm are large however (in particular when the full parameter θ is of
interest, i.e., K = I), no tractable algorithm is known to compute an A−optimal
design. (Except in the easy case where the information matrix M (w) is diagonal,
which happens in the subvector observation model.) Based on the observation
that E

[

φc(w)
]

= φK(w), where the expectation is taken with respect to c ∼

N (0, KKT ), a heuristic approach based on c−optimality was proposed in [7]
to find a designw such that φ(w) approximates the optimal value of Problem (1).
Some vectors c1, . . . , cN are generated from the distribution N (0, KKT ), and
we take the mean of the corresponding ci−optimal designs. In the latter article,
the design found with this procedure is essentially tested for its performance with
respect to the applied networking problem. To go further, we have tested this
heuristic design on several networks from topology-zoo.org [2]. The first column
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of Table 1 describes the instance: name of the network, type of information
that the monitor can read from the flows (‘OD’ for the subvector observation
model, ‘D’ if only the destination of the flows can be inferred), and location of
the measurements (‘links’ or ‘nodes’). The four next columns describe the size

of the instance. The last two columns give the L1−relative error ‖w−wA‖1

‖wA‖1

and

the A−efficiency φI(wA)
φI(w) computed by comparing the average w of N = 100

c−optimal designs and the true A−optimal design wA. Remarkably, although
the design found by this technique is not always very close to the A−optimal
design, the A-efficiency is excellent for every instance. The reasons of the good
behaviour of this heuristic for network-monitoring optimal design problems are
still unknown. But we think that the present analysis justifies the use of this
technique when no tractable algorithm is available.

An independent SOCP formulation was discovered by S i n g h a l and M i -
c h a i l i d i s for a particular optimal design problem in a filtering context [9].
Here, the unknown parameter is observed over time, and the process θt(t ∈ N) is
assumed to be a random walk θt+1 = θt + ǫt, where the noise vectors ǫ1, ǫ2, . . .
are i.i.d., centered, and have a known diagonal covariance matrix Q. The authors
further assume that each Xi has only one nonzero per row (subvector observa-
tion model) and each Σi is diagonal. They give an SOCP to compute a steady-
state E−optimal design, i.e., a design which maximizes the smallest eigenvalue
of the asymptotic information matrix in the steady state of the Kalman filter.
In the next section, we also study a network monitoring problem over time, but
we want to allocate in advance the monitoring resource for one day of mea-
surements, when the experimental effort is not required to be spread uniformly
during the day.

3. Optimal monitoring of a discrete time process

Most network flows exhibit strong diurnal patterns [3]. Therefore, it makes
sense to distribute the experimental effort not only over different locations of the
networks, but also over time. Typically, the goal is to save monitoring resources
at night in order to use them at day, when the traffic is more important. If we
divide the day in T periods t = 1, . . . , T, then a straightforward approach is
to consider the augmented vector of unknown parameters θ = [θ1

T , . . . , θT
T ]T,

so that the observation equations

yi,t = Xiθt + ǫi,t, Var[ǫi,t] = Σi,t (for all i, t ∈ [s]× [T ])

may be rewritten in the standard form

yi,t = [

(θ1)

0 , . . . ,

(θt)

Xi , . . . ,

(θT )

0 ] θ + εi,t, Var[εi,t] = Σi,t. (3)

167



GUILLAUME SAGNOL

Table 1. A−efficiency and L1−relative error for the design found by aver-

aging N = 100 c−optimal designs ; exp, obs, par and nnz indicate respec-
tively the number s of experiments, the total number

∑

s

i=1 li of observa-
tions, the number m of parameters, and the total number of nonzeroes in
X1, . . . , Xs.

Instance Exp. Obs. Par. NNZ L1 error A-efficiency

(%) (%)

Abilene OD links 51 743 121 1386 12.1 99.212

Abilene D links 50 285 121 693 6.0 99.242

Abilene OD nodes 12 501 121 1144 6.3 99.812

Abilene D nodes 11 274 121 572 2.5 99.928

Bellcanada OD links 225 29987 2304 59526 10.3 99.664

Bellcanada D links 224 5562 2304 29763 4.1 99.911

Bellcanada OD nodes 49 25379 2304 54918 5.6 99.827

Bellcanada D nodes 48 5514 2304 27459 3.1 99.797

Dfn OD links 291 27287 3364 53994 9.9 99.890

Dfn D links 290 8386 3364 26997 4.5 99.953

Dfn OD nodes 59 20559 3364 47266 3.9 99.846

Dfn D nodes 58 8328 3364 23633 4.8 99.655

Garr201012 OD links 253 26730 3136 52956 9.4 99.975

Garr201012 D links 252 7159 3136 26478 3.7 99.947

Garr201012 OD nodes 57 20458 3136 46684 5.0 99.741

Garr201012 D nodes 56 7103 3136 23342 6.6 99.351

Geant2010 OD links 187 13385 1369 26398 8.8 99.734

Geant2010 D links 186 3403 1369 13199 3.8 99.864

Geant2010 OD nodes 38 10647 1369 23660 5.2 99.753

Geant2010 D nodes 37 3366 1369 11830 4.7 99.673

Gtspoland OD links 141 9904 1089 19528 13.2 99.494

Gtspoland D links 140 2425 1089 9764 4.8 99.847

Gtspoland OD nodes 34 7726 1089 17350 5.5 99.840

Gtspoland D nodes 33 2392 1089 8675 3.8 99.650

Renater2010 OD links 171 13384 1369 26428 12.2 99.611

Renater2010 D links 170 3267 1369 13214 4.9 99.875

Renater2010 OD nodes 38 10646 1369 23690 6.0 99.748

Renater2010 D nodes 37 3230 1369 11845 2.8 99.891
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Note that in this model, the dependence on time of the observation equations
only appears through the variance-covariance matrices Σi,t of the observations
which usually depend on the flow volumes at location i and time t. Also note that
we have implicitly assumed that the measurements are mutually independent,
i.e., E[εi,tεj,τ

T ] = 0 whenever (i, t) 6= (j, τ), because the noise is only due
to sampling effects.

In the model relying on equation (3), we ignore the fact that θ1, θ2, . . . is
a structured time process, and that the measurement of θt potentially carries
some information about the parameter at other time periods. To tackle this
issue, we propose to study an optimal design problem with a simple time model
of the flows, based on an autoregressive process of the first order: for all t ∈ [T ],

θt = θ̄ + dt, (4)

dt+1 = Pdt + ηt, (5)

where θ̄ is the mean of the process, P is a coefficient matrix with a spectral
norm smaller than 1, and the process η1,η2, . . . is i.i.d. with

E[ηt] = 0 and Var[ηt] = Q.

If we define the augmented parameter

θ̃ =
[

θ̄
T
,d1

T, . . . ,dT
T
]T

,

the observation equations can be written

yi,t = [

(θ̄)

Xi,

(d1)

0 , . . . ,

(dt)

Xi , . . . ,

(dT )

0 ] θ̃ + εi,t, Var[εi,t] = Σi,t (6)

(for all (i, t) ∈ [s]× [T ]).

We also note that the autoregression equation (5) are equivalent to a collection
of virtual prior observations

zt(= 0) = [

(θ̄)

0 ,

(d1)

0 , . . . ,

(dt)

P,

(dt+1)

−I , . . . ,

(dT )

0 ] θ̃ + ηt, Var[ηt] = Q. (7)

(for all t ∈ [T − 1]).

Finally, the full parameter is θ = KT θ̃, where

KT =











I I 0 · · · 0
I 0 I · · · 0
.
.
.

.

.

.
. . .

. . .
.
.
.

I 0 0 · · · I











,

and an A−optimal design for KTθ can be found by SOCP or multiplicative
algorithms (note that we must use an SOCP whose form differs from (2), because
of the prior observations in equation (7), see [6]).
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We have computed the A−optimal designs associated to the observation mod-
els (3) and (6)–(7), for the application to toll enforcement described in Section 1
on the motorways of the region of Berlin-Brandenburg in Germany (s = 90 edges,
m = 494 pairs). In the latter model we have set

P = 0.5I and Q1/2 = 0.025Diag(x̄),

where x̄j is the average flow volume on the jth OD.

For this experiment the day was divided in 8 time slots. The temporal com-
ponents of the optimal designs (i.e., wt =

∑s
i=1wi,t) are plotted in Figure 2,

together with the diurnal evolution of the traffic volume. While the design for
Model (3) follows the daily trend of the traffic, we see that the design based
on an AR1 process is mainly concentrated during the night, where flows are
less important and measurements are more accurate. Nevertheless, we point out
that assuming a time structure might not be adapted for this toll enforcement
problem, because the estimation of the number of toll evaders should rely on
actual controls rather than sophisticated time models.

Figure 2. Optimal designs and total traffic volume vs. time in the re-
gion of Berlin Brandenburg, for the models based on independent mea-
surements (3) and an AR1 process (6)–(7).
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