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PLANNING OF EXPERIMENTS

FOR A NONAUTONOMOUS

ORNSTEIN-UHLENBECK PROCESS

Vladiḿır Lacko

ABSTRACT. We study exact optimal designs for processes governed by mean-
-reversion stochastic differential equations with a time dependent volatility and

known mean-reversion speed. It turns out that any mean-reversion Itō process has
a product covariance structure. We prove the existence of a nondegenerate optimal
sampling design for the parameter estimation and derive the information matrix
corresponding to the observation of the full path. The results are demonstrated
on a process with exponential volatility.

1. Introduction

The model underlying this paper is a nonautonomous nonstationary Ornstein-
-Uhlenbeck process, that is, an Itō process {Xt | t ≥ 0} governed by a stochastic
differential equation (SDE) of the form

dXt = κ(X̄ −Xt)dt + σ(t)dWt, (1)

X0 unknown,

which can be observed at n distinct times in the experimental domain [T∗, T
∗],

0 < T∗ < T ∗. Here, the initial point X0 and the asymptotic expectation X̄ are
unknown parameters, κ > 0 is known mean-reversion speed, σ(·) :〈0,∞) 7→(0,∞)
is (up to a constant multiple) known deterministic and semicontinuous volatility
function, and Wt denotes a Wiener process.

The model (1) is motivated by the autonomous nonstationary Ornstein-Uhlen-
beck process (ANOUP), which corresponds to its constant volatility version.
The ANOUP has found many applications in different research fields such as
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physics or biology. In physics [9], [19], the ANOUP is a noise relaxation process,
which describes the velocity of a particle under the influence of a friction. If we
consider a Hookean spring, then the mean-reversion speed κ is given by the ratio
of the spring constant k and the friction coefficient γ, and the volatility σ(t) is

constantly equal to
√

2kBT/γ, where kB is the Boltzmann constant and T is the
temperature. In biology, the ANOUP is often employed for modelling neuronal
response [15]. The governed variable Xt expresses the voltage difference between
the membrane and resting potentials at the trigger zone of the neuron, and we
are interested in the initial and stationary difference in potentials. The value
of κ is the reciprocal of the membrane constant. However, the situation is quite
different if we expect, for example, that in the problem of the Hookean spring the
temperature T is a function of the time (e.g., cooling or heating of the physical

system), and we get σ(t) =
√

2kBT (t)/γ. Since the volatility is not constant, as
it can be seen in the ANOUP, we should use the model (1) instead.

From the point of view of optimal design of experiments, stationary Ornstein-
-Uhlenbeck process was studied by K i s e l’ á k and S t e h l ı́ k [7] and Z a g o r a -
i o u and A n t o g n i n i [20], who showed the optimality of equidistant sampling.
The same result was achieved by H a r m a n and Š t u l a j t e r [3], [5] in the case
of its nonstationary counterpart.

The purpose of this paper is to find an optimal n-point design for the mo-
del (1), that is, an n-vector τ = (t1, . . . , tn)

′ of strictly increasing values from
the experimental domain [T∗, T

∗], which is in a desired way optimal for esti-
mating unknown parameters. In Section 2 we will formulate the model (1) in
terms of linear regression with correlated errors. The information matrix and
existence of the optimal designs are discussed in Section 3. A demonstration of
the presented results on an example is given in Section 4.

We will use the following notation: By Tn =
{

(t1, . . . , tn)
′ | T∗≤ t1 < t2 < · · ·

· · · < tn ≤ T ∗
}

we denote the set of all n-point design, Tn denotes the closure

of Tn, and by Tn(t̃) we denote the set of all n-point designs with t1 = t̃. For
a given design τ ∈ Tn we have Xτ = (Xt1 , . . . , Xtn)

′, e−κτ = (e−κt1 , . . . , e−κtn)′,
and ετ = (εt1 , . . . , εtn)

′. The symbol 1n denotes the n-vector (1, . . . , 1)′, and 0n

denotes the n-dimensional zero vector.

2. Corresponding linear regression model

After applying the I t ō lemma [6] to the transformation eκt(Xt − X̄) we
obtain the solution to the SDE (1)

Xt = e−κtX0 + (1− e−κt)X̄ +

t
∫

0

e−κ(t−ν)σ(ν) dWν . (2)
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Thus, the observations of the process driven by (1) at the design points t1, . . . , tn
satisfy the linear regression model

Xτ = (e−κτ )X0 + (1n − e−κτ )X̄ + ετ = F(τ )θ + ετ , (3)

where F(τ ) = (e−κτ,1n−e−κτ ) is the design matrix, θ = (X0, X̄)′ is the vector
of unknown parameters, and ετ = (εt1 , . . . , εtn)

′ is a vector of random errors
such that

E[ετ ] = 0n and Var[ετ ] = Σ(τ ). (4)

We remark that the distribution of the vector ετ is Gaussian. In the sequel, we
will derive the variance-covariance matrix Σ(τ ), which is crucial for computing
the information matrix M(τ ), and show that Σ(τ ) is positive definite for any
τ ∈ Tn.

We shall consider conditioning upon the value x0 of X0. A basic rule for
covariance gives that Cov[Xt, Xt+s | X0 = x0] = E[XtXt+s | X0 = x0] − E[Xt |
X0 = x0]E[Xt+s | X0 = x0]. The expectations E[Xt | X0 = x0] and E[Xt+s |
X0 = x0] are known (cf. (2)), henceforth we need to find E[XtXt+s | X0 = x0].

The key for computing E[XtXt+s | X0 = x0] is the transition kernel f(x, t |
xν , ν) = d

dx Pr[Xt < x | Xν = xν ], t > ν, of the process Xt defined by the
SDE (1), which solves the well-known Kolmogorov’s forward equation [1].

Since Xt is a Markov process, its transition density kernel satisfies

∀ν∈(0,t) Pr[Xt < x | X0 = x0] =

x
∫

−∞





∫

R

f(z, t− ν | y, ν)f(y, ν | x0, 0) dy



dz.

Consequently, using (2) we obtain

E[XtXt+s | X0 = x0] =

∫

R

x1f(x1, t | x0, 0)





∫

R

x2f(x2, s | x1, t) dx2



 dx1

=

∫

R

xE[Xt+s | Xt = x]f(x, t | x0, 0) dx

= e−κs
E[X2

t | X0 = x0] + X̄(1− e−κs)E[Xt | X0 = x0]

= e−κs
Var[Xt | X0 = x0] + e−κs

E
2[Xt | X0 = x0]

+ X̄(1− e−κs)E[Xt | X0 = x0],

which implies that

Cov[Xt, Xt+s | X0 = x0] = e−κsD(t), (5)
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where D(t) = Var[Xt | X0 = x0]. It can be shown [2] that the variance D(t)
of Xt governed by SDE (1) follows the ordinary differential equation

d

dt
D(t) = −2κD(t) + σ2(t)

with the initial condition D(0) = 0. Using standard methods of solving ordinary
differential equations we obtain the explicit solution

D(t) = e−2κt

t
∫

0

e2κνσ2(ν) dν. (6)

The same result follows from the Itō isometry [11]. Note that D(t) is always
positive for t > 0. We refer the reader to [11] for elements of the stochastic
calculus.

The statement given in (5) holds in a more general situation if we assume the
volatility function of the form σ(Xt, t). Then the variance D(X0, t) = Var[Xt |
X0 = x0] might be influenced by the value x0 ofX0, which results in a technically
much more complicated model. However, this case is behind the scope of the
presented paper.

The relations (5) and (6) yield:

Lemma 1. The ijth element, i ≤ j, of the variance-covariance matrix Σ(τ )
defined in (4) has the form

{

Σ(τ )
}

ij
= u(ti)v(tj), (7)

where

u(ti) = e−κti

ti
∫

0

e2κνσ2(ν) dν and v(tj) = e−κtj .

A standard approach to estimating parameters of a linear regression model is
to employ the weighted least squares. The estimator is then given by

θ̂(τ ) = M−1(τ )F′(τ )Σ−1(τ )Xτ , (8)

where

M(τ ) = F′(τ )Σ−1(τ )F(τ ),

and, according to the Gauss-Markov theorem [13], is the best linear unbiased

estimator regardless of the distribution of the errors. Here M(τ ) = Var−1
[

θ̂(τ )
]

is the information matrix, and so it is reasonable to expect an experimenter
to choose a design τ̃ ∈ Tn, for which the matrix M(τ̃ ) is “large”. We will discuss
the selection of an optimal design in the next section.

Notice that the least squares estimator and information matrix in (8) assumed
the invertibility of the variance-covariance matrix Σ(τ ). The next lemma states
that Σ(τ ) is positive definite.
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Lemma 2. The variance-covariance matrix Σ(τ ) given by (7) is positive definite
for any τ ∈ Tn, n ≥ 2.

P r o o f. For a design (t1, t2)
′∈ T2, i.e., t1< t2, we have

{

Σ(t1, t2)
}

11
= D(t1)> 0

and det
[

Σ(t1, t2)
]

= D(t1)D(t2)− e−2κ(t2−t1)D2(t1) > 0 because

D(t2) = e−2κt2

t2
∫

0

e2κνσ2(ν) dν

> e−2κ(t2−t1)e−2κt1

t1
∫

0

e2κνσ2(ν) dν (9)

= e−2κ(t2−t1)D(t1).

Now, assume that τn = (t1, . . . , tn)
′ ∈ Tn, Σ(τn) be positive definite, and,

without loss of generality, τn+1 = (τ ′
n, tn+1)

′
∈ Tn+1. Then

Σ(τn+1) =

(

Σ(τn) s

s
′ D(tn+1)

)

,

where s =
(

e−κ(tn+1−t1)D(t1), . . . , e
−κ(tn+1−tn)D(tn)

)′
. Since Σ(τn) is nonsin-

gular, the matrix Σ(τn+1) is row-equivalent to

(

Σ(τn) s

0′
n D(tn+1)− s′Σ−1(τn)s

)

.

The expression Σ−1(τn)s is equal to the nth unit vector (0, . . . , 0, 1)′, cf. [3],

hence s
′Σ−1(τn)s = e−κ(tn+1−tn)D(tn). We can use the relation (9) to proof

the positivity of D(tn+1)− e−κ(tn+1−tn)D(tn). �

The covariance structure (7) has the so-called product form. Besides the
model with the simplest product covariance structure—the Brownian motion
with a time-dependent drift [4], [16]—we can find the product covariance struc-
ture also in other design problems, see, for instance, [3], [5], [10]. In particular,
H a r m a n and Š t u l a j t e r [3], [5] analysed the autonomous nonstationary
Ornstein-Uhlenbeck process discussed in Introduction, which in its original form
coincides with the SDE (1) with a constant volatility σ(t) ≡ σ, and assumed the
corresponding linear regression model to have a more general response function
of the form E[Xt] = (a1 + b1e

−κt)θ1 + (a2 + b2e
−κt)θ2 with a = (a1, a2)

′ and
b = (b1, b2)

′ linearly independent.
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3. Information matrix and optimal designs

In the previous section we stated that the design τ̃ ∈ Tn is “good” if the in-
formation matrix M(τ̃ ) is “large”. While for one-parametric models the measure
of information is straightforward, for multi-parametric models the situation is
different.

A usual way of comparing information matrices is using the Loewner ordering.
Let Sm

+ be the set of all symmetric positive semidefinite (m × m)-matrices.
Then, for M1,M2 ∈ Sm

+ we say that M1 “Loewner dominates” M2, denoted by
M1 < M2, if M1 −M2 ∈ Sm

+ .

In practice the “size” of an information matrix is measured by optimality
criteria, which mostly have some geometrical and statistical interpretation. By
an optimality criterion we will call any function Φ(·) : Sm

+ 7→ [0,∞) such that
Φ is Loewner isotonic (i.e., if M1 < M2, then Φ(M1) ≥ Φ(M2)), nonconstant,
positively homogeneous, concave and upper semicontinuous. Such optimality
criteria are called “information functions”. We refer the reader to [12] and [14]
for more details on optimality criteria.

We will say that the design τ
∗
n,Φ is a Φ-optimal n-point design, if τ ∗

n,Φ max-

imizes Φ
[

M(τ )
]

on Tn, that is,

Φ
[

M(τ ∗
n,Φ)

]

= sup
τ∈Tn

Φ
[

M(τ )
]

.

The fact that Σ(τ ) has a product structure and the results of H a r m a n and
Š t u l a j t e r [4] imply that for τ ∈ Tn

M(τ ) =





e−2κt1

D(t1)
e−κt1 (1−e−κt1 )

D(t1)

e−κt1 (1−e−κt1 )
D(t1)

(1−e−κt1 )2

D(t1)
+ C(τ )



 , (10)

where

C(τ ) =

n
∑

i=2

(eκti − eκti−1)2

e2κtiD(ti)− e2κti−1D(ti−1)
=

n
∑

i=2

(eκti − eκti−1)2
∫ ti
ti−1

e2κνσ2(ν) dν
. (11)

We remark that for τ ∈ Tn the information matrix M(τ ) given in (10) is positive
definite. Since the optimality criteria are usually continuous in M on the set
of positive definite matrices and M(τ ) is continuous in τ on Tn, the function
Φ
[

M(τ )
]

is continuous in τ on Tn.

Now, assume that t∗1 ≥ T∗ is fixed. It follows from the Loewner isotonicity
of optimality criteria that the design τ

∗ ∈ Tn(t
∗
1) is optimal, if

C(τ ∗) = max
t2, . . . , tn

t∗1 < t2, tn ≤ T ∗

ti−1 < ti, i = 3, . . . , n

C(t∗1, t2, . . . , tn). (12)
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Therefore, once we have chosen the value of t∗1, the other design points solve
the optimization problem (12). This approach is very suitable for a numerical
optimization: firstly, we select the value of t1 and then we find the maximum
of C(τ ∗) on Tn(t1), which is used for evaluation of the optimality criterion.
In this way we can find the maximum of the optimality criterion through t1.
Our numerical experience shows that this approach gives rather reliable results
compared to a raw maximization of Φ

[

M(τ )
]

on the n-simplex Tn, even if we
employ heuristic methods like simulated annealing or genetic algorithms. For
as simple volatility functions as exponential and quadratic the results suggested
that it is quite challenging for heuristic methods to search for and find an optimal
design through all n design points (that is, t1 is not fixed), although we performed
a large number of simulation runs.

The following lemma ensures that an optimal design is not degenerated into
one point.

Lemma 3. Let n ≥ 3 and τ 0 = tn1n. Then there exists τ 1 = (t1, . . . , tn)
′ ∈ T n

such that t1 < tn and M(τ 1) < M(τ 0).

P r o o f. Let τ 1 = (t1, . . . , tn)
′ with t1 < t2 = . . . = tn. To prove the statement

of the lemma it is sufficient to show that the matrix M(τ 1)−M(τ 0) equal to




e−2κt1

D(t1)
− e−2κtn

D(tn)
e−κt1 (1−e−κt1 )

D(t1)
− e−κtn (1−e−κtn )

D(tn)

e−κt1 (1−e−κt1 )
D(t1)

− e−κtn (1−e−κt1 )
D(tn)

(1−e−κt1 )2

D(t1)
− (1−e−κtn )2

D(tn)
+ C(τ 1)





is positive semidefinite. Inequality (9) gives that D(tn) > e−2κ(tn−t1)D(t1) for
t1 < tn, which implies the positivity of {M(τ 1)−M(τ 0)}11. Next,

det
[

M(τ 1)−M(τ 0)
]

= 0,

since

C(τ 1) =
(eκtn − eκt1)2

e2κtnD(tn)− e2κt1D(t1)
.

�

Theorem 4. Under the assumption of the model (3) with the covariance struc-
ture (7), there always exists a (feasible) Φ-optimal n-point design τ

∗
n,Φ ∈ Tn.

P r o o f. From Lemma 3 we get that t1 6= tn, and the position of the design
points t2, . . . , tn results from the optimization problem (12). Hence, we need to
show that for any ti ∈ (ti−1, ti+1), i = 2, . . . , n− 1,

(eκti − eκti−1)2
∫ ti
ti−1

e2κνσ2(ν) dν
+

(eκti+1 − eκti)2
∫ ti+1

ti
e2κνσ2(ν) dν

≥
(eκti+1 − eκti−1)2
∫ ti+1

ti−1
e2κνσ2(ν) dν

, (13)

that is, we can place a design point ti between any two design points ti−1 and
ti+1 in a way that ti is optimal and distinct from ti−1 and ti+1.
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If we set

A = eκti − eκti−1 , B = eκti+1 − eκti ,

a =

ti
∫

ti−1

e2κνσ2(ν) dν and b =

ti+1
∫

ti

e2κνσ2(ν) dν,

then the inequality (13) is equivalent to the statement

∀A,B,a,b>0
A2

a
+

B2

b
≥

(A+ B)2

a+ b
.

After some algebraic manipulation we obtain that b2A2 − 2bAaB + a2B2 ≥ 0,
which is true. Moreover, the inequality in (13) becomes an equality if and only if
ti ∈ {ti−1, ti+1}. �

In some applications it is natural to estimate the unknown parameters using
the most recent observations. The derivative of C(τ ) with respect to tn

∂C(τ )

∂tn
=

[

2κ− σ2(tn)U(tn, tn−1)
]

U(tn, tn−1),

where

U(x, y) =
e2κx − eκ(x+y)

∫ x

y
e2κνσ2(ν) dν

,

yields

Proposition 1. If σ(t) is a nonincreasing function, then t∗n = T ∗ is optimal
in the model (3) with the covariance structure (7).

P r o o f. Clearly, the function U(x, y) is continuous and positive. For any

tn−1 < tn ≤ T ∗

we have

σ2(tn)U(tn, tn−1) =
e2κtn − eκ(tn+tn−1)

∫ tn
tn−1

e2κν σ2(ν)
σ2(tn)

dν
≤

e2κtn − eκ(tn+tn−1)

∫ tn
tn−1

e2κν dν

= 2κ
e2κtn − eκ(tn+tn−1)

e2κtn − e2κtn−1
< 2κ,

That is ∂C(τ )
∂tn

> 0 for any τ . �

Let us take into consideration that we can perform measurements at every
point in the experimental domain

[T∗, T
∗], and τn = (t1, . . . , tn)

′ with t1 = T∗ and tn = T ∗.
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From the Taylor series expansion of (11) and by setting ti−ti−1 = ∆, i = 2, . . . , n
we get that

C(τn) = κ2
n
∑

i=2

(

∫ ti−1+∆

ti−1
eκν dν

)2

∫ ti−1+∆

ti−1
e2κνσ2(ν) dν

= κ2
n
∑

i=2

(eκti−1∆+ o(∆))
2

e2κti−1σ2(ti−1)∆ + o(∆)

= κ2
n
∑

i=2

e2κti−1∆2 + o(∆2)

e2κti−1σ2(ti−1)∆ + o(∆)
= κ2

n
∑

i=2

∆+ o(∆)

σ2(ti−1) + o(∆)/∆
.

Consequently,

C(τn) → C∞(T∗, T
∗) = κ2

T∗

∫

T∗

dν

σ2(ν)
, for n → ∞ and ∆ → 0,

which, using the relation (13) and the technique in the proof of Lemma 3, leads to

Proposition 2. The information matrix given by the observation of the full
path in the model (1) is

M∞(T∗, T
∗) =





e−2κT∗

D(T∗)
e−κT∗ (1−e−κT∗ )

D(T∗)

e−κT∗ (1−e−κT∗ )
D(T∗)

(1−e−κT∗ )2

D(T∗)



+

(

0 0
0 1

)

C∞(T∗, T
∗). (14)

Moreover, for any design τ = (t1, . . . , tn)
′ ∈ Tn with T∗ ≤ t1 and tn ≤ T ∗ holds:

i) C(τ ) ≤ C∞(T∗, T
∗),

ii) M(τ ) 4 M∞(t1, t2) 4 M∞(T∗, T
∗).

The formula stated in (14) has an intuitive physical interpretation. In the
Hookean spring problem with a time-dependent temperature formulated in In-
troduction, up to a constant multiple the function σ(t) reflects the square root
of the temperature. Thus the lower the temperature the higher the information
about the unknown parameters. In the physical view, low temperature causes
small fluctuations, so the measurements are more precise.

Another theoretical contribution of the formula (14) is the information con-
tained in a subdomain interval. We shall explain this in detail. Let us consider
that we perform one measurement at T∗ and then we can observe the full tra-
jectory of the process on a subdomain interval (a, a+∆] of the fixed length ∆,
where a ∈ [T∗, T

∗ − ∆]. Then it is optimal to perform the measurements on

such interval (determined by a), which maximizes
∫ a+∆

a
dν

σ2(ν) . That is, the areas

with low σ(t) are more informative, and the measurements should be more con-
centrated in such areas. This effect is demonstrated on an example in the next
section.

In the limit information matrix M∞(T∗, T
∗) we can find even more informa-

tion useful for statistical planning. Being given a Φ-optimal n-point design τ
∗
n,Φ
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VLADIMÍR LACKO

we can measure the Φ-efficiency (see, e.g., [14]) of the design τ ∗
n,Φ with respect

to the maximum possible information defined by

effΦ(τ
∗
n,Φ) =

Φ[M(τ ∗
n,Φ)]

Φ[M∞(T∗, T ∗)]
, (15)

which enables us to investigate how many observations n are necessary to reach
a sufficient efficiency, and wether an additional observation brings a significant
increase in information. For instance, in the next section we will discuss an
example, for which we show that the mentioned efficiency is relatively high
even for designs with small number of observations. A similar idea has been
introduced by H a r m a n and Š t u l a j t e r [4], and highlights the importance
of exact optimal designs in contrast to asymptotic designs, which were studied
in the pioneering papers of S a c k s and Y l v i s a k e r [16]–[18].

4. Example

To give a simple demonstration of the previously presented results we will
focus on D-optimal designs for

dXt = κ(X̄ −Xt) dt+ e−λtdWt, (16)

where κ > 0 is the mean-reversion speed and λ ∈ R is a known constant. If λ
is positive, then we have a system with exponentially decreasing temperature,
and in the case of a negative value of λ the system is being heated. There are
two reasons for use of an exponential function for the volatility in this example:
firstly, an exponential function fits the evolution of the temperature of an object
put into an environment with different but constant temperature and, secondly,
we obtain simple closed-form formulas for information and efficiency.

Using the relations (6) and (10) we obtain that

Mλ(τ ) =





2(κ−λ)

e2(κ−λ)t1−1

2(κ−λ)(eκt1−1)

e2(κ−λ)t1−1

2(κ−λ)(eκt1−1)

e2(κ−λ)t1−1

2(κ−λ)(eκt1−1)2

e2(κ−λ)t1−1
+ Cλ(τ )



 ,

where

Cλ(τ ) = 2(κ− λ)

n
∑

i=2

(eκti − eκti−1)2

e2(κ−λ)ti − e2(κ−λ)ti−1
.

Obviously, for λ → κ we have

Mκ(τ ) =





1
t1

eκt1−1
t1

eκt1−1
t1

(eκt1−1)2

t1
+ Cκ(τ )



, with Cκ(τ ) =

n
∑

i=2

(eκti − eκti−1)2

ti − ti−1
.
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Figure 1. D-optimal 5-point designs
for the model (16) with κ =2, T∗ = 1,
T ∗ = 5 and different values of λ.
For a given λ the horizontal cut gives
the optimal position of design points.

Figure 2. The relation between the
size of a design sample n and efficiency
of D-optimal n-point design with
respect to the maximum possible infor-
mation for the model (16) with κ= 2,
T∗=1, T ∗ = 5 and λ = −3, 0, 3.

Taking the D-optimality criterion ΦD[M] = det1/2(M) we get

det1/2
(

M(τ )
)

=











[

2(κ−λ)

e2(κ−λ)t1−1
Cλ(τ )

]1/2

, λ 6= κ,
[

1
t1
Cκ(τ )

]1/2

, λ = κ.

We remark that for κ = 2 and λ = 1 the function Cλ(τ ) depends only on t1
and tn.

The ΦD-efficiency of a design with respect to the maximal possible informa-
tion (cf. (15)) is given by

effΦD
(τ ) =























[

2λ
κ2 · e2(κ−λ)T∗−1

e2(κ−λ)t1−1
· Cλ(τ )
e2λT∗

−e2λT∗

]1/2

, κ 6= λ, λ 6= 0,
[

1
κ2(T∗−T∗)

· e2(κ−λ)T∗−1
e2(κ−λ)t1−1

Cλ(τ )
]1/2

, κ 6= λ, λ = 0,
[

2λ
κ2 · T∗

t1
· Cκ(τ )

e2λT∗

−e2λT∗

]1/2

, κ = λ.

In the sequel, we give some numerical results for the model (16) with the
mean-reversion speed κ = 2 and bounds for the experimental domain T∗ = 1
and T ∗ = 5.

Figure 4 depicts D-optimal 5-point designs. More precisely, for a particular
λ a horizontal cut gives optimal positions of the design points. For λ = 0 the
design is equidistant, which is a known result already shown by H a r m a n and
Š t u l a j t e r [5]. For λ > 0, in accord with Proposition 1, the position of the
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last design point is equal to T ∗= 5. The explanation for the “jump” in op-
timal position of t1 around λ = 3.8 can be found in flatness of the function

ϕ(t) = max
τ∈Tn(t) det

1/2
(

M(τ )
)

, so the numerical optimization through t1 is
less accurate and more sensitive to roundoff errors. In both cases, λ > 0 and
λ < 0, we can notice that if |λ| is large, then the design points are more concen-
trated around T ∗ and T∗, respectively, where the fluctuations are smaller.

In the previous section we noted that small sample designs can be quite effi-
cient with respect to the maximum possible information, and the contributions
of additional measurements to the information are not significant. This is il-
lustrated in Figure 4, which displays the dependence of the efficiency of the
D-optimal n-point designs on the size n of the design sample for the model (16).
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[5] HARMAN, R.—ŠTULAJTER, F.: Optimal sampling designs for a two-parametric

Ornstein-Uhlenbeck process (submitted).
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