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ON COMPUTATIONAL COMPLEXITY

OF CONSTRUCTION

OF c -OPTIMAL LINEAR REGRESSION MODELS

OVER FINITE EXPERIMENTAL DOMAINS

Jaroḿır Antoch — Michal Černý — Milan Hlad́ık

ABSTRACT. Recent complexity-theoretic results on finding c-optimal designs

over finite experimental domain X are discussed and their implications for the
analysis of existing algorithms and for the construction of new algorithms are
shown. Assuming some complexity-theoretic conjectures, we show that the ap-
proximate version of c-optimality does not have an efficient parallel implemen-
tation. Further, we study the question whether for finding the c-optimal designs

over finite experimental domain X there exist a strongly polynomial algorithms
and show relations between considered design problem and linear programming.
Finally, we point out some complexity-theoretic properties of the SAC algorithm
for c-optimality.

1. Introduction

Consider the linear regression model

y = Xβ + ε, (1)

where y is the dependent variable, X is the design matrix and β ∈ R
m is an

unknown vector of regression parameters. Under traditional assumptions on the

vector of errors ε the ordinary least squares (OLS) estimator β̂ = (X ′X)−1X ′y

of β is the best linear unbiased estimator. Let c ∈ R
m be a fixed non-zero vector.

Then an estimator of c′β is usually defined as c′β̂, see [14] for details. It is easy
to show that this estimator is unbiased.
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If we can choose the values of regressors, i.e., if we can control the design
matrix X , then there appears a naturally associated optimization problem:

How should the design matrix be chosen so that the estimator β̂ is “as good
as possible”? Usually there exist restrictions for the choice of the design matrix.
For example:

(i) A set X ⊆ R
m, called the experimental domain, is given and for each row

x′ of X it holds x ∈ X .

(ii) The number of rows is bounded by a number N . This corresponds to the
situation that we are allowed to make at most N observations. Etc.

The statement “to choose X so that the estimator β̂ is as good as possible”
may be formalized in different ways according to various optimality criteria.
There exists an abundant theory on this issue, see [2], [12], [17], for examples.

In this paper we deal with the criterion known as c-optimality. Said loosely,
a design matrix X is c-optimal if it respects restrictions of the type (i) and (ii)

and minimizes the variance of c′β̂. A more precise statement of the c-optimality
problem will be given in Section 1.2.

It is well known that computational complexity of finding c-optimal design
depends on the experimental domain X . In this paper we assume the case of X
finite. This situation occurs, e.g., if changes in the experimental conditions can
be made in discrete steps only, or if the domain X is so intricate that only
a description of X in terms of a (sufficiently dense) grid is available, or if the
domain points have been generated by some kind of a nondeterministic process.
Recall that the finite case is very important in practice as any compact set can
be approximated using a grid consisting of finitely many points.

1.1. Statistical formalization of the problem

Let the experimental domain X := {x1, . . . ,xk} be fixed.Definition 1.
(a) A vector ξ = (ξ1, . . . , ξk)

′ satisfying 1′ξ = 1 and ξ ≥ 0 (i.e., a discrete
probabilistic measure on X ) is called an approximate design, or design
for short.

(b) If a natural number N is given and the numbers Nξ1, . . . , Nξk are integers,
then the approximate design ξ is called an N -exact design.

The design ξ has the meaning that we shall perform 100ξi% of measurements
in the point xi ∈ X , i = 1, . . . , k.

The number N in (b) stands for the number of observations to be made. We
say that an N -exact design ξ determines an N -row design matrix X if X is,
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up to a permutation of rows, of the form

X = (x1 x1 · · · x1︸ ︷︷ ︸
Nξ1 times

x2 x2 · · · x2︸ ︷︷ ︸
Nξ2 times

· · · xk xk · · · xk︸ ︷︷ ︸
Nξk times

)′. (2)

For a given N -exact design ξ the variance of c′β̂ can be decomposed as

var(c′β̂) =
σ2

N
· varc(ξ), (3)

where σ2 is the variance of error terms, β̂ = (X ′X)−1X ′y with the N -row
design matrix X determined by ξ according to (2) and the number varc(ξ),
called c-variance of ξ, depends on ξ but not on N and σ2. The number varc(ξ),
which is implicitly defined by (3), represents the (multiplicative) contribution of

the structure of the design ξ on the variance of c′β̂. Thus, varc(ξ) is a natural
measure of the quality of the design ξ.Definition 2. N -exact design ξ is said to be c-optimal if for any other N -exact

design ξ̃ it holds varc(ξ̃) ≥ varc(ξ).

Aside the exact version we shall also investigate its approximate, i.e., asymp-
totic, counterpart, which relaxes the N -exactness requirement and corresponds
to the situation when we can make any finite number of observations.Definition 3. An approximate design ξ is said to be asymptotically c-optimal,
if for any N such that ξ is N -exact it is c-optimal.

The term “asymptotic” reflects the fact that the least N, for which the ap-
proximate design ξ is N -exact, may be large. Moreover, note that the definition
of asymptotic c-optimality is interesting for the rational vectors ξ only, so that
for the complexity-theoretic considerations only rational numbers will be taken
into account.

Remark 1. Consider a finite experimental domain X ⊆ R
ℓ and the regression

model
yi = f(xi)

′β + εi, i = 1, . . . , N, (4)

where f : R
ℓ −→ R

m is a function of the form f = (f1, . . . , fm)′ and the
functions f1, . . . , fm : Rℓ −→ R are linearly independent. This model is more
general than the basic model (1). Observe that in our setting the model (4)
with the domain X is equivalent to the basic model (1) with another domain X ′.
For example, consider ℓ = 1 and f(x) = (1, x, x2)′. Then, finding a good design
over the experimental domain X = {x1, . . . , xk} in the model (4) is equivalent
to finding a good design over the domain X ′ =

{
(1, x1, x

2
1)

′, . . . , (1, xk, x
2

k)
′
}

in the model (1). Hence, if we take the more general model (4) instead of (1) as
the basis for presentation, we get the same results.
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1.2. Complexity-theoretic formalization of the problem

In statistics, the c-optimality problem can be described as follows. Given
a rational experimental domain X , a rational vector c and a nonzero natural
number N, find the c-optimal N -exact design ξ over the domain X .

As pointed out above, the main aim of this paper is to study corresponding
complexity-theoretic properties. To achieve this goal, we need another formula-
tion of the design problem because complexity theory predominantly deals with
decision problems having a single bit answer (YES/NO). The natural decision
version of the exact design problem is therefore as follows:

EOD Given a rational experimental domain X , a rational vector c, a natural
number N and a positive rational number S2, decide whether there ex-
ists an N -exact design ξ over the domain X satisfying varc(ξ) ≤ S2. Or,
equivalently, decide whether the c-variance of the c-optimal N -exact ex-
perimental design over X does not exceed S2. (An instance of the problem
EOD is denoted by [X , c, N, S2] in what follows.)

Observe that varc(ξ) is proportional to the precision of measurement. Hence,
the instance [X , c, N, S2] of the problem EOD can be also understood in the
following way. “Is it possible to design an N -exact experiment over X such
that c′β can be measured with precision not worse than S2”?

It is also natural to consider the following decision formulation of the approx-
imate (asymptotic) version of the design problem:

AOD Given a rational experimental domain X , a rational vector c and a pos-
itive rational number S2, decide whether there exists an asymptotically
c-optimal design ξ over X satisfying varc(ξ) ≤ S2. In other words, if we
are not restricted by the number of observations, decide whether it is possi-
ble to design an experiment over X with measurement precision not worse
than S2. (An instance of the problem AOD is denoted by [X , c, S2] in
what follows.)

2. Computational complexity of EOD and AOD

Definitions of all of the complexity-theoretic notions used in the following text
can be found in [1], [6], [10], [11].

From the definition of the problems EOD and AOD we immediately get the
following observation:Proposition 1. (a) The problem EOD is decidable in exponential time.

(b) The problem AOD is Π1 in arithmetic (co-recursively enumerable).

The statement (b) does not guarantee decidability of AOD. It would be
tempting to try to prove its undecidability. However, a surprising fact holds.
The set AOD is decidable and moreover:
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On the other hand, the statement (a) probably cannot be improved.Theorem 2. The set EOD is NP-complete.

Theorem 1 is an important consequence of optimization-theoretic character-
ization of asymptotic c-optimality shown in [7], which will be discussed in Sec-
tion 3.2. Theorem 2 was proved in [3]; some of its consequences can be found
in [4].

Theorems 1 and 2 show that N -exactness—seemingly just a technical requ-
irement—makes the design problem extremely difficult from the computational
perspective compared to the approximate version. Said otherwise: while we have
fast algorithms for the approximate version, we cannot expect that we could
find a faster-than-exponential algorithm for the exact version. In the asymptotic
version of the problem we are able to process huge models with huge experimental
domains, but nothing similar can be expected to hold in general for the exact
version.

This is a theoretical justification of a phenomenon, observed by many prac-
titioners, that finding good exact designs is a much harder problem (from com-
putational perspective) than finding good approximate designs.

Theorems 1 and 2 also show that there is no efficient (i.e., computationally
fast) rounding strategy which would be able to convert an asymptotically optimal
design to the optimal N -exact design. More discussion on interesting rounding
strategies can be found in [13].

3. Algorithmic properties of AOD

In this section we shall inspect more complexity-theoretic properties of the
approximate (asymptotic) c-optimal design problem, formalized as AOD, and
show their implications for design of algorithms.

3.1. Parallel computability of AOD

Once the set AOD is proved to be in P, more questions arise. The most
interesting question is whether AOD can be put into the NC-hierarchy. Said
roughly, problems inNC are problems decidable in polylogarithmic parallel time
(for a rigorous definition see [1] or [11]); that is, they can be decided significantly
faster than in polynomial time using parallel architectures. Recall also that it is
known that NC ⊆ P, but it is an open complexity-theoretic question whether
the inclusion is proper. The problem NC =?

P is as significant question as the
well-known problem P =?

NP. Generally it is believed that NC 6= P.
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Assuming NC 6= P, there are problems in P\NC. We will use the following
terms.Definition 4.
(a) A problem in NC is said to have an efficient parallel implementation.

(b) A problem in P \NC is said to be hard to parallelize or inherently sequen-
tial.

Said informally, if we want to parallelize an inherently sequential problem,
we can expect that we do not achieve better than polynomial speedup. In the
other words, such a problem cannot be solved by parallel computers significantly
faster than using sequential computers.

3.1.1. The question AOD ∈?
NC

The question AOD ∈?
NC means: Does the approximate c-optimality prob-

lem have an efficient parallel implementation? Or is it hard to parallelize?
Theorem 3, coming from [3], gives a strong evidence that the latter statement
is true.Theorem 3. The problem AOD is P-complete.

Recall that all P-complete problems are in P \ NC (assuming NC 6= P)
as it is shown in Figure 1, where the topology of P is depicted.

Figure 1. The NC-hierarchy in P and P-complete problems (assuming
P 6= NC).
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There are many known P-complete problems, e.g.:

• deciding whether a formula in the Horn Normal Form is satisfiable;

• deciding whether a given point is a convex combination of a given set
of points;

• linear programming in the following version:

decide whether a rational linear systemAx≤b has a rational solution; (5)

and a lot of others. For a thorough study of P-completeness see [6].

P-complete problems can be also seen as universal problems for the class P.
Here, universality is understood in a similar way as in the case of NP-com-
pleteness: NP-complete problems can be understood as universal problems for
NP. It follows that the entire class P can be seen as a class of particular sets
of instances of the design problem AOD.

With Theorem 3 we can conclude that if P 6= NC , then AOD does not
have an efficient parallel implementation. In other words, any attempt to find
an efficient parallel algorithm for the approximately c-optimal design problem is
an attempt to prove P = NC , i.e., it is an attempt to resolve a longstand-
ing open complexity-theoretic question which is considered to be extremely
hard.

3.2. AOD and linear programming

In this section we discuss the interesting fact that the problem AOD is equiv-
alent to the general linear programming. The equivalence should be understood
in the way that the problem AOD and the linear programming problem formal-
ized as (5) are reducible1 to each other:

(R1) any instance of AOD can be transformed to a particular linear program;

(R2) any instance of linear programming can be transformed to a particular
instance of AOD.

The reduction (R1) was constructed in [7] and the reduction (R2) in [3]. The ex-
istence of these reductions is the essence of proofs of Theorems 1 and 3.

Let us emphasize that the reduction (R1) is of practical importance because
we can use linear programming solvers for finding solutions of the approximate
design problem.

1To be precise, the two problems are reducible to each other under LOGSPACE-computable

reducibilities.
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On the other hand, the existence of the reduction (R2) is of theoretical im-
portance. It is a complexity-theoretic hardness result showing that the problem
AOD is at least as hard as general linear programming, or that general lin-
ear programming can be seen as a sub-problem of AOD. It follows that any
algorithm for AOD is necessarily also an algorithm for general linear program-
ming (modulo the reduction (R2)). This is an important information for a de-
signer of algorithms for the approximate design problem: she/he must keep in
mind that designing an algorithm for AOD amounts to designing a competitor
to the well-known algorithms for general linear programming such as Mehro-
tra’s Predictor-Corrector Method. It follows that any designer of an algorithm
for AOD has really strong competitors!

3.3. The SAC algorithm

In [7], a special version of the Simplex Algorithm adapted for the c-optimality
problem, called SAC, has been proposed. The algorithm leans on the reduc-
tion (R1). The authors raised a question whether SAC is a polynomial-time
method. The theory of Section 3.2 shows that the answer is probably negative.
By (R2), SAC is necessarily an algorithm for general linear programming. If SAC
runs in polynomial time, then there is a version of the Simplex Algorithm run-
ning in polynomial time. This would be a fascinating result — a question on the
existence of a polynomial-time version of the Simplex Algorithm is one of the
most famous questions in optimization, which has been open since the publica-
tion of the celebrated paper [9] forty years ago.

Open problem. Prove that SAC is not a polynomial time method. Find an
infinite sequence of instances of the problem AOD forcing SAC to perform
exponential number of steps.

3.4. Strongly polynomial algorithms for AOD

Recall that an algorithm processing a sequence of rational numbers x1, . . . , xn

is strongly polynomial if it is polynomial and the number of arithmetical opera-
tions +,−,×,÷,≤ can be bounded by p(n), where p is a polynomial.

Recall also that the bit-size of a rational number is the number of bits neces-
sary to write down the numerator and the denominator. Observe that a polyno-
mial algorithm processing rational numbers has the property that any rational
number occurring within the computation has bit-size bounded by a polynomial in
bit-sizes of x1, . . . , xn (as arithmetical operations with exponentially long num-
bers take exponential time).

The Gaussian Elimination of an (n × n)-matrix is an interesting example.
Though it requires O(n3) arithmetical operations, which is a polynomial num-
ber, naive implementations are not polynomial-time algorithms. The reason is
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that bit-sizes of rational numbers occurring within the computation grow expo-
nentially. If we use the Euclidean Algorithm transforming fractions into coprime
forms after each arithmetical operation, then we get an algorithm which is poly-
nomial (with the Euclidean Algorithm, the bit-sizes of numbers can be proved
to be bounded polynomially, see [16]) but not strongly polynomial. The problem
is that the Euclidean Algorithm itself is not a strongly polynomial procedure.
It processes two integers (which is a constant number) and if it were a strongly
polynomial procedure, then it would be allowed to perform only a constant num-
ber of divisions.

The example of Gaussian Elimination shows what kinds of problems are faced
when strongly polynomial algorithms are designed. For the sake of completeness
let us conclude that a strongly polynomial implementation of Gaussian Elimi-
nation is known; see [5].

Open problem. Does AOD have a strongly polynomial algorithm? In other
words, is there a polynomial-time algorithm for AOD having the number of
elementary arithmetical operations bounded only by the number of regression
parameters m and by the cardinality of the experimental domain k, independent
of the bit-sizes of rational numbers in the instance [X , c, S2]?

The problem AOD is equivalent to general linear programming in the sense
described in Section 3.2. By inspection of the reductions (R1) and (R2) from
that Section we can show:Proposition 2. AOD has a strongly polynomial algorithm if and only if gen-
eral linear programming does.

Remind that no one of known version of the Simplex Algorithm is polyno-
mial. It follows that the Simplex Algorithm is not strongly polynomial. (Re-
call that in Section 3.3 we conjectured that neither SAC is.) All of the known
polynomial-time methods for linear programming, such as Khachiyan’s Ellipsoid
Algorithm [8], Karmarkar’s Algorithm [15] as well as all known Interior Point
Methods [15] suffer from the drawback that the number of iterations grows when
the bit-sizes of rational numbers in their data grow. It follows that the algorithms
are not strongly polynomial.

Existence of strongly polynomial algorithms for general linear programming
is a major, long-standing open question in optimization. Thus we may read the
equivalence of Proposition 2 also negatively:

If we want to design a strongly polynomial algorithm for AOD, we are in fact
attacking a hard open problem.

As far as we know, there is no general consensus whether a strongly polyno-
mial algorithm for linear programming exists or not. Hence we cannot conjecture
whether a strongly polynomial algorithm for AOD exists.
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