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CRITERION-ROBUST DESIGNS

FOR THE MODELS OF SPRING BALANCE

WEIGHING

Lenka Filová — Radoslav Harman

ABSTRACT. In the paper we consider the linear regression model of the first
degree on the vertices of the d-dimensional unit cube and its extension by an in-
tercept term, which can be used, e.g., to model unbiased or biased weighing of d

objects on a spring balance. In both settings, we can restrict our search for ap-
proximate optimal designs to the convex combinations of the so-called j-vertex
designs. We focus on the designs that are criterion robust in the sense of max-
imin efficiency within the class of all orthogonally invariant information functions,
involving the criteria of D-, A-, E-optimality, and many others. For the model
of unbiased weighing, we give analytic formulas for the maximin efficient design,

and for the biased model we present numerical results based on the application
of the methods of semidefinite programming.

1. Introduction

Consider the linear regression model of the first degree on the vertices of the
d-dimensional unit cube given by the formula

y = x1β1 + · · ·+ xdβd + ε, (1)

where y is a real-valued observation, β1, . . . , βd are unknown parameters,
x1, . . . , xd ∈ {0, 1}, and ε is a random error with zero mean. A possible inter-
pretation of the model is that β1, . . . , βd represent unknown weights of d items,
and x1, . . . , xd mean the presence or the absence of the items in a weighing by
a spring balance. The experimental design for this model is a rule for selecting
the items present in different weighings, with the aim to obtain a good estimator
of the unknown weights.

c© 2012 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 62K05.
Keywords: spring balance weighing, optimal design, maximin efficiency.

This research was supported by the Slovak VEGA-Grant No. 2/0038/12.

23
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Besides the classical model (1), we will focus on its extension by an intercept
term

y = x1β1 + · · ·+ xdβd + cβd+1 + ε. (2)

In the weighing interpretation, βd+1 can represent an unknown constant bias
of the spring balance caused, e.g., by an additional item that is necessarily
present in all the weighings. The constant c is usually chosen to be 1, but selecting
different values of c allows us to change the relative importance of the estimation
of the bias term compared to the estimation of the parameters representing
weights of the objects. For details, see the paper [6].

J a c r o u x and N o t z [9] analyzed the optimality of the spring balance
weighing designs without a constant bias for a large class of criteria depend-
ing on the eigenvalues of the information matrix, and C h e n g [2] used the
Kiefer-Wolfowitz theorem to find all approximate Φp-optimal designs. Next,
P u k e l s h e i m [11] determined a complete class of designs for this model, and
D e t t e and S t u d d e n [4] described a geometric construction of approximate
E-optimal designs. From the optimal design perspective, the model (2) with a
constant bias was analyzed in the paper [6]. In some cases, the model (2) with
c = 1 admits exact designs that lead to the minimum achievable variance of the
estimators of the weights, which was shown in [1].

Next, we will introduce the basic concepts from the point of view of general
linear regression models; for details, see the monographs [10] and [11].

Consider a linear regression model on a compact experimental domain X ⊆ Rs.
For each design point x ∈ X we can observe a real-valued random variable
y = fT (x)β + ε, where f : X → R

m is a vector of known continuous regression
functions, β ∈ R

m is a vector of unknown parameters, and ε is a random error
with E(ε) = 0. For different observations, the errors are assumed to be uncor-
related with a constant variance. We will denote this model by (f,X) and say
that the model is m-parametric.

For the models (1) and (2), the experimental domain is X = {0, 1}d, and the
vectors of regression functions are the identity mapping and

f : X → R
d+1; f(x1, . . . , xd) = (x1, . . . , xd, c)

T,

respectively. Likewise, m = d in the model (1) and m = d+ 1 in the model (2).

An (approximate) experimental design is a probability measure ξ on X with
a finite support. Note that for the weighing models, the experimental domain X is
finite, that is, any probability measure on X is a design. The value ξ(x) represents
the relative frequency of replications to be taken in x. By Ξ we denote the set of
all designs on X. The performance of a design ξ ∈ Ξ is based on the information
matrix

M(ξ) =
∑

x∈X

f(x)fT (x)ξ(x).
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An optimality criterion Φ is a real-valued function defined on the set
of information matrices, measuring the quality of the corresponding design.
A design ξ∗ is said to be Φ-optimal if

Φ
(

M(ξ∗)
)

= sup
ξ∈Ξ

Φ
(

M(ξ)
)

. (3)

If (3) holds, then M(ξ∗) is called a Φ-optimal information matrix, and
Φ
(

M(ξ∗)
)

is called the Φ-optimal value of the model (f,X). The quality of
a design ξ compared to a Φ-optimal design ξ∗ is measured by its Φ-efficiency

eff(ξ | Φ) =
Φ(M(ξ))

Φ(M(ξ∗))
. (4)

Let ΦEk
, k = 1, . . . ,m, be the so-called Ek-criteria of optimality introduced

in [7], that is, ΦEk
: Sm

+ → [0,∞) is defined as the sum of k smallest eigenvalues
of the matrix

ΦEk
(M) =

k
∑

i=1

λi(M).

The symbol Sm
+ denotes the set of symmetric nonnegative definite matrices

of type m × m and λ(M) denotes the vector of all eigenvalues of M ∈ Sm
+

arranged in nondecreasing order.

LetO denote the class of all orthogonally invariant criteria, i.e., all information
functions of the type Φ : Sm

+ → [0,∞) that satisfy the condition of orthogonal
invariance

Φ(UCUT ) = Φ(C)

for all C ∈ Sm
+ and m×m orthogonal matricesU (see [11] and [7]). Note that for

any information function Φ, there exists a Φ-optimal design, and the criterion
Φ is positively homogeneous, which justifies the particular definition of design
efficiency given by equation (4). The class O contains concave and positively ho-
mogeneous versions of essentially all reasonable optimality criteria that depend
only on the eigenvalues of the information matrix, such as the criteria of E-,
Ek-, D-, A-optimality and many others. It turns out that the minimal efficiency
of a design ξ with respect to the whole class O, i.e., a stability of performance
of ξ with respect to a very broad class of criteria, can be calculated using the
criteria of Ek-optimality (see [7])

mineff(ξ|O) := min
Φ∈O

eff(ξ | Φ)

= min
k=1,...,m

eff(ξ | ΦEk
)

= min
k=1,...,m

ΦEk
(M(ξ))

v(k)
, (5)
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where v(k) denotes the ΦEk
-optimal value (or, for brevity, the Ek-optimal value).

The number mineff(ξ|O) will be called the O-minimal efficiency of the design ξ
for the model (f,X), or, briefly, the minimal efficiency of ξ.

Knowing the ΦEk
-optimal values v(k), k = 1, 2, . . . ,m, we can find the design

that maximizes the minimal efficiency in the class O, i.e., the design that is
optimal with respect to the criterion

ΦO : Sm
+ → [0,∞); ΦO(M) = min

k=1,...,m

ΦEk
(M)

v(k)
. (6)

The ΦO-optimal design is the most efficiency stable design with respect to the
class O and we will call it the O-maximin efficient design, or, briefly, the max-
imin efficient design. Note that the maximin efficiency criterion is orthogonally
invariant, i.e., ΦO ∈ O.

Since the functions ΦEk
have in general complicated analytic properties, so

does the function ΦO. Therefore, to calculate the O-maximin efficient design, the
standard numerical procedures are difficult to apply. In this paper, we will show
two possible approaches to solving this problem. In Section 2, we will make
use of the form of the model (1) to calculate the O-maximin efficient designs
analytically. However, in general case, we have to resort to numerical procedures
such as semidefinite programming, which will be used to compute theO-maximin
efficient designs in Section 3 for the model (2).

2. The model without a constant bias

Consider now the model (1). For j ∈ {0, . . . ,m}, let κj denote the uniform
probability on the unit cube vertices from X having j components equal to 1
and m − j components equal to 0. We will call κj the j-vertex design. Let us
extend the set of j-vertex designs to the set of neighbor-vertex designs κs, such
that κs is a convex combination of κ⌊s⌋ and κ⌊s⌋+1, specifically,

κs =
(

1− (s− ⌊s⌋)
)

κ⌊s⌋ + (s− ⌊s⌋)κ⌊s⌋+1 for s ∈ [0,m].

As a trivial consequence of [11, Sec. 14.10, Claim I], we get the following propo-
sition.Proposition 1. Let Φ ∈ O. Then there exists s ∈ [0,m] such that the neighbor-

-vertex design κs is Φ-optimal for the model (f,X).

Thus, we can restrict our search for optimal designs to the class of neighbor-
-vertex designs.
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CRITERION-ROBUST DESIGNS FOR THE MODELS OF SPRING BALANCE WEIGHINGTheorem 1. Let m > 1. The Ek-optimal values for the model (1) are v(m) = m,

and if 1 ≤ k < m, we have v(k) = km
4(m−1) if m is even and v(k) = k(m+1)

4m if m

is odd.

P r o o f. Using the results of [11, Sec. 14.10], it is easy to prove that for a neigh-
bor vertex design κs, we have

M(κs) = a(m)
s

(

Im −
1

m
1m1T

m

)

+ b(m)
s

(

1

m
1m1T

m

)

,

where

a(m)
s =

(

−2s⌊s⌋ − s+ ⌊s⌋+ ⌊s⌋2 + sm
)

/
(

m(m− 1)
)

and

b(m)
s =

(

2s⌊s⌋+ s− ⌊s⌋ − ⌊s⌋2
)

/m.

Hence, M(κs) is a completely symmetric matrix which implies that its vector of
eigenvalues is

λ
(

M(κs)
)

=
(

a(m)
s , . . . , a(m)

s , b(m)
s

)T

,

and, consequently, the Ek-optimal values follow directly after some simple alge-
bra. �

Having derived the Ek-optimal values, we can now compute the O-minimal
efficiency of any given neighbor-vertex design κs.Theorem 2. Let m > 1, s ∈ [0,m], and let κs be the neighbor-vertex design.

Further, denote

q(m, s) = −2s⌊s⌋ − s+ ⌊s⌋+ ⌊s⌋2 + sm.

Then

mineff(κs|O) =







min
{

4
m2 q(m, s), s/m

}

if m is even,

min
{

4
(m+1)(m−1)q(m, s), s/m

}

if m is odd.
(7)

P r o o f. From Theorem 1, it is clear that for a given m, the Ek-optimal values,
1 ≤ k < m, grow linearly with k. Therefore, the Ek-efficiency of an arbitrary
design ξ is at least as high as the E-efficiency of ξ. Therefore, the O-minimal
efficiency of ξ is simply the minimum of E1- and Em-efficiencies of ξ as follows
from (5). Moreover,

ΦEm
(κs) = tr

(

M(κs)
)

= s,

that is, using Theorem 1, the Em-efficiency of κs is s/m. �

Finally, we will show that, with the exception of the cases m ≡ 2(mod 4) and
m = 1, the O-maximin efficient design is the neighbor-vertex design κ3m/4 and
its O-minimal efficiency is 3/4.
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LENKA FILOVÁ — RADOSLAV HARMANTheorem 3. Let m ∈ N. Let

s =















1 if m = 1,
3m
4 if m 6≡ 2(mod 4),

3m
4 − 1

3m if m ≡ 2(mod 4).

Then the neighbor vertex design κs is O-maximin efficient for the model (1)
and

mineff(κs|O) =















1 if m = 1,
3
4 if m 6≡ 2(mod 4),
3
4 − 1

3m2 if m ≡ 2(mod 4).

P r o o f. If m = 1, the proof is trivial. Let m > 1. According to Theorem 2, we
need to find s ∈ [0,m] that maximizes mineff(κs|O).

First, let m be even. In this case, we need to maximize the function g(s) =
min

{

4
m2 q(m, s), s/m

}

. Note that 4q(m,m/2)/m2 = 1, 4q(m,m)/m2 = 0, and

that the function 4q(m, ·)/m2 is decreasing on [m/2,m]. Now, as s/m is lin-
ear, we can restrict our search on the interval s ∈ [m/2,m]. Next, we know
that the maximum of g(s) is attained at the point which solves the equa-
tion 4q(m, s)/m2 = s/m. One can verify that the solution is s = 3m/4 if
m ≡ 0(mod 4) and s = 3m/4− 1/(3m) if m ≡ 2(mod 4).

For odd m, the proof is analogous. �

Thus, the maximin efficient design κs requires that 100(1− s+ ⌊s⌋) percent
of weighings involve ⌊s⌋ objects (and all possible combinations of ⌊s⌋ objects
appear the same number of times), and 100(s−⌊s⌋) percent of weighings involve
⌊s⌋+1 objects (and all possible combinations of ⌊s⌋+1 objects appear the same
number of times). Of course, this is usually impossible with a finite number N
of weighings; exceptions are, for instance: m = 3, N ≡ 0(mod 4); m = 4,
N ≡ 0(mod 4); m = 5, N ≡ 0(mod 40); m = 7, N ≡ 0(mod 28), m = 8,
N ≡ 0(mod 28) and m = 9, N ≡ 0(mod 336). However, the Ek-optimal values
from Theorem 2 allow us to find a lower bound on the O-minimal efficiency of
any proposed design, which will be close to 3/4 if the proposed design itself is
close to κs.

Note that, according to [8], the O-minimal efficiency of the D-optimal design
is (m+ 2)/

(

2(m+ 1)
)

if m is even and (m+ 1)/(2m) if m is odd. For m = 1, 2,
the D-optimal design coincides with the maximin efficient design. Nevertheless,
for m → ∞, the minimal efficiency of the D-optimal design converges to 1/2,
which is substantially less than the limiting minimal efficiency 3/4 in the case
of the maximin efficient design.
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3. The model with a constant bias

In this section, we will consider the model (2) of spring balance weighing with
a constant bias. Similarly to the previous section, we can restrict our search for
optimal designs to convex combinations of j-vertex designs.Proposition 2 (see [6]). For any ξ ∈ Ξ there exists a design κ that is a convex

combination of the designs κ0, . . . , κd, such that

Φ
(

M(κ)
)

≥ Φ
(

M(ξ)
)

for all Φ ∈ O.

Therefore, for any orthogonally invariant criterion Φ, some convex combination

of j-vertex designs is Φ-optimal.

For every vector w = (w0, . . . , wd)
T of nonnegative weights summing to one,

let κ̄w,d =
∑d

k=1 wjκj . Then the information matrix of κ̄w,d can be expressed as

M(κ̄w,d) =

d
∑

j=0

wjM(κj)

(see [6]), where

M(κj) =

(

Hj,d
cj
d
1d

cj
d 1T

d c2

)

for all j = 0, 1, . . . , d

with
H0,1 = 0, H1,1 = 1,

and

Hj,d =
j(d− j)

d(d− 1)
Id +

j(j − 1)

d(d− 1)
1d1

T
d for all d ≥ 2, j = 0, 1, . . . , d.

In this case, the analytical computation of the maximin efficient designs would
be very difficult. However, the form of the information matrix of an arbitrary
admissible design κ̄w,d makes it possible to use a numerical algorithm based
on semidefinite programming. Semidefinite programming is a special subclass of
convex mathematical programming and generalizes several standard optimiza-
tion problems, such as linear or quadratic programming. In semidefinite pro-
gramming, we optimize a linear function subject to linear constraints and linear
matrix inequality constraints. The problems of finding Ek-optimal values and
the maximin efficient designs were formulated as semidefinite programs in the
paper [5].

First, we need to find the optimal values for the criteria of Ek-optimality.
Using the methods developed in [5] and the SeDuMi toolbox for MATLAB [12],
we have obtained the ΦEk

-optimal values v(k), k = 1, . . . , d + 1, for selected
values of d and c. Having these values, we were able to compute the maximin
efficient designs (see Table 1).
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Table 1. The weights for the designs κ0, κ⌊d/2⌋, κ⌊d/2⌋+1 and κd forming

the maximin efficient designs in the model (2) for c = 1

4
, 1

2
, 1, 2, 4, 8. The

symbol eff denotes the corresponding minimal efficiency of the maximin de-

sign.

c = 1
4 w0 w⌊d/2⌋ w⌊d/2⌋+1 wd eff

d=2 0.327 0.428 0 0.245 0.475
d=3 0.226 0.451 0 0.322 0.483
d=4 0.312 0.449 0 0.239 0.510
d=8 0.304 0.459 0 0.237 0.470

c = 1
2 w0 w⌊d/2⌋ w⌊d/2⌋+1 wd eff

d=2 0.269 0.428 0 0.303 0.571
d=3 0.138 0.485 0 0.377 0.574
d=4 0.225 0.489 0 0.287 0.558
d=8 0.203 0.518 0 0.279 0.552

c=1 w0 w⌊d/2⌋ w⌊d/2⌋+1 wd eff

d=2 0.190 0.437 0 0.373 0.727
d=3 0.195 0.552 0 0.253 0.716
d=4 0.103 0.556 0 0.341 0.695
d=8 0.061 0.608 0 0.331 0.675

c=2 w0 w⌊d/2⌋ w⌊d/2⌋+1 wd eff

d=2 0.159 0.460 0 0.381 0.870
d=3 0.145 0 0.637 0.218 0.847
d=4 0.035 0.631 0 0.334 0.824
d=8 0.045 0 0.739 0.216 0.785

c=4 w0 w⌊d/2⌋ w⌊d/2⌋+1 wd eff

d=2 0.177 0.484 0 0.339 0.953
d=3 0.158 0 0.702 0.140 0.938
d=4 0.035 0.696 0 0.269 0.923
d=8 0.038 0 0.827 0.135 0.884

c=8 w0 w⌊d/2⌋ w⌊d/2⌋+1 wd eff

d=2 0.205 0.495 0 0.300 0.986
d=3 0.192 0 0.735 0.073 0.980
d=4 0.063 0.732 0 0.205 0.974
d=8 0.066 0 0.892 0.041 0.955
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Figure 1. The O-minimal efficiency (vertical axis) of maximin efficient
designs for the model (2), plotted as a function of c ∈ (0, 8] (horizontal
axis), for d = 2, 3, 4, 8. The graphs were obtained by linear interpolation of
values calculated for c ∈ {0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8}.

We can see that with c converging to ∞ the O-minimal efficiency of the max-
imin efficient design converges to 1 (cf. Table 1 or Figure 1). This is related to
the fact that if in the model (2) we focus only on estimating the parameters
of weights, then there exists a “universally” optimal design, cf. [3]. Note that
Theorem 5 in [8] states that the efficiency of the D-optimal design with respect
to any orthogonally invariant criterion is always at least 1/m, where m is the
number of parameters, which means that the minimal efficiency of the maximin
efficient design must also be at least 1/m. Hence, for c → 0, the minimal effi-
ciency of the maximin efficient design does not converge to 0. We calculated the
maximin efficient design for c = 0.1, and the minimal efficiency of the maximin
efficient design was about 0.43.

Note that, even in the case of a relatively large dimension, the minimal effi-
ciency of the maximin efficient design does not significantly deteriorate. Further,
note that, for d ≥ 3, the maximin efficient design is not determined uniquely,
and it turns out that for the cases we have analyzed, it is possible to choose its
weights in such a way that only three of them are nonzero (see Table 1). Two of
the nonzero weights are w0 and wd, and the third one either w⌊d/2⌋ or w⌊d/2⌋+1.

Acknowledgements. We are grateful to an anonymous referee for helpful com-
ments.

31



LENKA FILOVÁ — RADOSLAV HARMAN

REFERENCES

[1] CERANKA, B.—KATULSKA, K.: Construction of optimum biased spring balance weigh-

ing designs with the diagonal covariance matrix of errors, Comput. Stat. Data Anal. 10

(1990), 121–131.
[2] CHENG, C. S.: An application of the Kiefer-Wolfowitz equivalence theorem to a problem

in Hadamard transform optics, Ann. Stat. 15 (1987), 1593–1603.
[3] CHENG, C. S.: Biased weighing designs, manuscript written in 1995, personal communi-

cation with the author.
[4] DETTE, H.—STUDDEN, W. J.: Geometry of E-optimality, Ann. Stat. 21 (1993),

416–433.
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