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DECOMPOSITION

OF MULTIVARIATE STATISTICAL MODELS

Eva Fǐserová — Luboḿır Kubáček

ABSTRACT. The paper is focused on decomposition of a multivariate model
into a system of two simpler models. The multiresponses are considered to be in-
dependent with the same covariance matrix. Tests are proposed to identify which
of the two models should be used in order to obtain more efficient estimators.
In a case of partly known model parameters, a tolerance domain for negligible

parameters is given.

1. Introduction

Multivariate statistical models, or the so-called multivariate multiple regres-
sion models, are utilized widely for studying relationships between a set of mul-
tiresponse data and a set of regressors. A multivariate view in multiresponse
multiple regression situations is important since, generally, multiresponse data
should be modelled jointly, see, e.g., [3], [4], [9].

In some cases, a multivariate model can be decomposed to a system of simpler
models. For example, if each multiresponse is not intercorrelated, the multivari-
ate model can be reduced to a system of independent univariate models. This
situation will be discussed in detail in Section 2.

In Section 3, we propose tests for making a decision whether to use a mul-
tivariate model or its corresponding system of two simpler multivariate models
in order to obtain more efficient estimators. Section 4 is devoted to a decom-
position when one part of model parameters is known and, moreover, its values
are small. We derive such a tolerance domain that if the parameters lie inside
it is better to neglect these parameters and use a system of two simpler mul-
tivariate models. The behavior of the obtained theoretical results is studied by
simulations in Section 5. A discussion concludes the paper.
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2. Multivariate linear model

A multivariate model for p-dimensional multiresponse data with n observa-
tions and a k-dimensional set of regressors (including an intercept) can be written
as a system of n equations (i = 1, 2, . . . , n)

(Yi1, Yi2, . . . , Yip) = (xi1, xi2, . . . , xik)(β1,β2, . . . ,βp) + (εi1, εi2, . . . , εip),

or, equivalently, in a matrix form

Y (n×p) = X(n×k)B(k×p) + ε(n×p). (1)

Here Y is a random matrix (observation matrix), X is a known design matrix,
B is a matrix of unknown parameters and ε is a random error matrix. We will
denote a multiresponse as Y i· = (Yi1, Yi2, . . . , Yip)

′. In the following text we will
assume that X is of full column rank and the multiresponses are independent
with the same covariance matrix Σ which is positive definite.

If the multiresponses are not intercorrelated, i.e., Σ = Ip (identity matrix
of order p × p), the multivariate model (1) can be reduced into p independent
univariate models

Y j = Xβj + εj , Y j = (Y1j, Y2j, . . . , Ynj)
′, j = 1, 2, . . . , p.

Let us consider a partitioned multivariate model
(

Y 1

(n×p1)

, Y 2

(n×p2)

)
=

(
X1

(n×k1)
, X2
(n×k2)

)


B11
(k1×p1)

, B12
(k1×p2)

B21
(k2×p1)

, B22
(k2×p2)


+

(
ε1

(n×p1)

, ε2
(n×p2)

)
. (2)

Then, the covariance matrix Σ of the multiresponse Y i· is partitioned in the
same way, i.e.,

var

(
Y 1

i·

Y 2
i·

)
=

(
Σ11, Σ12

Σ21, Σ22

)
, i = 1, 2, . . . , n. (3)

If the vectors Y 1
i· and Y 2

i· are not correlated, i.e., Σ12 = 0, Σ21 = 0, the mo-
del (2) can be decomposed into two independent multivariate models

Y 1 = X1B11+X2 B21 + ε1, Y 2 = X1 B12 +X2 B22+ ε2 .

If, moreover,B12 = 0, B21 = 0, we obtain the following two independent models

Y 1 = X1 B11 + ε1, Y 2 = X2 B22 + ε2 . (4)

However, in the case when Y 1
i· and Y 2

i· are correlated and B12 = 0, B21 = 0,
the system of models (4) represents a special case of the so-called seemingly
unrelated equations, or SUR models [10]. These models should be estimated to-
gether. If each model is estimated separately, estimates are consistent, although
not efficient. Some special methods for estimation with explicit formulas for
estimators can be found in [5].
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3. Tests for decomposition of multivariate models

Let us consider a multivariate model (2) with a covariance matrix Σ of each
multiresponse given by (3). Further, let us consider a system of two simpler
multivariate models

Y 1

(n×p1)

= X1
(n×k1)

B1
(k1×p1)

+ ε1
(n×p1)

, Y 2

(n×p2)

= X2
(n×k2)

B2
(k2×p2)

+ ε2
(n×p2)

(5)

with the same covariance matrix. The problem is to decide which of the models
(2) and (5) should be chosen for modelling in order to obtain more efficient
estimators.

Many statements in multivariate theory can be obtained directly from univari-
ate theory. The multivariate model (2) can be rewritten in a suitable univariate
form

(
vec(Y 1)

vec(Y 2)

)
=

(
Ip1

⊗X1, 0, Ip1
⊗X2, 0

0, Ip2
⊗X2, 0, Ip2

⊗X1

)

×
[
vec(B11)

′, vec(B22)
′, vec(B21)

′, vec(B12)
′
]
′

+

(
vec(ε1)

vec(ε2)

)
. (6)

Here, the symbol vec(Y 1) denotes the column vector composed of the columns
of Y 1. The notation ⊗ means the Kronecker multiplication of matrices [8]. The
corresponding covariance matrix V is

V = var

(
vec(Y 1)

vec(Y 2)

)
=

(
Σ11 ⊗ In, Σ12 ⊗ In

Σ21 ⊗ In, Σ22 ⊗ In

)
. (7)

If the covariance matrix Σ is known, the best linear unbiased estimators
(BLUEs) of B11, B12, B21 and B22 in model (2) and their covariance matrices
are given as [4]

B̂11 = (X ′

1MX2
X1)

−1X ′

1MX2
Y 1, var

[
vec(B̂11)

]
= Σ11 ⊗ (X ′

1MX2
X1)

−1,

B̂12 = (X ′

1MX2
X1)

−1X ′

1MX2
Y 2, var

[
vec(B̂12)

]
= Σ22 ⊗ (X ′

1MX2
X1)

−1,

B̂21 = (X ′

2MX1
X2)

−1X ′

2MX1
Y 1, var

[
vec(B̂21)

]
= Σ11 ⊗ (X ′

2MX1
X2)

−1,

B̂22 = (X ′

2MX1
X2)

−1X ′

2MX1
Y 2, var

[
vec(B̂22)

]
= Σ22 ⊗ (X ′

2MX1
X2)

−1,

where MXi
= In − PXi

, PXi
= Xi(X

′

iXi)
−1X ′

i, i = 1, 2.
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Similarly, we can rewrite the model (5) in the univariate form
(
vec
(
Y 1
)

vec
(
Y 2
)
)

=

(
Ip1

⊗X1, 0

0, Ip2
⊗X2

)(
vec(B1)

vec(B2)

)
+

(
vec
(
ε1
)

vec
(
ε2
)
)

(8)

with the covariance matrix (7).

Now, applying results from univariate theory [1], [6], explicit formulas can be
derived for the BLUEs of B1 and B2 in model (5) of the form

vec
(
B̂1

)
=
[(
Ip1

⊗X ′

1

)
U−1

1

(
Ip1

⊗X1

)]−1(
Ip1

⊗X ′

1

)
U−1

1

×

{
vec
(
Y 1
)
−

[
(Σ12Σ

−1
22

)
⊗MX2

]
vec
(
Y 2
)}

,

vec
(
B̂2

)
=
[(
Ip2

⊗X ′

2

)
U−1

2

(
Ip2

⊗X2

)]−1(
Ip2

⊗X ′

2

)
U−1

2

×

{
vec
(
Y 2
)
−

[(
Σ21Σ

−1
11

)
⊗MX1

]
vec
(
Y 1
)}

,

where

U1 = Σ11.2 ⊗ In +
(
Σ12Σ

−1
22 Σ21

)
⊗ PX2

,

U2 = Σ22.1 ⊗ In +
(
Σ21Σ

−1
11 Σ12

)
⊗ PX1

and

Σ11.2 = Σ11 −Σ12Σ
−1
22 Σ21, Σ22.1 = Σ22 −Σ21Σ

−1
11 Σ12.

The covariance matrices are

var
[
vec
(
B̂1

)]
=
[(
Ip1

⊗X ′

1

)
U−1

1

(
Ip1

⊗X1

)]−1

,

var
[
vec
(
B̂2

)]
=
[(
Ip2

⊗X ′

2

)
U−1

2

(
Ip2

⊗X2

)]−1

.

Note that the number of parameters in the model (5) is less than in (2) and
therefore the estimators are more efficient, particularly

var
[
vec
(
B̂11

)]
≥L var

[
vec
(
B̂1

)]
, var

[
vec
(
B̂22

)]
≥L var

[
vec
(
B̂2

)]
,

where the symbol ≥L means the Loevner ordering.

If the parameter matrices B12 and B21 in model (2) are zeros, the parameter
matrices B11, B22 in model (2) and B1, B2 in model (5), respectively, are
the same, however, the estimators in model (5) are more efficient. Thus it is
reasonable to neglect sufficiently small parameters B12 and B21 and test the
hypothesis that “a system of simpler multivariate models (5) is a true model”,
i.e., test B12 = 0 and B21 = 0. For the sake of simplicity, test statistics based on
the estimators of B12 and B21, respectively, in model (2) are used. The explicit
formulas are given in the following theorem.
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DECOMPOSITION OF MULTIVARIATE STATISTICAL MODELSTheorem 1. Let vec(Y ) be normally distributed and Σ be a known covariance

matrix of multiresponse Y i.. Then it holds that

(1) under B21 = 0,

T21 = Tr
[(
Y 1
)
′

MX1
X2

(
X ′

2MX1
X2

)
−1

X ′

2MX1
Y 1Σ−1

11

]
∼ χ2

p1k2
;

(2) under B12 = 0,

T12 = Tr
[(
Y 2
)
′

MX2
X1

(
X ′

1MX2
X1

)
−1

X ′

1MX2
Y 2Σ−1

22

]
∼ χ2

p2k1
.

The symbol Tr(Σ) denotes trace of the matrix Σ.

P r o o f. Under the null hypothesis B21 = 0, the random vector

vec
(
B̂21

)
=
{
Ip1

⊗
[
(X2MX1

X2)
−1X ′

2MX1

]}
vec
(
Y 1
)

is normally distributed as Nk2p1

[
0,Σ11 ⊗ (X ′

2MX1
X2)

−1
]
, and thus the ran-

dom variable T21 = vec(B̂21)
′
[
Σ11 ⊗ (X ′

2MX1
X2)

−1
]
−1

vec(B̂21) has a χ2
k2p1

distribution. According to [7], T21 is equivalent to

T21 = Tr
[
B̂

′

21X
′

2MX1
X2B̂21Σ

−1
11

]

and using the expression for the BLUE of B21 we obtain the first statement.
Similarly, we can proceed with the test statistic T12. �

Now, we can test the hypothesis B21 = 0 and B12 = 0 in model (2) using
the statistics T21 and T12. With respect to the Bonferroni inequality [2], if

T21 ≤ χ2
p1k2

(1− α/2) and T12 ≤ χ2
p2k1

(1− α/2),

where χ2
p1k2

(1−α/2) denotes the (1−α/2)-quantile of a χ2
p1k2

distribution, both
hypotheses B21 = 0, B12 = 0 cannot be rejected on the significance level α.

To construct the test of the hypothesis that B21 = 0, B12 = 0 in model (2) as
a single statistic is more complicated, and therefore the matter is not considered
here.

Unknown covariance matrix Σ

Let us consider that the covariance matrix Σ of multiresponses Y i. is un-
known. An unbiased estimator of Σ in model (2) is [3]

Σ̂ =

(
Σ̂11, Σ̂12

Σ̂21, Σ̂22

)
=

1

n− k1 − k2

((
Y 1
)
′

(
Y 2
)
′

)
M (X1,X2)

(
Y 1,Y 2

)
.

With n−k1−k2 ≥ p1+p2, Σ̂ is nonsingular with probability 1 and (n− k1 − k2)Σ̂
has the Wishart distribution with n− k1 − k2 degrees of freedom and with the

parameters equal to the entries of the matrix Σ. We will write (n− k1 − k2)Σ̂ ∼

Wp1+p2
[n− k1 − k2,Σ].
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To construct the test of the hypothesis about B12 and B21 we can pro-
ceed similarly as with a known covariance matrix Σ. Proper statistics F12 and
F21 are derived in the following Theorem 2. If F12 ≤ χ2

p2k1
(1 − α/2) and

F21 ≤ χ2
p1k2

(1− α/2), both hypotheses B12 = 0, B21 = 0 cannot be rejected
on the asymptotic significance level α.Theorem 2. Let vec(Y ) be normally distributed and Σ be an unknown covari-

ance matrix of multiresponse Y i..

(1) Under B21 = 0, the statistic F21, given by

F21 = −

[
n− k1 −

p1 + k2 + 1

2

]

× log
det
[
(Y 1)′M (X1,X2)Y

1
]

det
[
(Y 1)′M (X1,X2)Y

1 + B̂
′

21X
′

2MX1
X2B̂21

] ,

is asymptotically distributed as χ2
k2p1

.

(2) Under B12 = 0, the statistic F12, given by

F12 = −

[
n− k2 −

p2 + k1 + 1

2

]

× log
det
[
(Y 2)′M (X1,X2)Y

2
]

det
[
(Y 2)′M (X1,X2)Y

2 + B̂
′

12X
′

1MX2
X1B̂12

] ,

is asymptotically distributed as χ2
k1p2

.

P r o o f. If the matrix B21 is zero, the estimator vec(B̂21) has k2p1-dimensional
normal distribution with zero mean value and the covariance matrix equal to

Σ11 ⊗ (X ′

2MX1
X2)

−1.

Hence,

B̂21X
′

2MX1
X2B̂21 ∼ Wp1

(k2,Σ11). (9)

An unbiased estimator of Σ11 is

(Y 1)′M (X1,X2)Y
1/(n− k1 − k2)

and (
Y 1
)
′

M (X1,X2)Y
1
∼ Wp1

(n− k1 − k2,Σ11). (10)

Since

M (X1,X2) = MX1
− PMX1

X2
,

the matrices (9) and (10) are independent, and thus by the Wilks-Bartlett theo-
rem ([3, p. 300]) we obtain the statistic F21. The second statement can be proved
analogously. �
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4. Tolerance domain for negligible parameters

In this section we will consider a completely different situation. Let us assume
that the multivariate model (2) is the true model and the parameter matricesB12

and B21 are known, e.g., they represent some physical or geodetical constants
and, moreover, their values are small. The studied problem is whether these
parameters can be neglected or not, i.e., whether the multivariate model (2) can
be approximated by the system of two simpler multivariate models (5) or not.

From univariate theory [1] it is known that estimators of unknown model pa-
rameters from the underparametrized model (5) are biased in the true model (2).
Let us consider the model (2) rewritten into the univariate form (6) with the
known covariance matrix V given by (7). Let us denote

F =

(
Ip1

⊗X1, 0

0, Ip2
⊗X2

)
, S =

(
Ip1

⊗X2, 0

0, Ip2
⊗X1

)

and κ =
(
vec(B21)

′, vec(B12)
′
)
′

. Then, using univariate theory, the mean square

error (MSE) of the BLUEs vec(B̂1), vec(B̂2) from the approximate models (5)
in model (2) is [1]

MSE

(
vec
(
B̂1

)

vec
(
B̂2

)
)

=
(
F ′V −1F

)
−1

+
(
F ′V −1F

)
−1

F ′V −1Sκκ′S′V −1F
(
F ′V −1F

)
−1

.

The estimators of B11 and B22 are unbiased in model (2). Thus, if

MSE

(
vec
(
B̂1

)

vec
(
B̂2

)
)

≤L var

(
vec
(
B̂11

)

vec
(
B̂22

)
)
, (11)

the estimators of B1 and B2 from the approximate model (5) are better (more
efficient) than the estimators of B11 and B22 from model (2). Again applying
univariate theory, the inequality (11) is true if and only if the vector κ is included
in the tolerance domain [1]

T =
{
κ : κ′S′

(
MFV MF

)+
Sκ ≤ 1

}
. (12)

Geometrically, a tolerance domain is a (k1p2 + k2p1)-dimensional ellipsoid.
Its measure depends on the covariance matrix Σ of multiresponses and the
smaller the standard deviation, the smaller the tolerance domain T . Particu-
larly, k2-multiple of Σ makes homothetic change of the boundary of T in the
ratio 1 : k.

If the covariance matrix Σ of the multiresponse is unknown, one can use the
empirical version of the tolerance domain with estimated covariance matrix for
a raw analysis of negligible parameters.
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5. Simulation study

Using simulations we will study the behavior of the proposed tests for de-
composition of the multivariate model (2) based on statistics T12, T21 (a known
covariance matrix Σ of the multiresponse) and F12, F21 (an unknown Σ), re-
spectively, for different choices of the covariance matrix, parameter matrices, and
true model, i.e., the multivariate model (2) or the system of simpler multivariate
models (5).

We have considered n = 48 observations, a multiresponse Y
j
i·, j = 1, 2, with

dimensions p1 = 3 and p2 = 4, and the number of regressors equal to k1 = 2 and
k2 = 2. The parameter matrices have been chosen as

B1 =

(
3, 2, 2
2, 3, 3

)
, B2 =

(
2, 4, 4, 1.5
4, 2, 4, 4

)
, (13)

B12 =

(
1, 3, 1, 15
2, 7, 8, 3

)
, B21 =

(
4, 4, 1
2, 8, 3

)
. (14)

The observation matrices Y 1 and Y 2 were generated in a natural way, a nor-
mally distributed error term was added to the true mean. The multiresponses
were independent and each had the same covariance matrix Σ considered in the
following six forms:

Σ1 = I7; Σ2 = 100I7; Σ3

was partitioned as

Σ11 = I3, Σ22 = I4

and
Σ12 =

(
0.6I3,0(3×1)

)
; Σ4 = 100Σ3; Σ5

was decomposed as

Σ11 =




1 0.35 0.14
0.35 2 0.16
0.14 0.16 2


 , Σ22 =




8 0.7 0.35 0.71
0.7 1 0.46 0.3
0.35 0.46 2 0.3
0.71 0.3 0.3 4


 ,

Σ12 =




0.8 0.4 0.7 0.6
0.12 0.3 0.3 0.05
0.25 0.56 0.1 0.42


 ;

and Σ6 = 100Σ5.

50 000 simulations was done for covariance matrix Σ. Then, all simulated
observation matrices Y 1 and Y 2 were used in the two proposed tests for decom-
position of the model (T12, T21 for a known Σ, and F12, F21 for an estimated Σ).
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First, data were simulated from the system of two simpler models (5), i.e., for
matrices B1, B2 given by (13) and for zero matrices B12, B21. The obtained
results are shown in Tables 1 and 2. We can see that both proposed tests are
conservative. The true model (5) was only rejected in 2.5% (0.5%) of cases
for the significance level α = 5% (α = 1%) in case of a known covariance
matrix Σ, and in 1% (0.1%) of cases for an estimated Σ. On the significance
level α = 5% (α = 1%), the test based on statistics T12 and T21 distinguished
the correct model in 97.5% (99.5%) cases; the test based on statistics F12 and
F21 distinguished the correct model in 99% (99.9%) cases.

Table 1. Empirical probabilities (in %) of rejecting the hypothesis “true
model is the system of two simpler models (5)” on the significance level α.
Data simulated from model (5), used statistics T12, T21 for a known Σ.

Parameter matrices α Σ1 Σ2 Σ3 Σ4 Σ5 Σ6

(13) 5 2.61 2.47 2.46 2.57 2.46 2.51

(13) 1 0.52 0.47 0.49 0.51 0.52 0.48

100 · (13) 5 2.46 2.56 2.41 2.45 2.47 2.52

100 · (13) 1 0.52 0.50 0.46 0.50 0.54 0.49

Table 2. Empirical probabilities (in %) of rejecting the hypothesis “true
model is the system of two simpler models (5)” on the significance level α.

Data simulated from model (5), used statistics F12, F21 for an estimatedΣ.

Parameter matrices α Σ1 Σ2 Σ3 Σ4 Σ5 Σ6

(13) 5 1.08 1.03 0.99 1.03 0.96 1.03

(13) 1 0.10 0.10 0.12 0.08 0.10 0.10

100 · (13) 5 1.03 1.05 1.02 1.02 1.03 0.99

100 · (13) 1 0.12 0.13 0.10 0.12 0.13 0.12

Results for data simulated from the model (2), i.e., for matrices B1,B2 and
B12, B21 given by (13) and (14), respectively, are presented in Tables 3 and 4.
We can see that both proposed tests are sensitive to the relative accuracy of ob-
servations (whether the tested parameters B12 and B21 are estimated with suf-
ficient precision or not). If we have relatively very precise observations, tests al-
ways recognized the correct model (2). However, when a relative precision of ob-
servations decreases, the probability of rejecting the decomposition of model (2)
into incorrect model (5) also decreases.
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Table 3. Empirical probabilities (in %) of rejecting the hypothesis “true
model is the system of two simpler models (5)” on the significance level α.
Data simulated from model (2), used statistics T12, T21 for a known Σ.

Parameter matrices α Σ1 Σ2 Σ3 Σ4 Σ5 Σ6

(13), (14) 5 100 64.96 100 65.51 100 30.04

(13), (14) 1 100 43.76 100 43.60 100 14.38

100 · (13), 100 · (14) 5 100 100 100 100 100 100

100 · (13), 100 · (14) 1 100 100 100 100 100 100

100 · (13), (14) 5 100 65.17 100 65.00 100 30.12

100 · (13), (14) 1 100 43.37 100 43.86 100 13.92

(13), 100 · (14) 5 100 100 100 100 100 100

(13), 100 · (14) 1 100 100 100 100 100 100

Table 4. Empirical probabilities (in %) of rejecting the hypothesis “true
model is the system of two simpler models (5)” on the significance level α.
Data simulated from model (2), used statistics F12, F21 for an estimatedΣ.

Parameter matrices α Σ1 Σ2 Σ3 Σ4 Σ5 Σ6

(13), (14) 5 100 51.24 100 51.93 100 19.32

(13), (14) 1 100 25.69 100 25.67 100 6.04

100 · (13), 100 · (14) 5 100 100 100 100 100 100

100 · (13), 100 · (14) 1 100 100 100 100 100 100

100 · (13), (14) 5 100 51.78 100 51.29 100 19.47

100 · (13), (14) 1 100 25.52 100 25.59 100 5.86

(13), 100 · (14) 5 100 100 100 100 100 100

(13), 100 · (14) 1 100 100 100 100 100 100

6. Conclusions

The proposed tests and tolerance domain for negligible parameters seem to be
proper methods for decomposition of multivariate models. Both methods are
valid only for independent multiresponses with the same covariance matrix. The
methodology for different forms of covariance matrix or different types of mul-
tivariate models is similar; however, the explicit formulas for estimators and
their characteristics require tedious and complicated computations. Therefore,
we leave these topics for future research.
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[5] KUBÁČEK, L.: Seemingly Unrelated Regression Models, Appl. Math. (to appear).
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